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PROBLEMATIQUE
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probléme spécifique. Plusieurs questions se posent.
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OBJECTIFS

® Ftablir la terminaison d'un programme simple.
® Ftablir sa correction a l'aide d’'un invariant de boucle.
® Fvaluer la complexité temporelle et/ou spatiale d'un programme.

Preuve = Terminaison + Correction
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ANALYSE D'UNE BOUCLE
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ANALYSE D'UNE BOUCLE

n =5
while n !'= 0
n-=1

® Valeur initiale de n: 5.
® Valeurs successives de n: 4, 3,2, 1, 0.
® Condition n != 0 non vérifiee quandn = 0.

La boucle s'arréte.

Le nombre d'opérations effectuées par ce programme est fini : le
programme termine.
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ANALYSE D'UNE BOUCLE

n = -1
while n != 0
n -=1
® \Valeur initiale de n: -1.
® \aleurs successives de n : -2, -3, -4, etc.
® Condition n !'= 0 toujours vérifiée.

La boucle ne s'arréte jamais.

Le nombre d'opérations effectuées par ce programme est infini : le
programme ne termine pas.
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ANALYSE D'UNE BOUCLE

Lalgorithme précédent termine si n est initialement un entier positif,
c'est donc une pré-condition possible pour la boucle.

Nous avons vu dans un précédent chapitre que cette pré-condition
peut-étre testée a l'aide d'une assertion avant la boucle :
assert n >= 0, "la valeur de n doit étre positive ou \
< nulle"
while n !'= 0:

n -=1
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NOTATION

La notation var; désigne le contenu de la variable var a la fin de
l'exécution de la i€ itération de la boucle.

Par convention varg désigne le contenu de la variable juste avant d’entrer
dans la boucle.

Exemple

S =10

for k in range(2, 5):
S =S+ Kk

Sy = 10,5, = 12,5, = 15,53 = 19.
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UNE PROPRIETE MATHEMATIQUE

Résultat principal pour la terminaison
Si a est un réel et (u;) une suite d'entiers strictement croissante (resp.

strictement décroissante), alors il existe un rang iy pour lequel u;, > a
(resp. uj, < a).
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UNE PROPRIETE MATHEMATIQUE

Résultat principal pour la terminaison
Si a est un réel et (u;) une suite d'entiers strictement croissante (resp.

strictement décroissante), alors il existe un rang iy pour lequel u;, > a
(resp. uj, < a).

Méthodologie pour établir une terminaison .
Exhiber une suite positive, dependant des données du programme, a

valeurs dans N, qui décroit strictement a chaque passage dans la boucle.
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EXEMPLE

Calcul de x" - algorithme d’exponentiation rapide.
def expR(x: float, n: int)->float
""" Renvoie x"n pour x réel et n entier naturel. \
cy mun
X, N, R = X,
while N != 0
if N%2 == 0
N = N//2
else
R = R#*X
N = (N-1)//2
X = X*X
return R

n, 1
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EXEMPLE
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def expR(x: float, n: int)->float :
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X, N,R=x,n,1
while N =0 :
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EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,
while N =0
ifN%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X = X*X
return R

Bilan _ _
Pour tout entier naturel i :

® N, eN;
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EXEMPLE

def expR(x: float, n: int)->float :
""" Renvoie x"n pour x réel et n entier naturel. """
X, N,R=x,n,
while N =0
ifN%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X = X*X
return R

Bilan _ _
Pour tout entier naturel i :

® N, eN;
® [a suite (N;) est strictement décroissante.

Ceci est absurde, donc [la boucle while se termine].
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EXERCICE

Prouver la terminaison du code suivant :
def f(x: float, n: int)->float

y =1

i=20

while i1 < n
y *= X
i+=1

return y

® Hypothese : On suppose que la boucle ne termine pas, on a donc:
Vk € N, I.k<ﬂ.
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EXERCICE

Prouver la terminaison du code suivant :
def f(x: float, n: int)->float

y =1

i=20

while i1 < n
y *= X
i+=1

return y

® Hypothese : On suppose que la boucle ne termine pas, on a donc:
Vk € N, I.k<ﬂ.

® Onaip=0,lp1 =Iip+1> I (ig) suite d'entiers strictement croissante,
® 3Ry, i, = n, d’'ou contradiction avec l'hypotheése : la boucle termine.
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UN EXEMPLE ATYPIQUE : LA SUITE DE SYRACUSE

® Soit la suite ug = n, ol n est un entier naturel, et vérifiant
Up//2  siup estpair;

VoeN  Upp = . o
3up+1 siupestimpair.
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UN EXEMPLE ATYPIQUE : LA SUITE DE SYRACUSE

® Soit la suite up = n, ot n est un entier naturel, et verifiant
Uup//2  siupestpair;
Vp € N Upsn = p// Htp p .
3up+1 slupestimpalr
® Conjecture (non démontrée) : quelque soit n, il existe un rang a partir
duquel la suite prend les valeurs 4,2,1 de maniére périodique.
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UN EXEMPLE ATYPIQUE : LA SUITE DE SYRACUSE

® |a fonction suivante termine-t-elle?
def syracuse(n: int)->int:
""" Calcule les termes de la suite de Syracuse
commenc¢ant par l'entier strictement positif n
jusqu'a ce qu'un terme vaille 1 et renvoie
l'indice de ce dernier """

u=n
while u !'= 1
if u%2 == 0
u=u//2
else
u = 3*u+l
return 1
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UN EXEMPLE ATYPIQUE : LA SUITE DE SYRACUSE

® [a fonction suivante termine-t-elle?
def syracuse(n: int)->int:
""" Calcule les termes de la suite de Syracuse
commenc¢ant par l'entier strictement positif n
jusqu'a ce qu'un terme vaille 1 et renvoie
l'indice de ce dernier """

u=n
while u !'= 1
if u%2 == 0
u=u//2
else
u = 3*u+l
return 1

® Oui en théorie, mais on ne sait pas le prouver.
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CORRECTION D'UN PROGRAMME

Objectif
Etablir qu'a l'issue d’'une boucle for ou whi'le, on obtient bien le résultat
attendu.
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CORRECTION D'UN PROGRAMME

Objectif
Etablir qu'a l'issue d’'une boucle for ou whi'le, on obtient bien le résultat
attendu.

Méthode ) -
Spécifier et demontrer, par récurrence, des « invariants de boucle ».

® Un invariant de boucle est une propriété qui dépend des données de
l'algorithme et qui est vérifiée a chaque passage dans la boucle.

® On cherche un invariant de boucle qui entraine le résultat attendu
apres la derniére itération.
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MOYENNE D'UNE LISTE DE NOMBRES

Définition
® ensemble L = {ly, ly,...,l,_1} de nvaleurs,
® moyenne:m= 15711,

am Moyenne des éléments d’une liste

def moyenne(L: list)->float :
""" Calcule la moyenne des éléments de la liste \
— de nombres L """

S =20

#

# a compléter
#

return S/len(L)
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MOYENNE D'UNE LISTE DE NOMBRES

Définition
® cnsemble L = {lo, ly,...,l_1} de nvaleurs,
® moyenne:m= 137"l

mm Moyenne des éléments d’une liste

def moyenne(L: list)->list :
""" Calcule la moyenne des éléments de la liste \
< de nombres L """

S = @
for e in L :
S = S+e

return S/len(L)
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MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

mm Moyenne des éléments d’une liste

def moyenne(L: list)->float :
""" Calcule la moyenne des éléments de la liste \
— de nombres L """

S =0
for e in L :
S = S+e

return S/len(L)

Invariant o . '
Montrer que la proprieté suivante est un invariant de boucle :
i—1

Vie{0,...,n}, «S;= ZL[k]»

k=0
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MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

Comme cela est conseillé, on écrit l'invariant dans le code sous forme de
commentaires :

am Moyenne des éléments d’'une liste
def moyenne(L: list)->float
""" Calcule la moyenne des éléments de la liste \
— de nombres L """
S =20
for e in L :
# Invariant: S i = L[O]+...+L[1-1]
S = S+e
return S/len(L)

18/48



MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

Invariant de boucle
i—1
Vie{0,...,n}, «S;=>_L[R» ol idésigne le numéro de l'itération.
k=0
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Initialisation
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Par convention, si a > b, on convient que Z Ur = 0. Ainsi, pour i = 0, on a
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MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

Invariant de boucle
i—1
Vie{0,...,n}, «S;=>_L[R» ol idésigne le numéro de l'itération.

k=0

Initialisation ,

Par convention, si a > b, on convient que Z Ur = 0. Ainsi, pour i = 0, on a
bien: So=0=3,",L[K]. -

Héréedité

Supposons la propriété vraie en un certain rang i € {0,...,n —1}. Lors de

la (i + 1)¢ itération de la boucle, la variable e contient L[i]. Linstruction S

+= e exécutée conduita:
i—1 ;
Sigr =S+ L[ =D LRI+ L[] =Y LK. Cequiachéve larécurrence.
k=0 k=0
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MOYENNE D'UNE LISTE DE NOMBRES : CORRECTION

Correction de la boucle

Comme la derniére itération de la boucle a lieu pour i = n, la valeur
renvoyée par la fonction est bien: S, = Z;g L[R] et la derniéere ligne
renvoie bien la moyenne des nombres contenus dans la liste L.
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ALGORITHME DE HORNER

Evaluation d’un polyndme

P(X) = Gan + an—1Xn71 qFeo0 ¢ azXz —+ a1X + Qg
les coefficients sont stockés dans une liste de longueur n +1:

LC= [an,an717...,02,a1,ao].
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ALGORITHME DE HORNER

Evaluation d’un polyndme
P(X) = anX" + An X" 4 - 4+ ax® + aix + ag
les coefficients sont stockés dans une liste de longueur n +1:

LC= [an,an717...,02,a1,ao].

Algorithme de Horner
def evalP(x: float, LC: list)->float:
""" Fvalue P(x) ol P est le polynéme dont les \

< coefficients sont
dans la liste LC dans 1'ordre décroissant des \

<~ degrés. """
P=0
for c in LC:
P=Px*xx+c
return(P)
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ALGORITHME DE HORNER

Invariant de boucle _
n + 1 est la longueur de la liste LC:
i—1
Vie{0,...,n+1}, «Pj=) LC[R] x X~
k=0
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ALGORITHME DE HORNER

Invariant de boucle _
n + 1 est la longueur de la liste LC:

i1
Vie{0,...,n+1}, «Pj=) LC[R] x X~
k=0

Initialisation
Pour i = 0, on a bien Py = 0 = S, LC[R] x x~=*.
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ALGORITHME DE HORNER

Invariant de boucle _
n + 1 est la longueur de la liste LC:
i—1
Vie{0,...,n+1}, «Pj=) LC[R] x X~

k=0
Initialisation
Pour i =0, on a bien Py = 0 = 3, LC[R] x x~ 1=k,
Héredité o . .
Supposons la proprieté vraie en un certain rang i € {0,...,n}. Lors de la

(i + 1) itération la variable c contient LCJi], donc linstruction P = Pxx+c
conduita:

i—1 i
Py = Pi x x4 LC[i] = (Z LCIR] x x"“"?> x X+ LC[] =Y LC[R] x X' 7*.

k=0 k=0
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ALGORITHME DE HORNER

Correction de la boucle
Derniére |terat|on pour i =n+1,dapres l'invariant la valeur renvoyée est :

Pny1 = Z LCIR] x x"*
k=0

= LC[0] x x" 4+ LC[1] x X"+ - + LC[n — 1] x x + LC[n]

= lanx” AL @1 A oo 0 b @ 4k ao‘
sion note LC = [an,Gp_1,...,01,00].
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ALGORITHME DE HORNER

def evalP(x: float, LC: list)->float:

""" Fvalue P(x) ol P est le polynéme dont les \
— coefficients sont

dans la liste LC dans 1'ordre décroissant des \

< degrés. """
P=20
for c in LC:

# Invariant : P_i=\sum_{k=0}"{i-1} LC[k] \

— \times x"{i-1-k}

P=Px*xXx +cC
return(P)
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EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Calcul de x" - algorithme d’exponentiation rapide.
def expR(x: float, n: int)->float :
" Calcule x”n par la méthode de ['exponentiation rapide pour x réel et n entier naturel. |
oy
X, N,R=x,n,1
while N =0 :
ifN%2 ==0:
N=N//2
else:
R = R*X
N = (N-1)//2
X =X*X
return R

Terminaison
® Pour une boucle while, on commence a établir la terminaison de la
boucle.
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while N =0 :
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else:
R = R*X
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return R

Terminaison
® Pour une boucle while, on commence a établir la terminaison de la
boucle.
® (e résultat a déja été établi plus haut.
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EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Invariant de boucle o o
Montrons l'invariant de boucle, ou ¢ designe le nombre d'itérations :

Vie{0,...,0}, «Rj x XI.N' =X"».
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EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Invariant de boucle o o
Montrons l'invariant de boucle, ou ¢ designe le nombre d'itérations :

Vie{0,...,0}, «Rj x XI.N' =X"».

Initialisation
Pouri=0,0naRy x X)° =1xx"=x".
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EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Héréedité - _ _
Supposons la proprieté vraie en un certain rang i € {0,...,¢ —1}. Lors de la
(i + 1)e itération de la boucle while :
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Hérédité - _ _

Supposons la proprieté vraie en un certain rang i € {0,...,¢ —1}. Lors de la

(i + 1)e itération de la boucle while :

lercas: si N; est pair, alors les exécutions de N = N//2 et X = XxX
conduisent @ Ry = Rj, Nizq = N;/2 et Xj 4 = X? donc :

Ripn x XM = Ry x (02) % = Ry x XM = x"
i+ XA = i % (X7)? =Ri x i =X
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EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Hérédité - _ _
Supposons la proprieté vraie en un certain rang i € {0,...,¢ —1}. Lors de la
(i + 1)e itération de la boucle while :
lercas: si N; est pair, alors les exécutions de N = N//2 et X = XxX
conduisent @ Ry = Rj, Nizq = N;/2 et Xj 4 = X? donc :
Rigr x XMt = Ry x (X0)7 = Ry x XM = x7.
2¢cas: si N; est impair, alors les exécutions de R=R*X, N=(N-1)//2 et
X=X*X conduisent a Riy1 = R x X;, Niyq = (N; — 1)/2 et Xj ;1 = X? donc:

NHH 2 M N n
Rit ><X,-__H = R; X Xj X ()<i) 7 =R X )(i' =X .
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EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

Correction de la boucle ) _ .
La derniere itération de la boucle while a lieu pouri=/¢ etona N,=0
car il n'y a pas d'itération £ + 1.

La valeur renvoyeée par la fonction est bien :

Re = Re x Xpe =[x7]
—~—

=i
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EXEMPLE BOUCLE : EXPONENTIATION RAPIDE

def expR(x: float, n: int)->float
""" Calcule x”*n par la méthode de \
— l'exponentiation rapide
pour x réel et n entier naturel.
X, N, R=x, n, 1
while N != 0 :
# invariant : R_i\times X_i"{N_i}=x"n

if N%2 ==
N = N//2
else :
R = RxX
N = (N-1)//2
X = X*X
return R
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EXERCICE

Partie entiere . - '
Pour x réel positif, la partie entiere de x est le plus grand entier naturel

inférieur ou égal a x. La fonction suivante en effectue le calcul :
def ParEnt(x: float)->int
""" Calcule la partie entiére du réel positif x. \

mnn

=

n =20

while n+1 <= Xx
n += 1

return n

Faire la preuve de cette fonction.

30/48



ET AVEC UNE FONCTION RECURSIVE ?

Considérons la fonction :
def f(a: int, b: int)->int
""" Calcul récursif du pgcd, a et b sont \
< supposés naturels """
i ) ==
return a
else:
return f(b, a%b)

On peut établir la terminaison et la correction en montrant par récurrence
sur le paramétre b :
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Considérons la fonction :
def f(a: int, b: int)->int :
""" Calcul récursif du pgcd, a et b sont \
< supposés naturels """
i ) ==
return a
else:
return f(b, a%b)
On peut établir la terminaison et la correction en montrant par récurrence
sur le paramétre b :

P(b) : Ya e N, f(a,b) se termine et renvoie pgcd(a,b).
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pgcd(a, 0) = a).

® Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’a un
naturel b, et soit a € N.
Lorsqu’on appelle f(a,b + 1), comme b + 1 # 0, on renvoie la valeur de
f(b+1,r) ou r est le reste de la division de a par b +1:
a=(b+Mg+r,
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ET AVEC UNE FONCTION RECURSIVE ?

® Initialisation. Il est clair que P(0) est vrai (C'est le cas terminal et
pgcd(a, 0) = a).

® Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’a un
naturel b, et soit a € N.
Lorsqu’on appelle f(a,b + 1), comme b + 1 # 0, on renvoie la valeur de
f(b+1,r) our est le reste de la division de a par b +1:
a=(b+1)g+r, comme 0 < r < b, on sait par hypothese que
f(b+1,r) se termine et renvoie pgcd(b + 1,r), donc f(a,b + 1) se
termine et renvoie pgcd(b + 1,r), or d’'aprés le cours de mathématique,
pgcd(a, b+ 1) = pged(b + 1,r), donc P(b + 1) est vraie, ce qui termine
la récurrence.

32/48



TOUT N’EST PAS SI SIMPLE!

La fonction suivante :

def decompPremier(p: int)-> (int,int):
""" Renvoie deux entiers u et v tels que p = u”2+v"2 p doit étre un nombre premier congru a 1 modulo |
— 4

def f(a: int, b: int, ¢ int)->(int, int, int) :
""" La fonction magique locale """
ifa > b+c
return (a-b-c, b, 2*b+c)
else:
return (b+c-a, a, 2*a-c)

a, b, c=(p-1//41,1
while a != b:
a,b,c=1f(ab,c)
return (2*a,c)
permet de decomposer tout nombre premier congru a 1 modulo 4 en
somme de deux carrés.
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Un théoreme dit que c'est toujours possible. Par exemple,
decompPremier(601) renvoie (24,5) et on a bien 601 = 242 + 52,
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""" La fonction magique locale """
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return (a-b-c, b, 2*b+c)
else:
return (b+c-a, a, 2*a-c)

a, b, c=(p-1//41,1
while a != b:
a, b, c="(a,b,c)
return (2*a,c)
permet de decomposer tout nombre premier congru a 1 modulo 4 en

somme de deux carreés.

Un théoreme dit que c'est toujours possible. Par exemple,
decompPremier(601) renvoie (24,5) et on a bien 601 = 242 + 52,

Mais la terminaison et la preuve de cet algorithme sont vraiment difficiled/*®



COMPLEXITE




COMPLEXITE TEMPORELLE

Objectif -
Mesurer « |'efficacité » d'un programme en terme de temps de calcul, en
fonction de la taille des données, indépendamment de la puissance

d’exécution de l'ordinateur sur lequel le programme est exécuté.
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COMPLEXITE TEMPORELLE

Objectif -
Mesurer « |'efficacité » d'un programme en terme de temps de calcul, en

fonction de la taille des données, indépendamment de la puissance
d’exécution de l'ordinateur sur lequel le programme est exécuté.

Méthode ' ' )
Déterminer un entier n mesurant la « taille » des données du programme,

et compter le nombre C(n) « d'opérations élémentaires » (a préciser
suivant le contexte) nécessaires a l'exécution du programme.

Classer cette complexité en utilisant la relation de domination « O » entre
suites fournissant une « ordre de grandeur » simplifié de la complexité.
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EXEMPLE : FONCTION MOYENNE

fonction

def moyenne(L:list)->float :
"""Calcule la moyenne des éléments
de la liste de nombres L"""

S =0
for e in L :
S += e

return S/len(L)
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EXEMPLE : FONCTION MOYENNE

fonction

def moyenne(L:list)->float :
"""Calcule la moyenne des éléments
de la liste de nombres L"""

S =0
for e in L :
S += e

return S/len(L)

complexité
® une affection avant la boucle for,
® dans la boucle for : une addition et une affectation, répétées n fois,
® une division dans la derniére ligne.

On a

C(N) =1++1)xn+1=[2n+2]
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EXERCICE : COMPLEXITE D'UNE PREMIERE FONCTION

fonction
def fi1(n:int)->int:
X =0
for i in range(n):
for j in range(n):
X = X+1
return Xx
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fonction
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for i in range(n):
for j in range(n):
X = X+1
return Xx

complexité
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® dans la boucle for en la variable j : une addition et une affectation,
répétées n fois, soit 2n opérations élémentaires
® |a boucle for en la variable i, on répéte n fois la boucle en la variable
J

On a

C(n) =1+n x (2n) =[1+2n?]
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EXERCICE : COMPLEXITE D'UNE SECONDE FONCTION

fonction
def f2(n:int)->int:
X =0
for i in range(n):
for j in range(i):
X += 1
return Xx
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EXERCICE : COMPLEXITE D'UNE SECONDE FONCTION

fonction
def f2(n:int)->int:
X =0

for i in range(n):
for j in range(i):
X += 1
return Xx

complexité
® une affection avant la premiére boucle for,
® dans la boucle for en la variable j : une addition et une affectation,
répétées i fois, soit 2i opérations élémentaires
® dans la boucle for en la variable i, on répéte la boucle en la variable
J

On a
n—1

C(n) =1+ (20) = /48

1=0



TEMPS D'EXECUTION POUR CERTAINES COMPLEXITES USUELLES

Processeur exécutant une opération élémentaire en une nanoseconde.
10000 100000
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DESIGNATION DES COMPLEXITES

O (1) complexité constante O(ninn)| complexité
quasi-linéaire

O(Inn) | complexité O (n*) | complexité polynomiale
logarithmique

O (n) complexité linéaire O (2") | complexite
exponentielle
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EXERCICE

Moyennes de CEsARO d'une liste [uq, Uy, . .., Up]
Les moyennes de CESARO de la liste u = [ug, Uy, . .., Upy] forment la liste
v = [vo,V1,...,Vy] définie par:

Vo = %7 Vi = 7Uo-2"-uw’ Vn = 7u0+u;:—r'1“+u” .
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EXERCICE

Moyennes de CEsARO d'une liste [uq, Uy, . .., Up]
Les moyennes de CESARO de la liste u = [ug, Uy, . .., Upy] forment la liste
v = [vo,V1,...,Vy] définie par:

Vo = %7 Vi = 7Uo-2"-uw’ Vn = 7u0+u;:—r'1“+u” .

def cesaro(u: list)->list
"""Calcul de la liste de Césaro associée a la \
< liste u"""
v = []
for k in range(len(u)) :
m = moyenne(ul[:k+171)
v += [m]
return v

® Proposer une fonction cesaro2 de complexité significativement

meilleure. o



EXERCICE

def cesaro(u:list)->list :
"""Calcul de la liste de Césaro associée a la \
— liste u"""
v =[]
for k in range(len(u)) :
m = moyenne(ul[:k+171)
v = Vv + [m]
return(v)

Rappelons que la fonction moyenne vue précédemment appliquée a une
liste de longueur k a pour complexité 2k+2.0n en déduit (ici n est
len(u)-1):
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EXERCICE

def cesaro(u:list)->list :
"""Calcul de la liste de Césaro associée a la \
— liste u"""
=[]
for k in range(len(u))
m = moyenne(ul[:k+171)
v = Vv + [m]
return(v)

Rappelons que la fonction moyenne vue précédemment appliquée a une
liste de longueur k a pour complexité 2k+2.0n en déduit (ici n est
len(u)-1):

complexité

—1+Z[3+ (R+1)+2)] =..=[8+8n+n=0(n)]
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CESARO « AMELIORE »

Moyennes de CESARO d’une liste [ug, Ur, - -+, Up] . \
L'algorithme précédent recalcule la somme des k + 1 premiéres valeurs a

chaque appel, ce que l'on peut éviter.
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CESARO « AMELIORE »

Moyennes de CEsARO d'une liste [ug, Ur, - - -, U] . \
'algorithme précedent recalcule la somme des k + 1 premiéres valeurs a

chaque appel, ce que l'on peut éviter.
def cesaro2(u:list)->list :
"""Calcul de la liste de Césaro associée a la liste u™"”
v={]
S=0
for k in range(len(u)) :
S=S+ulkl
v=v+[S/(k+1)]
return v
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CESARO « AMELIORE »

Moyennes de CEsARO d'une liste [ug, Ur, - - -, U] . \
'algorithme précedent recalcule la somme des k + 1 premiéres valeurs a

chaque appel, ce que l'on peut éviter.
def cesaro2(u:list)->list :
"""Calcul de la liste de Césaro associée a la liste u™"”
v={]
S=0
for k in range(len(u)) :
S=S+ulkl
v=v+[S/(k+1)]
return v

Complexité de cesaro2 :

C(n)=2+6(n+1)=[8+6n=0(n)]
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EXERCICE

def compte_it(n:int)->int:

1=n

X =0

while i > 1:
i=1//2
X += 1

return Xx

1. Prouver la terminaison de cette fonction.
2. Justifier l'existence et l'unicité de p entier tel que: 2P < n < 2P*1,
3. Donner et prouver un invariant sur i, de la forme iy € [ay, br[ oU ag, bk

dépendent de k et p.
4. En déduire la complexité temporelle de compte_it. Quel est le role de

X7
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MEILLEUR ET PIRE DES CAS

Nombre d’éléments strictement positifs d’'une liste
def nbPositifs(liste:list)->float
"""Nombre d'éléments positifs d'une liste"""
nb = 0
for elt in liste:
if elt > 0
nb = nb+1
return nb
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"""Nombre d'éléments positifs d'une liste"""
nb = 0
for elt in liste:
if elt > 0
nb = nb+1
return nb

Présence d'un test if : complexité dans le meilleur et dans le pire des cas.

® Meilleur des cas, éléments tous négatifs : Creiteur(n) =1+nx1=n+1
® Pire des cas, éléments tous positifs : Cyie(n) =14+ n x3 =3n+1
® Casgénéral:n+1< C, <3n+1,doncC(n)=0(n).
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COMPLEXITE FONCTION RECURSIVE

Calcul de n!
def FactorielleRec(n:int)->int
if n ==
return 1
else:
return nxFactorielleRec(n-1)
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COMPLEXITE FONCTION RECURSIVE

Calcul de n!
def FactorielleRec(n:int)->int

if n ==
return 1
else:
return nxFactorielleRec(n-1)

® On trouve C(0) = 1(carsi n =0, on compare juste n a 0)

® Sin>1C(n)=2+C(n-1)(on fait une comparaison a 0, une
multiplication puis C(n — 1) opérations élémentaires en appelant la
fonction avec le paramétre n — 1)
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COMPLEXITE FONCTION RECURSIVE

Calcul de n!
def FactorielleRec(n:int)->int
if n ==
return 1
else:
return nxFactorielleRec(n-1)

® On trouve C(0) = 1(carsi n =0, on compare juste n a 0)

® Sin>1C(n)=2+C(n-1)(on fait une comparaison a 0, une
multiplication puis C(n — 1) opérations élémentaires en appelant la
fonction avec le paramétre n — 1)

® On obtient donc une suite arithmétique raison 2, ce qui donne apres
calculs C(n) =1+2n =0 (n).

45/48



EXERCICE

Complexité d’'une fonction récursive
def SuiteU(n:int)->float
if n ==
return 1
else:
return 2*SuiteU(n-1)+1/SuiteU(n-1)
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EXERCICE

Complexité d’'une fonction récursive
def SuiteU(n:int)->float
if n ==
return 1
else:
return 2*SuiteU(n-1)+1/SuiteU(n-1)

1
o u0:1etVneN,un+1:2un+u—.

® ((0) = 1(seulement un test lorsqnue n=0)

® Sin>1.C(n)=4+C(n—1)+C(n—1)(on fait un test, une
multiplication, une addition, une division et 2 x C(n — 1) opérations
élémentaires en appelant deux fois la fonction avec le parameétre
n—1).
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EXERCICE

Complexité d’'une fonction récursive
def SuiteU(n:int)->float
if n ==
return 1
else:
return 2*SuiteU(n-1)+1/SuiteU(n-1)

1
o u0:1etVneN,un+1:2un+u—.

® ((0) = 1(seulement un test lorsqnue n=0)

® Sin>1.C(n)=4+C(n—1)+C(n—1)(on fait un test, une
multiplication, une addition, une division et 2 x C(n — 1) opérations
élémentaires en appelant deux fois la fonction avec le parameétre
n—1).

® On obtient donc une suite arithmético-géométrique ce qui donne
apres calculs C(n) =5 x 2" — 4.

46/48



EXERCICE

Complexite d'une fonction récursive : amélioration _
La fonction précedente ayant une complexité exponentielle, elle devient

inutilisable pour de grandes valeurs de n. Introduisons la fonction

suivante :
def SuiteU2(n:int)->float :
ifn==0:
return
else:
a = SuiteU2(n-1)
return 2*a+1/a
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La fonction précedente ayant une complexité exponentielle, elle devient

inutilisable pour de grandes valeurs de n. Introduisons la fonction

suivante :
def SuiteU2(n:int)->float :
ifn==0:
return
else:
a = SuiteU2(n-1)
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EXERCICE

Complexite d'une fonction récursive : amélioration _
La fonction précedente ayant une complexité exponentielle, elle devient

inutilisable pour de grandes valeurs de n. Introduisons la fonction

suivante :
def SuiteU2(n:int)->float :
ifn==0:
return
else:
a = SuiteU2(n-1)
return 2*a+1/a
< 1
® |aencore:ug="et: VneN, Uy =20, +u—.
n

® ('(0) =1(seulement un test lorsque n = 0)
® Sin>1C(n)=5+C(n—1)(on fait un test, une affectation, une
multiplication, une addition, une division et C'(n — 1) opérations
élémentaires en appelant la fonction avec le paramétre n — 1). On
obtient donc une suite arithmétique qui donne aprés calculs
c’'(n)=5n+1.
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EXERCICE

Complexite d'une fonction récursive : amélioration _
La fonction précedente ayant une complexité exponentielle, elle devient

inutilisable pour de grandes valeurs de n. Introduisons la fonction

suivante :
def SuiteU2(n:int)->float :
ifn==0:
return
else:
a = SuiteU2(n-1)
return 2*a+1/a

< 1
® [aencore:uy=1et: VHEN7UH+1:2un+LT.
n

® ('(0) =1(seulement un test lorsque n = 0)

® Sin>1C(n)=5+C(n—1)(on fait un test, une affectation, une
multiplication, une addition, une division et C'(n — 1) opérations
élémentaires en appelant la fonction avec le paramétre n — 1). On
obtient donc une suite arithmétique qui donne aprés calculs
c’'(n)=5n+1.

® On obtient une complexité linéaire : le gain est énorme! 47/48



COMPLEXITE SPATIALE

Objectif _ o _ _
Mesurer « l'occupation mémoire » d'un programme en fonction de la taille

des données.
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COMPLEXITE SPATIALE

Objectif _ o _ _
Mesurer « l'occupation mémoire » d'un programme en fonction de la taille
des données.

Méthode - .
Méme principe en comptant le nombre C(n) « d'entités élémentaires de
ne

mémoire » (& préciser suivant le contexte) nécessaires a 'exécution du
programme.
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