SEMESTRE 2 / COURS 1 - PREUVES & COMPLEXITE

ITC MPSI & PCSI - Année 2025-2026

LYCEE MONTAIGNE

SOMMAIRE

1. Introduction
2. Terminaison
3. Correction

4. Complexité

1/48

INTRODUCTION

PROBLEMATIQUE

Un algorithme est une suite finie de régles et d’opérations élémentaires
mises en ceuvre sur un nombre fini de données en vue de résoudre un
probléme spécifique. Plusieurs questions se posent.

2/48

PROBLEMATIQUE

Un algorithme est une suite finie de régles et d’opérations élémentaires
mises en ceuvre sur un nombre fini de données en vue de résoudre un
probléme spécifique. Plusieurs questions se posent.

® Un algorithme se termine-t-il?

2/48

PROBLEMATIQUE

Un algorithme est une suite finie de régles et d’opérations élémentaires
mises en ceuvre sur un nombre fini de données en vue de résoudre un
probléme spécifique. Plusieurs questions se posent.

® Un algorithme se termine-t-il?
— Terminaison de l'algorithme

2/48

PROBLEMATIQUE

Un algorithme est une suite finie de régles et d’opérations élémentaires
mises en ceuvre sur un nombre fini de données en vue de résoudre un
probléme spécifique. Plusieurs questions se posent.

® Un algorithme se termine-t-il?
— Terminaison de l'algorithme
® Un algorithme répond-il aux attentes?

2/48

PROBLEMATIQUE

Un algorithme est une suite finie de régles et d’opérations élémentaires
mises en ceuvre sur un nombre fini de données en vue de résoudre un
probléme spécifique. Plusieurs questions se posent.

® Un algorithme se termine-t-il?
— Terminaison de l'algorithme

® Un algorithme répond-il aux attentes?
— Correction de l'algorithme

2/48

PROBLEMATIQUE

Un algorithme est une suite finie de régles et d’opérations élémentaires
mises en ceuvre sur un nombre fini de données en vue de résoudre un
probléme spécifique. Plusieurs questions se posent.

® Un algorithme se termine-t-il?
— Terminaison de l'algorithme
® Un algorithme répond-il aux attentes?
— Correction de l'algorithme
® Combien de temps et de ressources mémoires?

2/48

PROBLEMATIQUE

Un algorithme est une suite finie de régles et d’opérations élémentaires
mises en ceuvre sur un nombre fini de données en vue de résoudre un
probléme spécifique. Plusieurs questions se posent.

® Un algorithme se termine-t-il?
— Terminaison de l'algorithme

® Un algorithme répond-il aux attentes?
— Correction de l'algorithme

® Combien de temps et de ressources mémoires?
— Complexite de l'algorithme

2/48

OBJECTIFS

3/48

OBJECTIFS

® Ftablir la terminaison d'un programme simple.

3/48

OBJECTIFS

® Ftablir la terminaison d'un programme simple.
® Ftablir sa correction a l'aide d’'un invariant de boucle.

3/48

OBJECTIFS

® Ftablir la terminaison d'un programme simple.
® Ftablir sa correction a l'aide d’'un invariant de boucle.
® Fvaluer la complexité temporelle et/ou spatiale d'un programme.

3/48

OBJECTIFS

® Ftablir la terminaison d'un programme simple.
® Ftablir sa correction a l'aide d’'un invariant de boucle.
® Fvaluer la complexité temporelle et/ou spatiale d'un programme.

Preuve = Terminaison + Correction

3/48

TERMINAISON

ANALYSE D'UNE BOUCLE

448

ANALYSE D'UNE BOUCLE

n =5
while n !'= 0
n-=1

® Valeur initiale de n: 5.

448

ANALYSE D'UNE BOUCLE

n =5
while n !'= 0
n-=1

® Valeur initiale de n : 5.
® Valeurs successivesden:4,3,2,1,0

448

ANALYSE D'UNE BOUCLE

n =5
while n !'= 0
n-=1

® Valeur initiale de n: 5.
® Valeurs successivesden:4,3,2,1,0
® Condition n != 0 non vérifiee quandn = 0.

448

ANALYSE D'UNE BOUCLE

n =5
while n !'= 0
n-=1

® Valeur initiale de n: 5.
® Valeurs successives de n: 4, 3,2, 1, 0.
® Condition n != 0 non vérifiee quandn = 0.

La boucle s'arréte.

448

ANALYSE D'UNE BOUCLE

n =5
while n !'= 0
n-=1

® Valeur initiale de n: 5.
® Valeurs successives de n: 4, 3,2, 1, 0.
® Condition n != 0 non vérifiee quandn = 0.

La boucle s'arréte.

Le nombre d'opérations effectuées par ce programme est fini : le
programme termine.

448

ANALYSE D'UNE BOUCLE

5/48

ANALYSE D'UNE BOUCLE

n = -1
while n !'= 0
==
® \Valeur initiale de n: -1.

5/48

ANALYSE D'UNE BOUCLE

n = -1
while n '= 0
n -=1
® Valeur initiale de n: -1.
® \aleurs successives de n : -2, -3, -4, etc.

5/48

ANALYSE D'UNE BOUCLE

n = -1
while n != 0
n -=1
® \Valeur initiale de n: -1.
® \aleurs successives de n : -2, -3, -4, etc.
® Condition n !'= 0 toujours vérifiée.

5/48

ANALYSE D'UNE BOUCLE

n = -1
while n != 0
n -=1
® \Valeur initiale de n: -1.
® \aleurs successives de n : -2, -3, -4, etc.
® Condition n !'= 0 toujours vérifiée.

La boucle ne s'arréte jamais.

5/48

ANALYSE D'UNE BOUCLE

n = -1
while n != 0
n -=1
® \Valeur initiale de n: -1.
® \aleurs successives de n : -2, -3, -4, etc.
® Condition n !'= 0 toujours vérifiée.

La boucle ne s'arréte jamais.

Le nombre d'opérations effectuées par ce programme est infini : le
programme ne termine pas.

5/48

ANALYSE D'UNE BOUCLE

Lalgorithme précédent termine si n est initialement un entier positif,

6/48

ANALYSE D'UNE BOUCLE

Lalgorithme précédent termine si n est initialement un entier positif,

c'est donc une pré-condition possible pour la boucle.

6/48

ANALYSE D'UNE BOUCLE

Lalgorithme précédent termine si n est initialement un entier positif,
c'est donc une pré-condition possible pour la boucle.

Nous avons vu dans un précédent chapitre que cette pré-condition
peut-étre testée a l'aide d'une assertion avant la boucle :

6/48

ANALYSE D'UNE BOUCLE

Lalgorithme précédent termine si n est initialement un entier positif,
c'est donc une pré-condition possible pour la boucle.

Nous avons vu dans un précédent chapitre que cette pré-condition
peut-étre testée a l'aide d'une assertion avant la boucle :
assert n >= 0, "la valeur de n doit étre positive ou \
< nulle"
while n !'= 0:

n -=1

6/48

NOTATION

La notation var; désigne le contenu de la variable var a la fin de
l'exécution de la /¢ itération de la boucle.

7/48

NOTATION

La notation var; désigne le contenu de la variable var a la fin de

'exécution de la i€ itération de la boucle.
Par convention varg désigne le contenu de la variable juste avant d’entrer

dans la boucle.

7/48

NOTATION

La notation var; désigne le contenu de la variable var a la fin de
l'exécution de la i€ itération de la boucle.

Par convention varg désigne le contenu de la variable juste avant d’entrer
dans la boucle.

Exemple

S =10

for k in range(2, 5):
S =S+ Kk

7/48

NOTATION

La notation var; désigne le contenu de la variable var a la fin de
l'exécution de la i€ itération de la boucle.

Par convention varg désigne le contenu de la variable juste avant d’entrer
dans la boucle.

Exemple

S =10

for k in range(2, 5):
S =S+ Kk

Sy = 10,5, = 12,5, = 15,53 = 19.

7/48

UNE PROPRIETE MATHEMATIQUE

Résultat principal pour la terminaison
Si a est un réel et (u;) une suite d'entiers strictement croissante (resp.

strictement décroissante), alors il existe un rang iy pour lequel u;, > a
(resp. uj, < a).

8/48

UNE PROPRIETE MATHEMATIQUE

Résultat principal pour la terminaison
Si a est un réel et (u;) une suite d'entiers strictement croissante (resp.

strictement décroissante), alors il existe un rang iy pour lequel u;, > a
(resp. uj, < a).

Méthodologie pour établir une terminaison .
Exhiber une suite positive, dependant des données du programme, a

valeurs dans N, qui décroit strictement a chaque passage dans la boucle.

8/48

EXEMPLE

Calcul de x" - algorithme d’exponentiation rapide.
def expR(x: float, n: int)->float
""" Renvoie x"n pour x réel et n entier naturel. \
cy mun
X, N, R = X,
while N != 0
if N%2 == 0
N = N//2
else
R = R#*X
N = (N-1)//2
X = X*X
return R

n, 1

9/48

EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,1
while N =0 :
ifN%2==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X = X*X
return R

® Hypothese : la boucle ne se termine jamais. Soit N; la valeur de N a la
fin de l'itération i, donc: VieN, N; # 0.

10/48

EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,1
while N =0 :
ifN%2==0:
N=N//2
else:
R = R*X
N = (N-1)//2
R
return R
® Hypothese : la boucle ne se termine jamais. Soit N; la valeur de N a la
fin de l'itération i, donc: VieN, N; # 0.
® Valeur initiale : Ng = n € N (pré-condition).
® Supposons pour un entier i, que N; € N :

10/48

EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,1
while N =0 :
if N%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X = 35
return R
® Hypothese : la boucle ne se termine jamais. Soit N; la valeur de N a la
fin de l'itération i, donc: VieN, N; # 0.
® Valeur initiale : Ng = n € N (pré-condition).
® Supposons pour un entier i, que N; € N :
1. si N; est pair alors Nijq = N;/2 € N et Niyq < N; (car N; # 01), donc
0 < Nipr < Nj;

10/48

EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,1
while N =0 :
if N%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X = 35
return R
® Hypothese : la boucle ne se termine jamais. Soit N; la valeur de N a la
fin de l'itération i, donc: VieN, N; # 0.
® Valeur initiale : Ng = n € N (pré-condition).
® Supposons pour un entier i, que N; € N :
1. si N; est pair alors Nijq = N;/2 € N et Niyq < N; (car N; # 01), donc
0 < Niyg <Nj;
2. si Nj est impair alors Ni.4 = (N; —1)/2 € N et Ni .1 < Nj, donc

0 < Nipq <Ni; 10/48

EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,1
while N = 0 :
if N%2 == 0
N=N//2
else:
R = R*X
N = (N-1)//2
X = 35
return R
® Hypothese : la boucle ne se termine jamais. Soit N; la valeur de N a la
fin de l'itération i, donc: VieN, N; # 0.
® Valeur initiale : Ng = n € N (pré-condition).
® Supposons pour un entier i, que N; € N :
1. si N; est pair alors Nijq = N;/2 € N et Niyq < N; (car N; # 01), donc
0 < Nipr < Nj;
2. si Nj est impair alors Ni.4 = (N; —1)/2 € N et Ni .1 < Nj, donc
0 < Nipq <Ni; 10/48

™ - - — - - NI P

EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,
while N =0
ifN%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X = X*X
return R

Bilan _ _
Pour tout entier naturel i :

® N, eN;

1/48

EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,
while N =0
ifN%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X = X*X
return R

Bilan _ _
Pour tout entier naturel i :

® N, eN;
® [a suite (N;) est strictement décroissante.

1/48

EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,
while N =0
ifN%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X = X*X
return R

Bilan _ _
Pour tout entier naturel i :

® N, eN;
® [a suite (N;) est strictement décroissante.

Ceci est absurde, donc [la boucle while se termine].

1/48

EXERCICE

Prouver la terminaison du code suivant :
def f(x: float, n: int)->float

y =1

i=20

while i1 < n
y *= X
i+=1

return y

® Hypothese : On suppose que la boucle ne termine pas, on a donc:
Vk € N, I.k<ﬂ.

12/48

EXERCICE

Prouver la terminaison du code suivant :
def f(x: float, n: int)->float

y =1

i=20

while i1 < n
y *= X
i+=1

return y

® Hypothese : On suppose que la boucle ne termine pas, on a donc:
Vk € N, I.k<ﬂ.

® Onaip=0,lp1 =Iip+1> I (ig) suite d'entiers strictement croissante,

12/48

EXERCICE

Prouver la terminaison du code suivant :
def f(x: float, n: int)->float

y =1

i=20

while i1 < n
y *= X
i+=1

return y

® Hypothese : On suppose que la boucle ne termine pas, on a donc:
Vk € N, I.k<ﬂ.

® Onaip=0,lp1 =Iip+1> I (ig) suite d'entiers strictement croissante,
® 3Ry, i, = n, d’'ou contradiction avec l'hypotheése : la boucle termine.

12/48

UN EXEMPLE ATYPIQUE : LA SUITE DE SYRACUSE

® Soit la suite ug = n, ol n est un entier naturel, et vérifiant
Up//2 siup estpair;

VoeN Upp = . o
3up+1 siupestimpair.

13/48

UN EXEMPLE ATYPIQUE : LA SUITE DE SYRACUSE

® Soit la suite up = n, ot n est un entier naturel, et verifiant
Uup//2 siupestpair;
Vp € N Upsn = p// Htp p .
3up+1 slupestimpalr
® Conjecture (non démontrée) : quelque soit n, il existe un rang a partir
duquel la suite prend les valeurs 4,2,1 de maniére périodique.

13/48

UN EXEMPLE ATYPIQUE : LA SUITE DE SYRACUSE

® |a fonction suivante termine-t-elle?
def syracuse(n: int)->int:
""" Calcule les termes de la suite de Syracuse
commenc¢ant par l'entier strictement positif n
jusqu'a ce qu'un terme vaille 1 et renvoie
l'indice de ce dernier """

u=n
while u !'= 1
if u%2 == 0
u=u//2
else
u = 3*u+l
return 1

13/48

UN EXEMPLE ATYPIQUE : LA SUITE DE SYRACUSE

® [a fonction suivante termine-t-elle?
def syracuse(n: int)->int:
""" Calcule les termes de la suite de Syracuse
commenc¢ant par l'entier strictement positif n
jusqu'a ce qu'un terme vaille 1 et renvoie
l'indice de ce dernier """

u=n
while u !'= 1
if u%2 == 0
u=u//2
else
u = 3*u+l
return 1

® Oui en théorie, mais on ne sait pas le prouver.

13/48

CORRECTION

CORRECTION D'UN PROGRAMME

Objectif
Etablir qu'a l'issue d’'une boucle for ou whi'le, on obtient bien le résultat
attendu.

14/48

CORRECTION D'UN PROGRAMME

Objectif
Etablir qu'a l'issue d’'une boucle for ou whi'le, on obtient bien le résultat
attendu.

Méthode) -
Spécifier et demontrer, par récurrence, des « invariants de boucle ».

14/48

CORRECTION D'UN PROGRAMME

Objectif
Etablir qu'a l'issue d’'une boucle for ou whi'le, on obtient bien le résultat
attendu.

Méthode) -
Spécifier et demontrer, par récurrence, des « invariants de boucle ».

® Un invariant de boucle est une propriété qui dépend des données de
l'algorithme et qui est vérifiée a chaque passage dans la boucle.

14/48

CORRECTION D'UN PROGRAMME

Objectif
Etablir qu'a l'issue d’'une boucle for ou whi'le, on obtient bien le résultat
attendu.

Méthode) -
Spécifier et demontrer, par récurrence, des « invariants de boucle ».

® Un invariant de boucle est une propriété qui dépend des données de
l'algorithme et qui est vérifiée a chaque passage dans la boucle.

® On cherche un invariant de boucle qui entraine le résultat attendu
apres la derniére itération.

14/48

MOYENNE D'UNE LISTE DE NOMBRES

Définition
® ensemble L = {ly, ly,...,l,_1} de nvaleurs,

15/48

MOYENNE D'UNE LISTE DE NOMBRES

Définition
® ensemble L = {ly, ly,...,l,_1} de nvaleurs,
® moyenne:m= 15711,

15/48

MOYENNE D'UNE LISTE DE NOMBRES

Définition
® ensemble L = {ly, ly,...,l,_1} de nvaleurs,
® moyenne:m= 15711,

am Moyenne des éléments d’une liste

def moyenne(L: list)->float :
""" Calcule la moyenne des éléments de la liste \
— de nombres L """

S =20

#

a compléter
#

return S/len(L)

15/48

MOYENNE D'UNE LISTE DE NOMBRES

Définition
® cnsemble L = {lo, ly,...,l_1} de nvaleurs,
® moyenne:m= 137"l

mm Moyenne des éléments d’une liste

def moyenne(L: list)->list :
""" Calcule la moyenne des éléments de la liste \
< de nombres L """

S = @
for e in L :
S = S+e

return S/len(L)

16/48

MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

mm Moyenne des éléments d’une liste

def moyenne(L: list)->float :
""" Calcule la moyenne des éléments de la liste \
— de nombres L """

S =0
for e in L :
S = S+e

return S/len(L)

Invariant o . '
Montrer que la proprieté suivante est un invariant de boucle :
i—1

Vie{0,...,n}, «S;= ZL[k]»

k=0

17/48

MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

Comme cela est conseillé, on écrit l'invariant dans le code sous forme de
commentaires :

am Moyenne des éléments d’'une liste
def moyenne(L: list)->float
""" Calcule la moyenne des éléments de la liste \
— de nombres L """
S =20
for e in L :
Invariant: S i = L[O]+...+L[1-1]
S = S+e
return S/len(L)

18/48

MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

Invariant de boucle
i—1
Vie{0,...,n}, «S;=>_L[R» ol idésigne le numéro de l'itération.
k=0

19/48

MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

Invariant de boucle
i—1
Vie{0,...,n}, «S;=>_L[R» ol idésigne le numéro de l'itération.
k=0

Initialisation
b

Par convention, si a > b, on convient que Z Ur = 0. Ainsi, pour i = 0, on a

k=a

bien: So=0=3,",L[K].

19/48

MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

Invariant de boucle
i—1
Vie{0,...,n}, «S;=>_L[R» ol idésigne le numéro de l'itération.

k=0

Initialisation ,

Par convention, si a > b, on convient que Z Ur = 0. Ainsi, pour i = 0, on a
bien: So=0=3,",L[K]. -

Héréedité

Supposons la propriété vraie en un certain rang i € {0,...,n —1}. Lors de

la (i + 1)¢ itération de la boucle, la variable e contient L[i]. Linstruction S

+= e exécutée conduita:
i—1 ;
Sigr =S+ L[=D LRI+ L[] =Y LK. Cequiachéve larécurrence.
k=0 k=0

19/48

MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

Correction de la boucle

Comme la derniére itération de la boucle a lieu pour i = n, la valeur
renvoyée par la fonction est bien: S, = Z;g L[R] et la derniéere ligne
renvoie bien la moyenne des nombres contenus dans la liste L.

20/48

ALGORITHME DE HORNER

Evaluation d’un polyndme

P(X) = Gan + an—1Xn71 qFeo0 ¢ azXz —+ a1X + Qg
les coefficients sont stockés dans une liste de longueur n +1:

LC= [an,an717...,02,a1,ao].

21/48

ALGORITHME DE HORNER

Evaluation d’un polyndme
P(X) = anX" + An X" 4 - 4+ ax® + aix + ag
les coefficients sont stockés dans une liste de longueur n +1:

LC= [an,an717...,02,a1,ao].

Algorithme de Horner
def evalP(x: float, LC: list)->float:
""" Fvalue P(x) ol P est le polynéme dont les \

< coefficients sont
dans la liste LC dans 1'ordre décroissant des \

<~ degrés. """
P=0
for c in LC:
P=Px*xx+c
return(P)

21/48

ALGORITHME DE HORNER

Invariant de boucle _
n + 1 est la longueur de la liste LC:
i—1
Vie{0,...,n+1}, «Pj=) LC[R] x X~
k=0

22/48

ALGORITHME DE HORNER

Invariant de boucle _
n + 1 est la longueur de la liste LC:

i1
Vie{0,...,n+1}, «Pj=) LC[R] x X~
k=0

Initialisation
Pour i = 0, on a bien Py = 0 = S, LC[R] x x~=*.

22/48

ALGORITHME DE HORNER

Invariant de boucle _
n + 1 est la longueur de la liste LC:
i—1
Vie{0,...,n+1}, «Pj=) LC[R] x X~

k=0
Initialisation
Pour i =0, on a bien Py = 0 = 3, LC[R] x x~ 1=k,
Héredité o . .
Supposons la proprieté vraie en un certain rang i € {0,...,n}. Lors de la

(i + 1) itération la variable c contient LCJi], donc linstruction P = Pxx+c
conduita:

i—1 i
Py = Pi x x4 LC[i] = (Z LCIR] x x"“"?> x X+ LC[] =Y LC[R] x X' 7*.

k=0 k=0

22/48

ALGORITHME DE HORNER

Correction de la boucle
Derniére |terat|on pour i =n+1,dapres l'invariant la valeur renvoyée est :

Pny1 = Z LCIR] x x"*
k=0

= LC[0] x x" 4+ LC[1] x X"+ - + LC[n — 1] x x + LC[n]

= lanx” AL @1 A oo 0 b @ 4k ao‘
sion note LC = [an,Gp_1,...,01,00].

23/48

ALGORITHME DE HORNER

def evalP(x: float, LC: list)->float:

""" Fvalue P(x) ol P est le polynéme dont les \
— coefficients sont

dans la liste LC dans 1'ordre décroissant des \

< degrés. """
P=20
for c in LC:

Invariant : P_i=\sum_{k=0}"{i-1} LC[k] \

— \times x"{i-1-k}

P=Px*xXx +cC
return(P)

2448

EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Calcul de x" - algorithme d’exponentiation rapide.
def expR(x: float, n: int)->float :
" Calcule x”n par la méthode de ['exponentiation rapide pour x réel et n entier naturel. |
oy
X, N,R=x,n,1
while N =0 :
ifN%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X =X*X
return R

Terminaison
® Pour une boucle while, on commence a établir la terminaison de la
boucle.

25/48

EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Calcul de x" - algorithme d’exponentiation rapide.
def expR(x: float, n: int)->float :
" Calcule x”n par la méthode de ['exponentiation rapide pour x réel et n entier naturel. |
oy
X, N,R=x,n,1
while N =0 :
ifN%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X =X*X
return R

Terminaison
® Pour une boucle while, on commence a établir la terminaison de la
boucle.
® (e résultat a déja été établi plus haut.

25/48

EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Invariant de boucle o o
Montrons l'invariant de boucle, ou ¢ designe le nombre d'itérations :

Vie{0,...,0}, «Rj x XI.N' =X"».

26/48

EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Invariant de boucle o o
Montrons l'invariant de boucle, ou ¢ designe le nombre d'itérations :

Vie{0,...,0}, «Rj x XI.N' =X"».

Initialisation
Pouri=0,0naRy x X)° =1xx"=x".

26/48

EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Héréedité - _ _
Supposons la proprieté vraie en un certain rang i € {0,...,¢ —1}. Lors de la
(i + 1)e itération de la boucle while :

27/48

EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Hérédité - _ _

Supposons la proprieté vraie en un certain rang i € {0,...,¢ —1}. Lors de la

(i + 1)e itération de la boucle while :

lercas: si N; est pair, alors les exécutions de N = N//2 et X = XxX
conduisent @ Ry = Rj, Nizq = N;/2 et Xj 4 = X? donc :

Ripn x XM = Ry x (02) % = Ry x XM = x"
i+ XA = i % (X7)? =Ri x i =X

27/48

EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Hérédité - _ _
Supposons la proprieté vraie en un certain rang i € {0,...,¢ —1}. Lors de la
(i + 1)e itération de la boucle while :
lercas: si N; est pair, alors les exécutions de N = N//2 et X = XxX
conduisent @ Ry = Rj, Nizq = N;/2 et Xj 4 = X? donc :
Rigr x XMt = Ry x (X0)7 = Ry x XM = x7.
2¢cas: si N; est impair, alors les exécutions de R=R*X, N=(N-1)//2 et
X=X*X conduisent a Riy1 = R x X;, Niyq = (N; — 1)/2 et Xj ;1 = X? donc:

NHH 2 M N n
Rit ><X,-__H = R; X Xj X ()<i) 7 =R X)(i' =X .

27/48

EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Correction de la boucle) _ .
La derniere itération de la boucle while a lieu pouri=/¢ etona N,=0
car il n'y a pas d'itération £ + 1.

La valeur renvoyeée par la fonction est bien :

Re = Re x Xpe =[x7]
—~—

=i

28/48

EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

def expR(x: float, n: int)->float
""" Calcule x”*n par la méthode de \
— l'exponentiation rapide
pour x réel et n entier naturel.
X, N, R=x, n, 1
while N != 0 :
invariant : R_i\times X_i"{N_i}=x"n

if N%2 ==
N = N//2
else :
R = RxX
N = (N-1)//2
X = X*X
return R

29/48

EXERCICE

Partie entiere . - '
Pour x réel positif, la partie entiere de x est le plus grand entier naturel

inférieur ou égal a x. La fonction suivante en effectue le calcul :
def ParEnt(x: float)->int
""" Calcule la partie entiére du réel positif x. \

mnn

=

n =20

while n+1 <= Xx
n += 1

return n

Faire la preuve de cette fonction.

30/48

ET AVEC UNE FONCTION RECURSIVE ?

Considérons la fonction :
def f(a: int, b: int)->int
""" Calcul récursif du pgcd, a et b sont \
< supposés naturels """
i) ==
return a
else:
return f(b, a%b)

On peut établir la terminaison et la correction en montrant par récurrence
sur le paramétre b :

31/48

ET AVEC UNE FONCTION RECURSIVE ?

Considérons la fonction :
def f(a: int, b: int)->int :
""" Calcul récursif du pgcd, a et b sont \
< supposés naturels """
i) ==
return a
else:
return f(b, a%b)
On peut établir la terminaison et la correction en montrant par récurrence
sur le paramétre b :

P(b) : Ya e N, f(a,b) se termine et renvoie pgcd(a,b).

31/48

ET AVEC UNE FONCTION RECURSIVE ?

® |nitialisation.

32/48

ET AVEC UNE FONCTION RECURSIVE ?

® Initialisation. Il est clair que P(0) est vrai (C'est le cas terminal et
pgcd(a, 0) = a).

32/48

ET AVEC UNE FONCTION RECURSIVE ?

® Initialisation. Il est clair que P(0) est vrai (C'est le cas terminal et
pgcd(a, 0) = a).
® Hereédite.

32/48

ET AVEC UNE FONCTION RECURSIVE ?

® Initialisation. Il est clair que P(0) est vrai (C'est le cas terminal et
pgcd(a, 0) = a).

® Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’a un
naturel b, et soit a € N.

32/48

ET AVEC UNE FONCTION RECURSIVE ?

® Initialisation. Il est clair que P(0) est vrai (C'est le cas terminal et
pgcd(a, 0) = a).

® Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’a un
naturel b, et soit a € N.
Lorsqu’on appelle f(a,b + 1), comme b + 1 # 0, on renvoie la valeur de
f(b+1,r) ou r est le reste de la division de a par b +1:
a=(b+Mg+r,

32/48

ET AVEC UNE FONCTION RECURSIVE ?

® Initialisation. Il est clair que P(0) est vrai (C'est le cas terminal et
pgcd(a, 0) = a).

® Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’a un
naturel b, et soit a € N.
Lorsqu’on appelle f(a,b + 1), comme b + 1 # 0, on renvoie la valeur de
f(b+1,r) ou r est le reste de la division de a par b +1:
a=(b+1)g+r, comme 0 < r < b, on sait par hypothese que
f(b+1,r) se termine et renvoie pgcd(b + 1,r),

32/48

ET AVEC UNE FONCTION RECURSIVE ?

® Initialisation. Il est clair que P(0) est vrai (C'est le cas terminal et
pgcd(a, 0) = a).

® Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’a un
naturel b, et soit a € N.
Lorsqu’on appelle f(a,b + 1), comme b + 1 # 0, on renvoie la valeur de
f(b+1,r) ou r est le reste de la division de a par b +1:
a=(b+1)g+r, comme 0 < r < b, on sait par hypothese que
f(b+1,r) se termine et renvoie pgcd(b + 1,r), donc f(a,b + 1) se
termine et renvoie pgcd(b + 1,r),

32/48

ET AVEC UNE FONCTION RECURSIVE ?

® Initialisation. Il est clair que P(0) est vrai (C'est le cas terminal et
pgcd(a, 0) = a).

® Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’a un
naturel b, et soit a € N.
Lorsqu’on appelle f(a,b + 1), comme b + 1 # 0, on renvoie la valeur de
f(b+1,r) our est le reste de la division de a par b +1:
a=(b+1)g+r, comme 0 < r < b, on sait par hypothese que
f(b+1,r) se termine et renvoie pgcd(b + 1,r), donc f(a,b + 1) se
termine et renvoie pgcd(b + 1,r), or d’'aprés le cours de mathématique,
pgcd(a, b+ 1) = pged(b +1,r),

32/48

ET AVEC UNE FONCTION RECURSIVE ?

® Initialisation. Il est clair que P(0) est vrai (C'est le cas terminal et
pgcd(a, 0) = a).

® Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’a un
naturel b, et soit a € N.
Lorsqu’on appelle f(a,b + 1), comme b + 1 # 0, on renvoie la valeur de
f(b+1,r) our est le reste de la division de a par b +1:
a=(b+1)g+r, comme 0 < r < b, on sait par hypothese que
f(b+1,r) se termine et renvoie pgcd(b + 1,r), donc f(a,b + 1) se
termine et renvoie pgcd(b + 1,r), or d’'aprés le cours de mathématique,
pgcd(a, b+ 1) = pged(b + 1,r), donc P(b + 1) est vraie, ce qui termine
la récurrence.

32/48

TOUT N’EST PAS SI SIMPLE!

La fonction suivante :

def decompPremier(p: int)-> (int,int):
""" Renvoie deux entiers u et v tels que p = u”2+v"2 p doit étre un nombre premier congru a 1 modulo |
— 4

def f(a: int, b: int, ¢ int)->(int, int, int) :
""" La fonction magique locale """
ifa > b+c
return (a-b-c, b, 2*b+c)
else:
return (b+c-a, a, 2*a-c)

a, b, c=(p-1//41,1
while a != b:
a,b,c=1f(ab,c)
return (2*a,c)
permet de decomposer tout nombre premier congru a 1 modulo 4 en
somme de deux carrés.

33/48

T N’EST PAS SI SIMPLE!

La fonction suivante :

def decompPremier(p: int)-> (int,int):
""" Renvoie deux entiers u et v tels que p = u”2+v"2 p doit étre un nombre premier congru a 1 modulo |
— 4

def f(a: int, b: int, ¢ int)->(int, int, int) :
""" La fonction magique locale """
ifa > b+c
return (a-b-c, b, 2*b+c)
else:
return (b+c-a, a, 2*a-c)

a, b, c=(p-1//41,1
while a != b:
a, b, c="(a,b,c)
return (2*a,c)
permet de decomposer tout nombre premier congru a 1 modulo 4 en

somme de deux carreés.

Un théoreme dit que c'est toujours possible. Par exemple,
decompPremier(601) renvoie (24,5) et on a bien 601 = 242 + 52,
33/48

T N’EST PAS SI SIMPLE!

La fonction suivante :

def decompPremier(p: int)-> (int,int):
""" Renvoie deux entiers u et v tels que p = u”2+v"2 p doit étre un nombre premier congru a 1 modulo |
— 4

def f(a: int, b: int, ¢ int)->(int, int, int) :
""" La fonction magique locale """
ifa > b+c
return (a-b-c, b, 2*b+c)
else:
return (b+c-a, a, 2*a-c)

a, b, c=(p-1//41,1
while a != b:
a, b, c="(a,b,c)
return (2*a,c)
permet de decomposer tout nombre premier congru a 1 modulo 4 en

somme de deux carreés.

Un théoreme dit que c'est toujours possible. Par exemple,
decompPremier(601) renvoie (24,5) et on a bien 601 = 242 + 52,

Mais la terminaison et la preuve de cet algorithme sont vraiment difficiled/*®

COMPLEXITE

COMPLEXITE TEMPORELLE

Objectif -
Mesurer « |'efficacité » d'un programme en terme de temps de calcul, en
fonction de la taille des données, indépendamment de la puissance

d’exécution de l'ordinateur sur lequel le programme est exécuté.

34/48

COMPLEXITE TEMPORELLE

Objectif -
Mesurer « |'efficacité » d'un programme en terme de temps de calcul, en

fonction de la taille des données, indépendamment de la puissance
d’exécution de l'ordinateur sur lequel le programme est exécuté.

Méthode ' ')
Déterminer un entier n mesurant la « taille » des données du programme,

et compter le nombre C(n) « d'opérations élémentaires » (a préciser
suivant le contexte) nécessaires a l'exécution du programme.

Classer cette complexité en utilisant la relation de domination « O » entre
suites fournissant une « ordre de grandeur » simplifié de la complexité.

34/48

EXEMPLE : FONCTION MOYENNE

fonction

def moyenne(L:list)->float :
"""Calcule la moyenne des éléments
de la liste de nombres L"""

S =0
for e in L :
S += e

return S/len(L)

35/48

EXEMPLE : FONCTION MOYENNE

fonction

def moyenne(L:list)->float :
"""Calcule la moyenne des éléments
de la liste de nombres L"""

S =0
for e in L :
S += e

return S/len(L)

complexité
® une affection avant la boucle for,

35/48

EXEMPLE : FONCTION MOYENNE

fonction

def moyenne(L:list)->float :
"""Calcule la moyenne des éléments
de la liste de nombres L"""

S =0
for e in L :
S += e

return S/len(L)

complexité
® une affection avant la boucle for,
® dans la boucle for : une addition et une affectation, répétées n fois,

35/48

EXEMPLE : FONCTION MOYENNE

fonction

def moyenne(L:list)->float :
"""Calcule la moyenne des éléments
de la liste de nombres L"""

S =0
for e in L :
S += e

return S/len(L)

complexité
® une affection avant la boucle for,
® dans la boucle for : une addition et une affectation, répétées n fois,
® une division dans la derniére ligne.

35/48

EXEMPLE : FONCTION MOYENNE

fonction

def moyenne(L:list)->float :
"""Calcule la moyenne des éléments
de la liste de nombres L"""

S =0
for e in L :
S += e

return S/len(L)

complexité
® une affection avant la boucle for,
® dans la boucle for : une addition et une affectation, répétées n fois,
® une division dans la derniére ligne.

On a

C(N) =1++1)xn+1=[2n+2]

35/48

EXERCICE : COMPLEXITE D'UNE PREMIERE FONCTION

fonction
def fi1(n:int)->int:
X =0
for i in range(n):
for j in range(n):
X = X+1
return Xx

36/48

EXERCICE : COMPLEXITE D'UNE PREMIERE FONCTION

fonction
def fi(n:int)->int:
X =0

for i in range(n):
for j in range(n):
X = X+1
return Xx

complexité
® une affection avant la premiére boucle for,

36/48

EXERCICE : COMPLEXITE D'UNE PREMIERE FONCTION

fonction
def fi(n:int)->int:
X =0

for i in range(n):
for j in range(n):
X = X+1
return Xx

complexité
® une affection avant la premiére boucle for,
® dans la boucle for en la variable j : une addition et une affectation,
répétées n fois, soit 2n opérations élémentaires

36/48

EXERCICE : COMPLEXITE D'UNE PREMIERE FONCTION

fonction
def fi(n:int)->int:
X =0

for i in range(n):
for j in range(n):
X = X+1
return Xx

complexité
® une affection avant la premiére boucle for,
® dans la boucle for en la variable j : une addition et une affectation,
répétées n fois, soit 2n opérations élémentaires
® |a boucle for en la variable i, on répéte n fois la boucle en la variable

J

36/48

EXERCICE : COMPLEXITE D'UNE PREMIERE FONCTION

fonction
def fi(n:int)->int:
X =0

for i in range(n):
for j in range(n):
X = X+1
return Xx

complexité
® une affection avant la premiére boucle for,
® dans la boucle for en la variable j : une addition et une affectation,
répétées n fois, soit 2n opérations élémentaires
® |a boucle for en la variable i, on répéte n fois la boucle en la variable
J

On a

C(n) =1+n x (2n) =[1+2n?]

36/48

EXERCICE : COMPLEXITE D'UNE SECONDE FONCTION

fonction
def f2(n:int)->int:
X =0
for i in range(n):
for j in range(i):
X += 1
return Xx

37/48

EXERCICE : COMPLEXITE D'UNE SECONDE FONCTION

fonction
def f2(n:int)->int:
X =0

for i in range(n):
for j in range(i):
X += 1
return Xx

complexité
® une affection avant la premiére boucle for,

37/48

EXERCICE : COMPLEXITE D'UNE SECONDE FONCTION

fonction
def f2(n:int)->int:
X =0

for i in range(n):
for j in range(i):
X += 1
return Xx

complexité
® une affection avant la premiére boucle for,
® dans la boucle for en la variable j : une addition et une affectation,
répétées i fois, soit 2i opérations élémentaires

37/48

EXERCICE : COMPLEXITE D'UNE SECONDE FONCTION

fonction
def f2(n:int)->int:
X =0

for i in range(n):
for j in range(i):
X += 1
return Xx

complexité
® une affection avant la premiére boucle for,
® dans la boucle for en la variable j : une addition et une affectation,
répétées i fois, soit 2i opérations élémentaires
® dans la boucle for en la variable i, on répéte la boucle en la variable
J

37/48

EXERCICE : COMPLEXITE D'UNE SECONDE FONCTION

fonction
def f2(n:int)->int:
X =0

for i in range(n):
for j in range(i):
X += 1
return Xx

complexité
® une affection avant la premiére boucle for,
® dans la boucle for en la variable j : une addition et une affectation,
répétées i fois, soit 2i opérations élémentaires
® dans la boucle for en la variable i, on répéte la boucle en la variable
J

On a
n—1

C(n) =1+ (20) = /48

1=0

TEMPS D'EXECUTION POUR CERTAINES COMPLEXITES USUELLES

Processeur exécutant une opération élémentaire en une nanoseconde.
10000 100000

38/48

DESIGNATION DES COMPLEXITES

O (1) complexité constante O(ninn)| complexité
quasi-linéaire

O(Inn) | complexité O (n*) | complexité polynomiale
logarithmique

O (n) complexité linéaire O (2") | complexite
exponentielle

39/48

EXERCICE

Moyennes de CEsARO d'une liste [uq, Uy, . .., Up]
Les moyennes de CESARO de la liste u = [ug, Uy, . .., Upy] forment la liste
v = [vo,V1,...,Vy] définie par:

Vo = %7 Vi = 7Uo-2"-uw’ Vn = 7u0+u;:—r'1“+u” .

40/48

EXERCICE

Moyennes de CEsARO d'une liste [uq, Uy, . .., Up]
Les moyennes de CESARO de la liste u = [ug, Uy, . .., Upy] forment la liste
v = [vo,V1,...,Vy] définie par:

Vo = %7 Vi = 7Uo-2"-uw’ Vn = 7u0+u;:—r'1“+u” .

def cesaro(u: list)->list
"""Calcul de la liste de Césaro associée a la \
< liste u"""
v = []
for k in range(len(u)) :
m = moyenne(ul[:k+171)
v += [m]
return v

® Proposer une fonction cesaro2 de complexité significativement

meilleure. o

EXERCICE

def cesaro(u:list)->list :
"""Calcul de la liste de Césaro associée a la \
— liste u"""
v =[]
for k in range(len(u)) :
m = moyenne(ul[:k+171)
v = Vv + [m]
return(v)

Rappelons que la fonction moyenne vue précédemment appliquée a une
liste de longueur k a pour complexité 2k+2.0n en déduit (ici n est
len(u)-1):

41/48

EXERCICE

def cesaro(u:list)->list :
"""Calcul de la liste de Césaro associée a la \
— liste u"""
=[]
for k in range(len(u))
m = moyenne(ul[:k+171)
v = Vv + [m]
return(v)

Rappelons que la fonction moyenne vue précédemment appliquée a une
liste de longueur k a pour complexité 2k+2.0n en déduit (ici n est
len(u)-1):

complexité

—1+Z[3+ (R+1)+2)] =..=[8+8n+n=0(n)]

41/48

CESARO « AMELIORE »

Moyennes de CESARO d’une liste [ug, Ur, - -+, Up] . \
L'algorithme précédent recalcule la somme des k + 1 premiéres valeurs a

chaque appel, ce que l'on peut éviter.

42/48

CESARO « AMELIORE »

Moyennes de CEsARO d'une liste [ug, Ur, - - -, U] . \
'algorithme précedent recalcule la somme des k + 1 premiéres valeurs a

chaque appel, ce que l'on peut éviter.
def cesaro2(u:list)->list :
"""Calcul de la liste de Césaro associée a la liste u™"”
v={]
S=0
for k in range(len(u)) :
S=S+ulkl
v=v+[S/(k+1)]
return v

42/48

CESARO « AMELIORE »

Moyennes de CEsARO d'une liste [ug, Ur, - - -, U] . \
'algorithme précedent recalcule la somme des k + 1 premiéres valeurs a

chaque appel, ce que l'on peut éviter.
def cesaro2(u:list)->list :
"""Calcul de la liste de Césaro associée a la liste u™"”
v={]
S=0
for k in range(len(u)) :
S=S+ulkl
v=v+[S/(k+1)]
return v

Complexité de cesaro2 :

C(n)=2+6(n+1)=[8+6n=0(n)]

42/48

EXERCICE

def compte_it(n:int)->int:

1=n

X =0

while i > 1:
i=1//2
X += 1

return Xx

1. Prouver la terminaison de cette fonction.
2. Justifier l'existence et l'unicité de p entier tel que: 2P < n < 2P*1,
3. Donner et prouver un invariant sur i, de la forme iy € [ay, br[oU ag, bk

dépendent de k et p.
4. En déduire la complexité temporelle de compte_it. Quel est le role de

X7

43/48

MEILLEUR ET PIRE DES CAS

Nombre d’éléments strictement positifs d’'une liste
def nbPositifs(liste:list)->float
"""Nombre d'éléments positifs d'une liste"""
nb = 0
for elt in liste:
if elt > 0
nb = nb+1
return nb

4448

MEILLEUR ET PIRE DES CAS

Nombre d’éléments strictement positifs d’'une liste
def nbPositifs(liste:list)->float
"""Nombre d'éléments positifs d'une liste"""
nb = 0
for elt in liste:
if elt > 0
nb = nb+1
return nb

Présence d'un test if : complexité dans le meilleur et dans le pire des cas.

4448

MEILLEUR ET PIRE DES CAS

Nombre d’éléments strictement positifs d’'une liste
def nbPositifs(liste:list)->float
"""Nombre d'éléments positifs d'une liste"""
nb = 0
for elt in liste:
if elt > 0
nb = nb+1
return nb

Présence d'un test if : complexité dans le meilleur et dans le pire des cas.

® Meilleur des cas, éléments tous négatifs : Creiteur(n) =1+nx1=n+1

4448

MEILLEUR ET PIRE DES CAS

Nombre d’éléments strictement positifs d’'une liste
def nbPositifs(liste:list)->float
"""Nombre d'éléments positifs d'une liste"""
nb = 0
for elt in liste:
if elt > 0
nb = nb+1
return nb

Présence d'un test if : complexité dans le meilleur et dans le pire des cas.

® Meilleur des cas, éléments tous négatifs : Creiteur(n) =1+nx1=n+1
® Pire des cas, éléments tous positifs : Cyie(n) =14+ n x3 =3n+1

4448

MEILLEUR ET PIRE DES CAS

Nombre d’éléments strictement positifs d’'une liste
def nbPositifs(liste:list)->float
"""Nombre d'éléments positifs d'une liste"""
nb = 0
for elt in liste:
if elt > 0
nb = nb+1
return nb

Présence d'un test if : complexité dans le meilleur et dans le pire des cas.

® Meilleur des cas, éléments tous négatifs : Creiteur(n) =1+nx1=n+1
® Pire des cas, éléments tous positifs : Cyie(n) =14+ n x3 =3n+1
® Casgénéral:n+1< C, <3n+1,doncC(n)=0(n).

4448

COMPLEXITE FONCTION RECURSIVE

Calcul de n!
def FactorielleRec(n:int)->int
if n ==
return 1
else:
return nxFactorielleRec(n-1)

45/48

COMPLEXITE FONCTION RECURSIVE

Calcul de n!
def FactorielleRec(n:int)->int
if n ==
return 1
else:
return nxFactorielleRec(n-1)

® On trouve C(0) = 1(carsi n =0, on compare juste n a 0)

45/48

COMPLEXITE FONCTION RECURSIVE

Calcul de n!
def FactorielleRec(n:int)->int

if n ==
return 1
else:
return nxFactorielleRec(n-1)

® On trouve C(0) = 1(carsi n =0, on compare juste n a 0)

® Sin>1C(n)=2+C(n-1)(on fait une comparaison a 0, une
multiplication puis C(n — 1) opérations élémentaires en appelant la
fonction avec le paramétre n — 1)

45/48

COMPLEXITE FONCTION RECURSIVE

Calcul de n!
def FactorielleRec(n:int)->int
if n ==
return 1
else:
return nxFactorielleRec(n-1)

® On trouve C(0) = 1(carsi n =0, on compare juste n a 0)

® Sin>1C(n)=2+C(n-1)(on fait une comparaison a 0, une
multiplication puis C(n — 1) opérations élémentaires en appelant la
fonction avec le paramétre n — 1)

® On obtient donc une suite arithmétique raison 2, ce qui donne apres
calculs C(n) =1+2n =0 (n).

45/48

EXERCICE

Complexité d’'une fonction récursive
def SuiteU(n:int)->float
if n ==
return 1
else:
return 2*SuiteU(n-1)+1/SuiteU(n-1)

46/48

EXERCICE

Complexité d’'une fonction récursive
def SuiteU(n:int)->float
if n ==
return 1
else:
return 2*SuiteU(n-1)+1/SuiteU(n-1)

1
® m):1etVneIN,mH1:2un+[r.
n

46/48

EXERCICE

Complexité d’'une fonction récursive
def SuiteU(n:int)->float
if n ==
return 1
else:
return 2*SuiteU(n-1)+1/SuiteU(n-1)

1
o m):1etVneIN,mH1:2un+[r.
n
® ((0) = 1(seulement un test lorsque n = 0)

46/48

EXERCICE

Complexité d’'une fonction récursive
def SuiteU(n:int)->float
if n ==
return 1
else:
return 2*SuiteU(n-1)+1/SuiteU(n-1)

1
o u0:1etVneN,un+1:2un+u—.

® ((0) = 1(seulement un test lorsqnue n=0)

® Sin>1.C(n)=4+C(n—1)+C(n—1)(on fait un test, une
multiplication, une addition, une division et 2 x C(n — 1) opérations
élémentaires en appelant deux fois la fonction avec le parameétre
n—1).

46/48

EXERCICE

Complexité d’'une fonction récursive
def SuiteU(n:int)->float
if n ==
return 1
else:
return 2*SuiteU(n-1)+1/SuiteU(n-1)

1
o u0:1etVneN,un+1:2un+u—.

® ((0) = 1(seulement un test lorsqnue n=0)

® Sin>1.C(n)=4+C(n—1)+C(n—1)(on fait un test, une
multiplication, une addition, une division et 2 x C(n — 1) opérations
élémentaires en appelant deux fois la fonction avec le parameétre
n—1).

® On obtient donc une suite arithmético-géométrique ce qui donne
apres calculs C(n) =5 x 2" — 4.

46/48

EXERCICE

Complexite d'une fonction récursive : amélioration _
La fonction précedente ayant une complexité exponentielle, elle devient

inutilisable pour de grandes valeurs de n. Introduisons la fonction

suivante :
def SuiteU2(n:int)->float :
ifn==0:
return
else:
a = SuiteU2(n-1)
return 2*a+1/a

47/48

EXERCICE

Complexite d'une fonction récursive : amélioration _
La fonction précedente ayant une complexité exponentielle, elle devient

inutilisable pour de grandes valeurs de n. Introduisons la fonction

suivante :
def SuiteU2(n:int)->float :
ifn==0:
return
else:
a = SuiteU2(n-1)
return 2*a+1/a

1

® [aencore:uy=1et: VHEN7UH+1:2un+LT.
n

47/48

EXERCICE

Complexite d'une fonction récursive : amélioration _
La fonction précedente ayant une complexité exponentielle, elle devient

inutilisable pour de grandes valeurs de n. Introduisons la fonction

suivante :
def SuiteU2(n:int)->float :
ifn==0:
return
else:
a = SuiteU2(n-1)
return 2*a+1/a

< 1
® [aencore:uy=1et: VHEN7UH+1:2un+LT.
n

® ('(0) =1(seulement un test lorsque n = 0)

47/48

EXERCICE

Complexite d'une fonction récursive : amélioration _
La fonction précedente ayant une complexité exponentielle, elle devient

inutilisable pour de grandes valeurs de n. Introduisons la fonction

suivante :
def SuiteU2(n:int)->float :
ifn==0:
return
else:
a = SuiteU2(n-1)
return 2*a+1/a
< 1
® |aencore:ug="et: VneN, Uy =20, +u—.
n

® ('(0) =1(seulement un test lorsque n = 0)
® Sin>1C(n)=5+C(n—1)(on fait un test, une affectation, une
multiplication, une addition, une division et C'(n — 1) opérations
élémentaires en appelant la fonction avec le paramétre n — 1). On
obtient donc une suite arithmétique qui donne aprés calculs
c’'(n)=5n+1.
4748

EXERCICE

Complexite d'une fonction récursive : amélioration _
La fonction précedente ayant une complexité exponentielle, elle devient

inutilisable pour de grandes valeurs de n. Introduisons la fonction

suivante :
def SuiteU2(n:int)->float :
ifn==0:
return
else:
a = SuiteU2(n-1)
return 2*a+1/a

< 1
® [aencore:uy=1et: VHEN7UH+1:2un+LT.
n

® ('(0) =1(seulement un test lorsque n = 0)

® Sin>1C(n)=5+C(n—1)(on fait un test, une affectation, une
multiplication, une addition, une division et C'(n — 1) opérations
élémentaires en appelant la fonction avec le paramétre n — 1). On
obtient donc une suite arithmétique qui donne aprés calculs
c’'(n)=5n+1.

® On obtient une complexité linéaire : le gain est énorme! 47/48

COMPLEXITE SPATIALE

Objectif _ o _ _
Mesurer « l'occupation mémoire » d'un programme en fonction de la taille

des données.

48/48

COMPLEXITE SPATIALE

Objectif _ o _ _
Mesurer « l'occupation mémoire » d'un programme en fonction de la taille
des données.

Méthode - .
Méme principe en comptant le nombre C(n) « d'entités élémentaires de
ne

mémoire » (& préciser suivant le contexte) nécessaires a 'exécution du
programme.

48/48

