
Semestre 2 / Cours 1 - Preuves & Complexité

ITC MPSI & PCSI – Année 2025-2026

Sommaire

1. Introduction

2. Terminaison

3. Correction

4. Complexité

1/48

Introduction

Problématique

Un algorithme est une suite finie de règles et d’opérations élémentaires
mises en œuvre sur un nombre fini de données en vue de résoudre un
problème spécifique. Plusieurs questions se posent.

• Un algorithme se termine-t-il ?
→ Terminaison de l’algorithme

• Un algorithme répond-il aux attentes ?
→ Correction de l’algorithme

• Combien de temps et de ressources mémoires ?
→ Complexité de l’algorithme

2/48

Problématique

Un algorithme est une suite finie de règles et d’opérations élémentaires
mises en œuvre sur un nombre fini de données en vue de résoudre un
problème spécifique. Plusieurs questions se posent.

• Un algorithme se termine-t-il ?

→ Terminaison de l’algorithme
• Un algorithme répond-il aux attentes ?

→ Correction de l’algorithme
• Combien de temps et de ressources mémoires ?

→ Complexité de l’algorithme

2/48

Problématique

Un algorithme est une suite finie de règles et d’opérations élémentaires
mises en œuvre sur un nombre fini de données en vue de résoudre un
problème spécifique. Plusieurs questions se posent.

• Un algorithme se termine-t-il ?
→ Terminaison de l’algorithme

• Un algorithme répond-il aux attentes ?
→ Correction de l’algorithme

• Combien de temps et de ressources mémoires ?
→ Complexité de l’algorithme

2/48

Problématique

Un algorithme est une suite finie de règles et d’opérations élémentaires
mises en œuvre sur un nombre fini de données en vue de résoudre un
problème spécifique. Plusieurs questions se posent.

• Un algorithme se termine-t-il ?
→ Terminaison de l’algorithme

• Un algorithme répond-il aux attentes ?

→ Correction de l’algorithme
• Combien de temps et de ressources mémoires ?

→ Complexité de l’algorithme

2/48

Problématique

Un algorithme est une suite finie de règles et d’opérations élémentaires
mises en œuvre sur un nombre fini de données en vue de résoudre un
problème spécifique. Plusieurs questions se posent.

• Un algorithme se termine-t-il ?
→ Terminaison de l’algorithme

• Un algorithme répond-il aux attentes ?
→ Correction de l’algorithme

• Combien de temps et de ressources mémoires ?
→ Complexité de l’algorithme

2/48

Problématique

Un algorithme est une suite finie de règles et d’opérations élémentaires
mises en œuvre sur un nombre fini de données en vue de résoudre un
problème spécifique. Plusieurs questions se posent.

• Un algorithme se termine-t-il ?
→ Terminaison de l’algorithme

• Un algorithme répond-il aux attentes ?
→ Correction de l’algorithme

• Combien de temps et de ressources mémoires ?

→ Complexité de l’algorithme

2/48

Problématique

Un algorithme est une suite finie de règles et d’opérations élémentaires
mises en œuvre sur un nombre fini de données en vue de résoudre un
problème spécifique. Plusieurs questions se posent.

• Un algorithme se termine-t-il ?
→ Terminaison de l’algorithme

• Un algorithme répond-il aux attentes ?
→ Correction de l’algorithme

• Combien de temps et de ressources mémoires ?
→ Complexité de l’algorithme

2/48

Objectifs

• Établir la terminaison d’un programme simple.
• Établir sa correction à l’aide d’un invariant de boucle.
• Évaluer la complexité temporelle et/ou spatiale d’un programme.

Preuve = Terminaison + Correction

3/48

Objectifs

• Établir la terminaison d’un programme simple.

• Établir sa correction à l’aide d’un invariant de boucle.
• Évaluer la complexité temporelle et/ou spatiale d’un programme.

Preuve = Terminaison + Correction

3/48

Objectifs

• Établir la terminaison d’un programme simple.
• Établir sa correction à l’aide d’un invariant de boucle.

• Évaluer la complexité temporelle et/ou spatiale d’un programme.

Preuve = Terminaison + Correction

3/48

Objectifs

• Établir la terminaison d’un programme simple.
• Établir sa correction à l’aide d’un invariant de boucle.
• Évaluer la complexité temporelle et/ou spatiale d’un programme.

Preuve = Terminaison + Correction

3/48

Objectifs

• Établir la terminaison d’un programme simple.
• Établir sa correction à l’aide d’un invariant de boucle.
• Évaluer la complexité temporelle et/ou spatiale d’un programme.

Preuve = Terminaison + Correction

3/48

Terminaison

Analyse d’une boucle

n = 5
while n != 0 :
 n -= 1

• Valeur initiale de n : 5.
• Valeurs successives de n : 4, 3, 2, 1, 0.
• Condition n != 0 non vérifiée quand n = 0.

La boucle s’arrête.

Le nombre d’opérations effectuées par ce programme est fini : le
programme termine.

4/48

Analyse d’une boucle

n = 5
while n != 0 :
 n -= 1
• Valeur initiale de n : 5.

• Valeurs successives de n : 4, 3, 2, 1, 0.
• Condition n != 0 non vérifiée quand n = 0.

La boucle s’arrête.

Le nombre d’opérations effectuées par ce programme est fini : le
programme termine.

4/48

Analyse d’une boucle

n = 5
while n != 0 :
 n -= 1
• Valeur initiale de n : 5.
• Valeurs successives de n : 4, 3, 2, 1, 0.

• Condition n != 0 non vérifiée quand n = 0.

La boucle s’arrête.

Le nombre d’opérations effectuées par ce programme est fini : le
programme termine.

4/48

Analyse d’une boucle

n = 5
while n != 0 :
 n -= 1
• Valeur initiale de n : 5.
• Valeurs successives de n : 4, 3, 2, 1, 0.
• Condition n != 0 non vérifiée quand n = 0.

La boucle s’arrête.

Le nombre d’opérations effectuées par ce programme est fini : le
programme termine.

4/48

Analyse d’une boucle

n = 5
while n != 0 :
 n -= 1
• Valeur initiale de n : 5.
• Valeurs successives de n : 4, 3, 2, 1, 0.
• Condition n != 0 non vérifiée quand n = 0.

La boucle s’arrête.

Le nombre d’opérations effectuées par ce programme est fini : le
programme termine.

4/48

Analyse d’une boucle

n = 5
while n != 0 :
 n -= 1
• Valeur initiale de n : 5.
• Valeurs successives de n : 4, 3, 2, 1, 0.
• Condition n != 0 non vérifiée quand n = 0.

La boucle s’arrête.

Le nombre d’opérations effectuées par ce programme est fini : le
programme termine.

4/48

Analyse d’une boucle

n = -1
while n != 0 :
 n -= 1

• Valeur initiale de n : -1.
• Valeurs successives de n : -2, -3, -4, etc.
• Condition n != 0 toujours vérifiée.

La boucle ne s’arrête jamais.

Le nombre d’opérations effectuées par ce programme est infini : le
programme ne termine pas.

5/48

Analyse d’une boucle

n = -1
while n != 0 :
 n -= 1
• Valeur initiale de n : -1.

• Valeurs successives de n : -2, -3, -4, etc.
• Condition n != 0 toujours vérifiée.

La boucle ne s’arrête jamais.

Le nombre d’opérations effectuées par ce programme est infini : le
programme ne termine pas.

5/48

Analyse d’une boucle

n = -1
while n != 0 :
 n -= 1
• Valeur initiale de n : -1.
• Valeurs successives de n : -2, -3, -4, etc.

• Condition n != 0 toujours vérifiée.

La boucle ne s’arrête jamais.

Le nombre d’opérations effectuées par ce programme est infini : le
programme ne termine pas.

5/48

Analyse d’une boucle

n = -1
while n != 0 :
 n -= 1
• Valeur initiale de n : -1.
• Valeurs successives de n : -2, -3, -4, etc.
• Condition n != 0 toujours vérifiée.

La boucle ne s’arrête jamais.

Le nombre d’opérations effectuées par ce programme est infini : le
programme ne termine pas.

5/48

Analyse d’une boucle

n = -1
while n != 0 :
 n -= 1
• Valeur initiale de n : -1.
• Valeurs successives de n : -2, -3, -4, etc.
• Condition n != 0 toujours vérifiée.

La boucle ne s’arrête jamais.

Le nombre d’opérations effectuées par ce programme est infini : le
programme ne termine pas.

5/48

Analyse d’une boucle

n = -1
while n != 0 :
 n -= 1
• Valeur initiale de n : -1.
• Valeurs successives de n : -2, -3, -4, etc.
• Condition n != 0 toujours vérifiée.

La boucle ne s’arrête jamais.

Le nombre d’opérations effectuées par ce programme est infini : le
programme ne termine pas.

5/48

Analyse d’une boucle

L’algorithme précédent termine si n est initialement un entier positif,

c’est donc une pré-condition possible pour la boucle.

Nous avons vu dans un précédent chapitre que cette pré-condition
peut-être testée à l’aide d’une assertion avant la boucle :
assert n >= 0, "la valeur de n doit être positive ou \
↪→ nulle"
while n != 0:
 n -= 1

6/48

Analyse d’une boucle

L’algorithme précédent termine si n est initialement un entier positif,

c’est donc une pré-condition possible pour la boucle.

Nous avons vu dans un précédent chapitre que cette pré-condition
peut-être testée à l’aide d’une assertion avant la boucle :
assert n >= 0, "la valeur de n doit être positive ou \
↪→ nulle"
while n != 0:
 n -= 1

6/48

Analyse d’une boucle

L’algorithme précédent termine si n est initialement un entier positif,

c’est donc une pré-condition possible pour la boucle.

Nous avons vu dans un précédent chapitre que cette pré-condition
peut-être testée à l’aide d’une assertion avant la boucle :

assert n >= 0, "la valeur de n doit être positive ou \
↪→ nulle"
while n != 0:
 n -= 1

6/48

Analyse d’une boucle

L’algorithme précédent termine si n est initialement un entier positif,

c’est donc une pré-condition possible pour la boucle.

Nous avons vu dans un précédent chapitre que cette pré-condition
peut-être testée à l’aide d’une assertion avant la boucle :
assert n >= 0, "la valeur de n doit être positive ou \
↪→ nulle"
while n != 0:
 n -= 1

6/48

Notation

La notation vari désigne le contenu de la variable var à la fin de
l’exécution de la ie itération de la boucle.

Par convention var0 désigne le contenu de la variable juste avant d’entrer
dans la boucle.

Exemple
S = 10
for k in range(2, 5):
 S = S + k

S0 = 10, S1 = 12, S2 = 15, S3 = 19.

7/48

Notation

La notation vari désigne le contenu de la variable var à la fin de
l’exécution de la ie itération de la boucle.
Par convention var0 désigne le contenu de la variable juste avant d’entrer
dans la boucle.

Exemple
S = 10
for k in range(2, 5):
 S = S + k

S0 = 10, S1 = 12, S2 = 15, S3 = 19.

7/48

Notation

La notation vari désigne le contenu de la variable var à la fin de
l’exécution de la ie itération de la boucle.
Par convention var0 désigne le contenu de la variable juste avant d’entrer
dans la boucle.

Exemple
S = 10
for k in range(2, 5):
 S = S + k

S0 = 10, S1 = 12, S2 = 15, S3 = 19.

7/48

Notation

La notation vari désigne le contenu de la variable var à la fin de
l’exécution de la ie itération de la boucle.
Par convention var0 désigne le contenu de la variable juste avant d’entrer
dans la boucle.

Exemple
S = 10
for k in range(2, 5):
 S = S + k

S0 = 10, S1 = 12, S2 = 15, S3 = 19.

7/48

Une propriété mathématique

Résultat principal pour la terminaison
Si a est un réel et (ui) une suite d’entiers strictement croissante (resp.
strictement décroissante), alors il existe un rang i0 pour lequel ui0 > a
(resp. ui0 < a).

Méthodologie pour établir une terminaison
Exhiber une suite positive, dépendant des données du programme, à
valeurs dans N, qui décroît strictement à chaque passage dans la boucle.

8/48

Une propriété mathématique

Résultat principal pour la terminaison
Si a est un réel et (ui) une suite d’entiers strictement croissante (resp.
strictement décroissante), alors il existe un rang i0 pour lequel ui0 > a
(resp. ui0 < a).

Méthodologie pour établir une terminaison
Exhiber une suite positive, dépendant des données du programme, à
valeurs dans N, qui décroît strictement à chaque passage dans la boucle.

8/48

Exemple

Calcul de xn - algorithme d’exponentiation rapide.
def expR(x: float, n: int)->float :
 """ Renvoie x^n pour x réel et n entier naturel. \

↪→ """
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

9/48

Exemple
def expR(x: float, n: int)->float :
 ””” Renvoie x^n pour x réel et n entier naturel. ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

• Hypothèse : la boucle ne se termine jamais. Soit Ni la valeur de N à la
fin de l’itération i, donc : ∀i ∈ N, Ni 6= 0.

• Valeur initiale : N0 = n ∈ N (pré-condition).
• Supposons pour un entier i, que Ni ∈ N :

1. si Ni est pair alors Ni+1 = Ni/2 ∈ N et Ni+1 < Ni (car Ni 6= 0 !), donc
0 < Ni+1 < Ni ;

2. si Ni est impair alors Ni+1 = (Ni − 1)/2 ∈ N et Ni+1 < Ni, donc
0 < Ni+1 < Ni ;

Dans les deux cas : Ni+1 est un entier naturel et Ni+1 < Ni.

10/48

Exemple
def expR(x: float, n: int)->float :
 ””” Renvoie x^n pour x réel et n entier naturel. ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

• Hypothèse : la boucle ne se termine jamais. Soit Ni la valeur de N à la
fin de l’itération i, donc : ∀i ∈ N, Ni 6= 0.

• Valeur initiale : N0 = n ∈ N (pré-condition).
• Supposons pour un entier i, que Ni ∈ N :

1. si Ni est pair alors Ni+1 = Ni/2 ∈ N et Ni+1 < Ni (car Ni 6= 0 !), donc
0 < Ni+1 < Ni ;

2. si Ni est impair alors Ni+1 = (Ni − 1)/2 ∈ N et Ni+1 < Ni, donc
0 < Ni+1 < Ni ;

Dans les deux cas : Ni+1 est un entier naturel et Ni+1 < Ni.

10/48

Exemple
def expR(x: float, n: int)->float :
 ””” Renvoie x^n pour x réel et n entier naturel. ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

• Hypothèse : la boucle ne se termine jamais. Soit Ni la valeur de N à la
fin de l’itération i, donc : ∀i ∈ N, Ni 6= 0.

• Valeur initiale : N0 = n ∈ N (pré-condition).
• Supposons pour un entier i, que Ni ∈ N :

1. si Ni est pair alors Ni+1 = Ni/2 ∈ N et Ni+1 < Ni (car Ni 6= 0 !), donc
0 < Ni+1 < Ni ;

2. si Ni est impair alors Ni+1 = (Ni − 1)/2 ∈ N et Ni+1 < Ni, donc
0 < Ni+1 < Ni ;

Dans les deux cas : Ni+1 est un entier naturel et Ni+1 < Ni.

10/48

Exemple
def expR(x: float, n: int)->float :
 ””” Renvoie x^n pour x réel et n entier naturel. ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

• Hypothèse : la boucle ne se termine jamais. Soit Ni la valeur de N à la
fin de l’itération i, donc : ∀i ∈ N, Ni 6= 0.

• Valeur initiale : N0 = n ∈ N (pré-condition).
• Supposons pour un entier i, que Ni ∈ N :

1. si Ni est pair alors Ni+1 = Ni/2 ∈ N et Ni+1 < Ni (car Ni 6= 0 !), donc
0 < Ni+1 < Ni ;

2. si Ni est impair alors Ni+1 = (Ni − 1)/2 ∈ N et Ni+1 < Ni, donc
0 < Ni+1 < Ni ;

Dans les deux cas : Ni+1 est un entier naturel et Ni+1 < Ni.

10/48

Exemple
def expR(x: float, n: int)->float :
 ””” Renvoie x^n pour x réel et n entier naturel. ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

• Hypothèse : la boucle ne se termine jamais. Soit Ni la valeur de N à la
fin de l’itération i, donc : ∀i ∈ N, Ni 6= 0.

• Valeur initiale : N0 = n ∈ N (pré-condition).
• Supposons pour un entier i, que Ni ∈ N :

1. si Ni est pair alors Ni+1 = Ni/2 ∈ N et Ni+1 < Ni (car Ni 6= 0 !), donc
0 < Ni+1 < Ni ;

2. si Ni est impair alors Ni+1 = (Ni − 1)/2 ∈ N et Ni+1 < Ni, donc
0 < Ni+1 < Ni ;

Dans les deux cas : Ni+1 est un entier naturel et Ni+1 < Ni.
10/48

Exemple

def expR(x: float, n: int)->float :
 ””” Renvoie x^n pour x réel et n entier naturel. ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

Bilan
Pour tout entier naturel i :

• Ni ∈ N ;

• la suite (Ni) est strictement décroissante.

Ceci est absurde, donc la boucle while se termine .

11/48

Exemple

def expR(x: float, n: int)->float :
 ””” Renvoie x^n pour x réel et n entier naturel. ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

Bilan
Pour tout entier naturel i :

• Ni ∈ N ;
• la suite (Ni) est strictement décroissante.

Ceci est absurde, donc la boucle while se termine .

11/48

Exemple

def expR(x: float, n: int)->float :
 ””” Renvoie x^n pour x réel et n entier naturel. ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

Bilan
Pour tout entier naturel i :

• Ni ∈ N ;
• la suite (Ni) est strictement décroissante.

Ceci est absurde, donc la boucle while se termine .

11/48

Exercice

Prouver la terminaison du code suivant :
def f(x: float, n: int)->float :
 y = 1
 i = 0
 while i < n :
 y *= x
 i += 1
 return y

• Hypothèse : On suppose que la boucle ne termine pas, on a donc :
∀k ∈ N, ik < n.

• On a i0 = 0, ik+1 = ik + 1 > ik, (ik) suite d’entiers strictement croissante,
• ∃k0, ik0 > n, d’où contradiction avec l’hypothèse : la boucle termine.

12/48

Exercice

Prouver la terminaison du code suivant :
def f(x: float, n: int)->float :
 y = 1
 i = 0
 while i < n :
 y *= x
 i += 1
 return y

• Hypothèse : On suppose que la boucle ne termine pas, on a donc :
∀k ∈ N, ik < n.

• On a i0 = 0, ik+1 = ik + 1 > ik, (ik) suite d’entiers strictement croissante,

• ∃k0, ik0 > n, d’où contradiction avec l’hypothèse : la boucle termine.

12/48

Exercice

Prouver la terminaison du code suivant :
def f(x: float, n: int)->float :
 y = 1
 i = 0
 while i < n :
 y *= x
 i += 1
 return y

• Hypothèse : On suppose que la boucle ne termine pas, on a donc :
∀k ∈ N, ik < n.

• On a i0 = 0, ik+1 = ik + 1 > ik, (ik) suite d’entiers strictement croissante,
• ∃k0, ik0 > n, d’où contradiction avec l’hypothèse : la boucle termine.

12/48

Un exemple atypique : la suite de Syracuse

• Soit la suite u0 = n, où n est un entier naturel, et vérifiant

∀p ∈ N up+1 =
{
up//2 si up est pair ;
3up + 1 si up est impair.

13/48

Un exemple atypique : la suite de Syracuse

• Soit la suite u0 = n, où n est un entier naturel, et vérifiant

∀p ∈ N up+1 =
{
up//2 si up est pair ;
3up + 1 si up est impair.

• Conjecture (non démontrée) : quelque soit n, il existe un rang à partir
duquel la suite prend les valeurs 4, 2, 1 de manière périodique.

13/48

Un exemple atypique : la suite de Syracuse

• La fonction suivante termine-t-elle ?
def syracuse(n: int)->int:
 """ Calcule les termes de la suite de Syracuse
 commençant par l'entier strictement positif n
 jusqu'à ce qu'un terme vaille 1 et renvoie
 l'indice de ce dernier """
 u = n
 while u != 1 :
 if u%2 == 0 :
 u = u//2
 else :
 u = 3*u+1
 return 1

13/48

Un exemple atypique : la suite de Syracuse

• La fonction suivante termine-t-elle ?
def syracuse(n: int)->int:
 """ Calcule les termes de la suite de Syracuse
 commençant par l'entier strictement positif n
 jusqu'à ce qu'un terme vaille 1 et renvoie
 l'indice de ce dernier """
 u = n
 while u != 1 :
 if u%2 == 0 :
 u = u//2
 else :
 u = 3*u+1
 return 1

• Oui en théorie, mais on ne sait pas le prouver.

13/48

Correction

Correction d’un programme

Objectif
Établir qu’à l’issue d’une boucle for ou while, on obtient bien le résultat
attendu.

Méthode
Spécifier et démontrer, par récurrence, des « invariants de boucle ».

• Un invariant de boucle est une propriété qui dépend des données de
l’algorithme et qui est vérifiée à chaque passage dans la boucle.

• On cherche un invariant de boucle qui entraîne le résultat attendu
après la dernière itération.

14/48

Correction d’un programme

Objectif
Établir qu’à l’issue d’une boucle for ou while, on obtient bien le résultat
attendu.

Méthode
Spécifier et démontrer, par récurrence, des « invariants de boucle ».

• Un invariant de boucle est une propriété qui dépend des données de
l’algorithme et qui est vérifiée à chaque passage dans la boucle.

• On cherche un invariant de boucle qui entraîne le résultat attendu
après la dernière itération.

14/48

Correction d’un programme

Objectif
Établir qu’à l’issue d’une boucle for ou while, on obtient bien le résultat
attendu.

Méthode
Spécifier et démontrer, par récurrence, des « invariants de boucle ».

• Un invariant de boucle est une propriété qui dépend des données de
l’algorithme et qui est vérifiée à chaque passage dans la boucle.

• On cherche un invariant de boucle qui entraîne le résultat attendu
après la dernière itération.

14/48

Correction d’un programme

Objectif
Établir qu’à l’issue d’une boucle for ou while, on obtient bien le résultat
attendu.

Méthode
Spécifier et démontrer, par récurrence, des « invariants de boucle ».

• Un invariant de boucle est une propriété qui dépend des données de
l’algorithme et qui est vérifiée à chaque passage dans la boucle.

• On cherche un invariant de boucle qui entraîne le résultat attendu
après la dernière itération.

14/48

Moyenne d’une liste de nombres

Définition
• ensemble L = {l0, l1, . . . , ln−1} de n valeurs,

• moyenne : m = 1
n
∑n−1

k=0 lk

SQUARESQUAREMoyenne des éléments d’une liste
def moyenne(L: list)->float :
 """ Calcule la moyenne des éléments de la liste \

↪→ de nombres L """
 S = 0
 #
 # à compléter
 #
 return S/len(L)

15/48

Moyenne d’une liste de nombres

Définition
• ensemble L = {l0, l1, . . . , ln−1} de n valeurs,
• moyenne : m = 1

n
∑n−1

k=0 lk

SQUARESQUAREMoyenne des éléments d’une liste
def moyenne(L: list)->float :
 """ Calcule la moyenne des éléments de la liste \

↪→ de nombres L """
 S = 0
 #
 # à compléter
 #
 return S/len(L)

15/48

Moyenne d’une liste de nombres

Définition
• ensemble L = {l0, l1, . . . , ln−1} de n valeurs,
• moyenne : m = 1

n
∑n−1

k=0 lk

SQUARESQUAREMoyenne des éléments d’une liste
def moyenne(L: list)->float :
 """ Calcule la moyenne des éléments de la liste \

↪→ de nombres L """
 S = 0
 #
 # à compléter
 #
 return S/len(L)

15/48

Moyenne d’une liste de nombres

Définition
• ensemble L = {l0, l1, . . . , ln−1} de n valeurs,
• moyenne : m = 1

n
∑n−1

k=0 lk

SQUARESQUAREMoyenne des éléments d’une liste
def moyenne(L: list)->list :
 """ Calcule la moyenne des éléments de la liste \

↪→ de nombres L """
 S = 0
 for e in L :
 S = S+e
 return S/len(L)

16/48

Moyenne d’une liste de nombres : correction

SQUARESQUAREMoyenne des éléments d’une liste
def moyenne(L: list)->float :
 """ Calcule la moyenne des éléments de la liste \

↪→ de nombres L """
 S = 0
 for e in L :
 S = S+e
 return S/len(L)

Invariant
Montrer que la propriété suivante est un invariant de boucle :

∀ i ∈ {0, . . . ,n}, «Si =
i−1∑
k=0

L[k]»

17/48

Moyenne d’une liste de nombres : correction

Comme cela est conseillé, on écrit l’invariant dans le code sous forme de
commentaires :

SQUARESQUAREMoyenne des éléments d’une liste
def moyenne(L: list)->float :
 """ Calcule la moyenne des éléments de la liste \

↪→ de nombres L """
 S = 0
 for e in L :
 # Invariant: S_i = L[0]+...+L[i-1]
 S = S+e
 return S/len(L)

18/48

Moyenne d’une liste de nombres : correction

Invariant de boucle

∀ i ∈ {0, . . . ,n}, « Si =
i−1∑
k=0

L[k] » où i désigne le numéro de l’itération.

Initialisation

Par convention, si a > b, on convient que
b∑

k=a

uk = 0. Ainsi, pour i = 0, on a

bien : S0 = 0 =
∑−1

k=0 L[k].

Hérédité
Supposons la propriété vraie en un certain rang i ∈ {0, . . . ,n− 1}. Lors de
la (i+ 1)e itération de la boucle, la variable e contient L[i]. L’instruction S
+= e exécutée conduit à :

Si+1 = Si + L[i] =
i−1∑
k=0

L[k] + L[i] =
i∑

k=0

L[k]. Ce qui achève la récurrence.

19/48

Moyenne d’une liste de nombres : correction

Invariant de boucle

∀ i ∈ {0, . . . ,n}, « Si =
i−1∑
k=0

L[k] » où i désigne le numéro de l’itération.

Initialisation

Par convention, si a > b, on convient que
b∑

k=a

uk = 0. Ainsi, pour i = 0, on a

bien : S0 = 0 =
∑−1

k=0 L[k].

Hérédité
Supposons la propriété vraie en un certain rang i ∈ {0, . . . ,n− 1}. Lors de
la (i+ 1)e itération de la boucle, la variable e contient L[i]. L’instruction S
+= e exécutée conduit à :

Si+1 = Si + L[i] =
i−1∑
k=0

L[k] + L[i] =
i∑

k=0

L[k]. Ce qui achève la récurrence.

19/48

Moyenne d’une liste de nombres : correction

Invariant de boucle

∀ i ∈ {0, . . . ,n}, « Si =
i−1∑
k=0

L[k] » où i désigne le numéro de l’itération.

Initialisation

Par convention, si a > b, on convient que
b∑

k=a

uk = 0. Ainsi, pour i = 0, on a

bien : S0 = 0 =
∑−1

k=0 L[k].

Hérédité
Supposons la propriété vraie en un certain rang i ∈ {0, . . . ,n− 1}. Lors de
la (i+ 1)e itération de la boucle, la variable e contient L[i]. L’instruction S
+= e exécutée conduit à :

Si+1 = Si + L[i] =
i−1∑
k=0

L[k] + L[i] =
i∑

k=0

L[k]. Ce qui achève la récurrence.

19/48

Moyenne d’une liste de nombres : correction

Correction de la boucle
Comme la dernière itération de la boucle a lieu pour i = n, la valeur
renvoyée par la fonction est bien : Sn =

∑n−1
k=0 L[k] et la dernière ligne

renvoie bien la moyenne des nombres contenus dans la liste L.

20/48

Algorithme de Horner

Évaluation d’un polynôme

P(x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0
les coefficients sont stockés dans une liste de longueur n+ 1 :

LC = [an,an−1, . . . ,a2,a1,a0].

Algorithme de Horner
def evalP(x: float, LC: list)->float:
 """ Évalue P(x) où P est le polynôme dont les \

↪→ coefficients sont
 dans la liste LC dans l'ordre décroissant des \

↪→ degrés. """
 P = 0
 for c in LC:
 P = P * x + c
 return(P)

21/48

Algorithme de Horner

Évaluation d’un polynôme

P(x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0
les coefficients sont stockés dans une liste de longueur n+ 1 :

LC = [an,an−1, . . . ,a2,a1,a0].

Algorithme de Horner
def evalP(x: float, LC: list)->float:
 """ Évalue P(x) où P est le polynôme dont les \

↪→ coefficients sont
 dans la liste LC dans l'ordre décroissant des \

↪→ degrés. """
 P = 0
 for c in LC:
 P = P * x + c
 return(P)

21/48

Algorithme de Horner

Invariant de boucle
n+ 1 est la longueur de la liste LC :

∀ i ∈ {0, . . . ,n+ 1}, «Pi =
i−1∑
k=0

LC[k]× xi−1−k».

Initialisation
Pour i = 0, on a bien P0 = 0 =

∑−1
k=0 LC[k]× x−1−k.

Hérédité
Supposons la propriété vraie en un certain rang i ∈ {0, . . . ,n}. Lors de la
(i+ 1)e itération la variable c contient LC[i], donc l’instruction P = P*x+c
conduit à :

Pi+1 = Pi × x + LC[i] =
(i−1∑
k=0

LC[k]× xi−1−k
)

× x + LC[i] =
i∑

k=0

LC[k]× xi−k.

22/48

Algorithme de Horner

Invariant de boucle
n+ 1 est la longueur de la liste LC :

∀ i ∈ {0, . . . ,n+ 1}, «Pi =
i−1∑
k=0

LC[k]× xi−1−k».

Initialisation
Pour i = 0, on a bien P0 = 0 =

∑−1
k=0 LC[k]× x−1−k.

Hérédité
Supposons la propriété vraie en un certain rang i ∈ {0, . . . ,n}. Lors de la
(i+ 1)e itération la variable c contient LC[i], donc l’instruction P = P*x+c
conduit à :

Pi+1 = Pi × x + LC[i] =
(i−1∑
k=0

LC[k]× xi−1−k
)

× x + LC[i] =
i∑

k=0

LC[k]× xi−k.

22/48

Algorithme de Horner

Invariant de boucle
n+ 1 est la longueur de la liste LC :

∀ i ∈ {0, . . . ,n+ 1}, «Pi =
i−1∑
k=0

LC[k]× xi−1−k».

Initialisation
Pour i = 0, on a bien P0 = 0 =

∑−1
k=0 LC[k]× x−1−k.

Hérédité
Supposons la propriété vraie en un certain rang i ∈ {0, . . . ,n}. Lors de la
(i+ 1)e itération la variable c contient LC[i], donc l’instruction P = P*x+c
conduit à :

Pi+1 = Pi × x + LC[i] =
(i−1∑
k=0

LC[k]× xi−1−k
)

× x + LC[i] =
i∑

k=0

LC[k]× xi−k.

22/48

Algorithme de Horner

Correction de la boucle
Dernière itération pour i = n+ 1, d’après l’invariant la valeur renvoyée est :

Pn+1 =
n∑
k=0

LC[k]× xn−k

= LC[0]× xn + LC[1]× xn−1 + · · ·+ LC[n− 1]× x + LC[n]

= anxn + an−1xn−1 + · · ·+ a1x + a0
si on note LC = [an,an−1, . . . ,a1,a0].

23/48

Algorithme de Horner

def evalP(x: float, LC: list)->float:
 """ Évalue P(x) où P est le polynôme dont les \

↪→ coefficients sont
 dans la liste LC dans l'ordre décroissant des \

↪→ degrés. """
 P = 0
 for c in LC:
 # Invariant : P_i=\sum_{k=0}^{i-1} LC[k] \

↪→ \times x^{i-1-k}
 P = P * x + c
 return(P)

24/48

Exemple boucle while : exponentiation rapide

Calcul de xn - algorithme d’exponentiation rapide.
def expR(x: float, n: int)->float :
 ””” Calcule x^n par la méthode de l’exponentiation rapide pour x réel et n entier naturel. \

↪→ ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

Terminaison
• Pour une boucle while, on commence à établir la terminaison de la
boucle.

• Ce résultat a déjà été établi plus haut.

25/48

Exemple boucle while : exponentiation rapide

Calcul de xn - algorithme d’exponentiation rapide.
def expR(x: float, n: int)->float :
 ””” Calcule x^n par la méthode de l’exponentiation rapide pour x réel et n entier naturel. \

↪→ ”””
 X, N, R = x, n, 1
 while N != 0 :
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

Terminaison
• Pour une boucle while, on commence à établir la terminaison de la
boucle.

• Ce résultat a déjà été établi plus haut.

25/48

Exemple boucle while : exponentiation rapide

Invariant de boucle
Montrons l’invariant de boucle, où ` désigne le nombre d’itérations :

∀ i ∈ {0, . . . , `}, «Ri × XNii = xn».

Initialisation
Pour i = 0, on a R0 × XN00 = 1× xn = xn.

26/48

Exemple boucle while : exponentiation rapide

Invariant de boucle
Montrons l’invariant de boucle, où ` désigne le nombre d’itérations :

∀ i ∈ {0, . . . , `}, «Ri × XNii = xn».

Initialisation
Pour i = 0, on a R0 × XN00 = 1× xn = xn.

26/48

Exemple boucle while : exponentiation rapide

Hérédité
Supposons la propriété vraie en un certain rang i ∈ {0, . . . , `− 1}. Lors de la
(i+ 1)e itération de la boucle while :

1er cas : si Ni est pair, alors les exécutions de N = N//2 et X = X*X
conduisent à Ri+1 = Ri, Ni+1 = Ni/2 et Xi+1 = X2i donc :

Ri+1 × XNi+1i+1 = Ri × (X2i)
Ni
2 = Ri × XNii = xn.

2e cas : si Ni est impair, alors les exécutions de R=R*X, N=(N-1)//2 et
X=X*X conduisent à Ri+1 = Ri × Xi, Ni+1 = (Ni − 1)/2 et Xi+1 = X2i donc :

Ri+1 × XNi+1i+1 = Ri × Xi × (X2i)
Ni−1
2 = Ri × XNii = xn.

27/48

Exemple boucle while : exponentiation rapide

Hérédité
Supposons la propriété vraie en un certain rang i ∈ {0, . . . , `− 1}. Lors de la
(i+ 1)e itération de la boucle while :

1er cas : si Ni est pair, alors les exécutions de N = N//2 et X = X*X
conduisent à Ri+1 = Ri, Ni+1 = Ni/2 et Xi+1 = X2i donc :

Ri+1 × XNi+1i+1 = Ri × (X2i)
Ni
2 = Ri × XNii = xn.

2e cas : si Ni est impair, alors les exécutions de R=R*X, N=(N-1)//2 et
X=X*X conduisent à Ri+1 = Ri × Xi, Ni+1 = (Ni − 1)/2 et Xi+1 = X2i donc :

Ri+1 × XNi+1i+1 = Ri × Xi × (X2i)
Ni−1
2 = Ri × XNii = xn.

27/48

Exemple boucle while : exponentiation rapide

Hérédité
Supposons la propriété vraie en un certain rang i ∈ {0, . . . , `− 1}. Lors de la
(i+ 1)e itération de la boucle while :

1er cas : si Ni est pair, alors les exécutions de N = N//2 et X = X*X
conduisent à Ri+1 = Ri, Ni+1 = Ni/2 et Xi+1 = X2i donc :

Ri+1 × XNi+1i+1 = Ri × (X2i)
Ni
2 = Ri × XNii = xn.

2e cas : si Ni est impair, alors les exécutions de R=R*X, N=(N-1)//2 et
X=X*X conduisent à Ri+1 = Ri × Xi, Ni+1 = (Ni − 1)/2 et Xi+1 = X2i donc :

Ri+1 × XNi+1i+1 = Ri × Xi × (X2i)
Ni−1
2 = Ri × XNii = xn.

27/48

Exemple boucle while : exponentiation rapide

Correction de la boucle
La dernière itération de la boucle while a lieu pour i = `, et on a N` = 0
car il n’y a pas d’itération `+ 1.

La valeur renvoyée par la fonction est bien :
R` = R` × XN`

`︸︷︷︸
=1

= xn .

28/48

Exemple boucle while : exponentiation rapide

def expR(x: float, n: int)->float :
 """ Calcule x^n par la méthode de \

↪→ l'exponentiation rapide
 pour x réel et n entier naturel. """
 X, N, R = x, n, 1
 while N != 0 :
 # invariant : R_i\times X_i^{N_i}=x^n
 if N%2 == 0 :
 N = N//2
 else :
 R = R*X
 N = (N-1)//2
 X = X*X
 return R

29/48

Exercice

Partie entière
Pour x réel positif, la partie entière de x est le plus grand entier naturel
inférieur ou égal à x. La fonction suivante en effectue le calcul :
def ParEnt(x: float)->int :
 """ Calcule la partie entière du réel positif x. \

↪→ """
 n = 0
 while n+1 <= x :
 n += 1
 return n

Faire la preuve de cette fonction.

30/48

Et avec une fonction récursive?

Considérons la fonction :
def f(a: int, b: int)->int :
 """ Calcul récursif du pgcd, a et b sont \

↪→ supposés naturels """
 if b == 0:
 return a
 else:
 return f(b, a%b)

On peut établir la terminaison et la correction en montrant par récurrence
sur le paramètre b :

P(b) : ∀a ∈ N, f (a,b) se termine et renvoie pgcd(a,b) .

31/48

Et avec une fonction récursive?

Considérons la fonction :
def f(a: int, b: int)->int :
 """ Calcul récursif du pgcd, a et b sont \

↪→ supposés naturels """
 if b == 0:
 return a
 else:
 return f(b, a%b)

On peut établir la terminaison et la correction en montrant par récurrence
sur le paramètre b :

P(b) : ∀a ∈ N, f (a,b) se termine et renvoie pgcd(a,b) .

31/48

Et avec une fonction récursive?

• Initialisation.

Il est clair que P(0) est vrai (c’est le cas terminal et
pgcd(a, 0) = a).

• Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’à un
naturel b, et soit a ∈ N.
Lorsqu’on appelle f (a,b+ 1), comme b+ 1 6= 0, on renvoie la valeur de
f (b+ 1, r) où r est le reste de la division de a par b+ 1 :
a = (b+ 1)q+ r, comme 0 6 r 6 b, on sait par hypothèse que
f (b+ 1, r) se termine et renvoie pgcd(b+ 1, r), donc f (a,b+ 1) se
termine et renvoie pgcd(b+ 1, r), or d’après le cours de mathématique,
pgcd(a,b+ 1) = pgcd(b+ 1, r), donc P(b+ 1) est vraie, ce qui termine
la récurrence.

32/48

Et avec une fonction récursive?

• Initialisation. Il est clair que P(0) est vrai (c’est le cas terminal et
pgcd(a, 0) = a).

• Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’à un
naturel b, et soit a ∈ N.
Lorsqu’on appelle f (a,b+ 1), comme b+ 1 6= 0, on renvoie la valeur de
f (b+ 1, r) où r est le reste de la division de a par b+ 1 :
a = (b+ 1)q+ r, comme 0 6 r 6 b, on sait par hypothèse que
f (b+ 1, r) se termine et renvoie pgcd(b+ 1, r), donc f (a,b+ 1) se
termine et renvoie pgcd(b+ 1, r), or d’après le cours de mathématique,
pgcd(a,b+ 1) = pgcd(b+ 1, r), donc P(b+ 1) est vraie, ce qui termine
la récurrence.

32/48

Et avec une fonction récursive?

• Initialisation. Il est clair que P(0) est vrai (c’est le cas terminal et
pgcd(a, 0) = a).

• Hérédité.

Supposons la propriété vraie pour tous les entiers jusqu’à un
naturel b, et soit a ∈ N.
Lorsqu’on appelle f (a,b+ 1), comme b+ 1 6= 0, on renvoie la valeur de
f (b+ 1, r) où r est le reste de la division de a par b+ 1 :
a = (b+ 1)q+ r, comme 0 6 r 6 b, on sait par hypothèse que
f (b+ 1, r) se termine et renvoie pgcd(b+ 1, r), donc f (a,b+ 1) se
termine et renvoie pgcd(b+ 1, r), or d’après le cours de mathématique,
pgcd(a,b+ 1) = pgcd(b+ 1, r), donc P(b+ 1) est vraie, ce qui termine
la récurrence.

32/48

Et avec une fonction récursive?

• Initialisation. Il est clair que P(0) est vrai (c’est le cas terminal et
pgcd(a, 0) = a).

• Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’à un
naturel b, et soit a ∈ N.

Lorsqu’on appelle f (a,b+ 1), comme b+ 1 6= 0, on renvoie la valeur de
f (b+ 1, r) où r est le reste de la division de a par b+ 1 :
a = (b+ 1)q+ r, comme 0 6 r 6 b, on sait par hypothèse que
f (b+ 1, r) se termine et renvoie pgcd(b+ 1, r), donc f (a,b+ 1) se
termine et renvoie pgcd(b+ 1, r), or d’après le cours de mathématique,
pgcd(a,b+ 1) = pgcd(b+ 1, r), donc P(b+ 1) est vraie, ce qui termine
la récurrence.

32/48

Et avec une fonction récursive?

• Initialisation. Il est clair que P(0) est vrai (c’est le cas terminal et
pgcd(a, 0) = a).

• Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’à un
naturel b, et soit a ∈ N.
Lorsqu’on appelle f (a,b+ 1), comme b+ 1 6= 0, on renvoie la valeur de
f (b+ 1, r) où r est le reste de la division de a par b+ 1 :
a = (b+ 1)q+ r,

comme 0 6 r 6 b, on sait par hypothèse que
f (b+ 1, r) se termine et renvoie pgcd(b+ 1, r), donc f (a,b+ 1) se
termine et renvoie pgcd(b+ 1, r), or d’après le cours de mathématique,
pgcd(a,b+ 1) = pgcd(b+ 1, r), donc P(b+ 1) est vraie, ce qui termine
la récurrence.

32/48

Et avec une fonction récursive?

• Initialisation. Il est clair que P(0) est vrai (c’est le cas terminal et
pgcd(a, 0) = a).

• Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’à un
naturel b, et soit a ∈ N.
Lorsqu’on appelle f (a,b+ 1), comme b+ 1 6= 0, on renvoie la valeur de
f (b+ 1, r) où r est le reste de la division de a par b+ 1 :
a = (b+ 1)q+ r, comme 0 6 r 6 b, on sait par hypothèse que
f (b+ 1, r) se termine et renvoie pgcd(b+ 1, r),

donc f (a,b+ 1) se
termine et renvoie pgcd(b+ 1, r), or d’après le cours de mathématique,
pgcd(a,b+ 1) = pgcd(b+ 1, r), donc P(b+ 1) est vraie, ce qui termine
la récurrence.

32/48

Et avec une fonction récursive?

• Initialisation. Il est clair que P(0) est vrai (c’est le cas terminal et
pgcd(a, 0) = a).

• Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’à un
naturel b, et soit a ∈ N.
Lorsqu’on appelle f (a,b+ 1), comme b+ 1 6= 0, on renvoie la valeur de
f (b+ 1, r) où r est le reste de la division de a par b+ 1 :
a = (b+ 1)q+ r, comme 0 6 r 6 b, on sait par hypothèse que
f (b+ 1, r) se termine et renvoie pgcd(b+ 1, r), donc f (a,b+ 1) se
termine et renvoie pgcd(b+ 1, r),

or d’après le cours de mathématique,
pgcd(a,b+ 1) = pgcd(b+ 1, r), donc P(b+ 1) est vraie, ce qui termine
la récurrence.

32/48

Et avec une fonction récursive?

• Initialisation. Il est clair que P(0) est vrai (c’est le cas terminal et
pgcd(a, 0) = a).

• Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’à un
naturel b, et soit a ∈ N.
Lorsqu’on appelle f (a,b+ 1), comme b+ 1 6= 0, on renvoie la valeur de
f (b+ 1, r) où r est le reste de la division de a par b+ 1 :
a = (b+ 1)q+ r, comme 0 6 r 6 b, on sait par hypothèse que
f (b+ 1, r) se termine et renvoie pgcd(b+ 1, r), donc f (a,b+ 1) se
termine et renvoie pgcd(b+ 1, r), or d’après le cours de mathématique,
pgcd(a,b+ 1) = pgcd(b+ 1, r),

donc P(b+ 1) est vraie, ce qui termine
la récurrence.

32/48

Et avec une fonction récursive?

• Initialisation. Il est clair que P(0) est vrai (c’est le cas terminal et
pgcd(a, 0) = a).

• Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’à un
naturel b, et soit a ∈ N.
Lorsqu’on appelle f (a,b+ 1), comme b+ 1 6= 0, on renvoie la valeur de
f (b+ 1, r) où r est le reste de la division de a par b+ 1 :
a = (b+ 1)q+ r, comme 0 6 r 6 b, on sait par hypothèse que
f (b+ 1, r) se termine et renvoie pgcd(b+ 1, r), donc f (a,b+ 1) se
termine et renvoie pgcd(b+ 1, r), or d’après le cours de mathématique,
pgcd(a,b+ 1) = pgcd(b+ 1, r), donc P(b+ 1) est vraie, ce qui termine
la récurrence.

32/48

Tout n’est pas si simple !

La fonction suivante :
def decompPremier(p: int)-> (int,int):
 ””” Renvoie deux entiers u et v tels que p = u^2+v^2 p doit être un nombre premier congru à 1 modulo \

↪→ 4 ”””

 def f(a: int, b: int, c: int)->(int, int, int) :
 ””” La fonction magique locale ”””
 if a > b+c:
 return (a-b-c, b, 2*b+c)
 else:
 return (b+c-a, a, 2*a-c)

 a, b, c = (p-1)//4, 1, 1
 while a != b:
 a, b, c = f(a, b, c)
 return (2*a,c)

permet de décomposer tout nombre premier congru à 1 modulo 4 en
somme de deux carrés.

Un théorème dit que c’est toujours possible. Par exemple,
decompPremier(601) renvoie (24, 5) et on a bien 601 = 242 + 52.

Mais la terminaison et la preuve de cet algorithme sont vraiment difficiles.

33/48

Tout n’est pas si simple !

La fonction suivante :
def decompPremier(p: int)-> (int,int):
 ””” Renvoie deux entiers u et v tels que p = u^2+v^2 p doit être un nombre premier congru à 1 modulo \

↪→ 4 ”””

 def f(a: int, b: int, c: int)->(int, int, int) :
 ””” La fonction magique locale ”””
 if a > b+c:
 return (a-b-c, b, 2*b+c)
 else:
 return (b+c-a, a, 2*a-c)

 a, b, c = (p-1)//4, 1, 1
 while a != b:
 a, b, c = f(a, b, c)
 return (2*a,c)

permet de décomposer tout nombre premier congru à 1 modulo 4 en
somme de deux carrés.

Un théorème dit que c’est toujours possible. Par exemple,
decompPremier(601) renvoie (24, 5) et on a bien 601 = 242 + 52.

Mais la terminaison et la preuve de cet algorithme sont vraiment difficiles.

33/48

Tout n’est pas si simple !

La fonction suivante :
def decompPremier(p: int)-> (int,int):
 ””” Renvoie deux entiers u et v tels que p = u^2+v^2 p doit être un nombre premier congru à 1 modulo \

↪→ 4 ”””

 def f(a: int, b: int, c: int)->(int, int, int) :
 ””” La fonction magique locale ”””
 if a > b+c:
 return (a-b-c, b, 2*b+c)
 else:
 return (b+c-a, a, 2*a-c)

 a, b, c = (p-1)//4, 1, 1
 while a != b:
 a, b, c = f(a, b, c)
 return (2*a,c)

permet de décomposer tout nombre premier congru à 1 modulo 4 en
somme de deux carrés.

Un théorème dit que c’est toujours possible. Par exemple,
decompPremier(601) renvoie (24, 5) et on a bien 601 = 242 + 52.

Mais la terminaison et la preuve de cet algorithme sont vraiment difficiles.33/48

Complexité

Complexité temporelle

Objectif
Mesurer « l’efficacité » d’un programme en terme de temps de calcul, en
fonction de la taille des données, indépendamment de la puissance
d’exécution de l’ordinateur sur lequel le programme est exécuté.

Méthode
Déterminer un entier n mesurant la « taille » des données du programme,
et compter le nombre C(n) « d’opérations élémentaires » (à préciser
suivant le contexte) nécessaires à l’exécution du programme.

Classer cette complexité en utilisant la relation de domination « O » entre
suites fournissant une « ordre de grandeur » simplifié de la complexité.

34/48

Complexité temporelle

Objectif
Mesurer « l’efficacité » d’un programme en terme de temps de calcul, en
fonction de la taille des données, indépendamment de la puissance
d’exécution de l’ordinateur sur lequel le programme est exécuté.

Méthode
Déterminer un entier n mesurant la « taille » des données du programme,
et compter le nombre C(n) « d’opérations élémentaires » (à préciser
suivant le contexte) nécessaires à l’exécution du programme.

Classer cette complexité en utilisant la relation de domination « O » entre
suites fournissant une « ordre de grandeur » simplifié de la complexité.

34/48

Exemple : fonction moyenne

fonction
def moyenne(L:list)->float :
 """Calcule la moyenne des éléments
 de la liste de nombres L"""
 S = 0
 for e in L :
 S += e
 return S/len(L)

complexité
• une affection avant la boucle for,
• dans la boucle for : une addition et une affectation, répétées n fois,
• une division dans la dernière ligne.

On a
C(n) = 1+ (1+ 1)× n+ 1 = 2n+ 2

35/48

Exemple : fonction moyenne

fonction
def moyenne(L:list)->float :
 """Calcule la moyenne des éléments
 de la liste de nombres L"""
 S = 0
 for e in L :
 S += e
 return S/len(L)

complexité
• une affection avant la boucle for,

• dans la boucle for : une addition et une affectation, répétées n fois,
• une division dans la dernière ligne.

On a
C(n) = 1+ (1+ 1)× n+ 1 = 2n+ 2

35/48

Exemple : fonction moyenne

fonction
def moyenne(L:list)->float :
 """Calcule la moyenne des éléments
 de la liste de nombres L"""
 S = 0
 for e in L :
 S += e
 return S/len(L)

complexité
• une affection avant la boucle for,
• dans la boucle for : une addition et une affectation, répétées n fois,

• une division dans la dernière ligne.

On a
C(n) = 1+ (1+ 1)× n+ 1 = 2n+ 2

35/48

Exemple : fonction moyenne

fonction
def moyenne(L:list)->float :
 """Calcule la moyenne des éléments
 de la liste de nombres L"""
 S = 0
 for e in L :
 S += e
 return S/len(L)

complexité
• une affection avant la boucle for,
• dans la boucle for : une addition et une affectation, répétées n fois,
• une division dans la dernière ligne.

On a
C(n) = 1+ (1+ 1)× n+ 1 = 2n+ 2

35/48

Exemple : fonction moyenne

fonction
def moyenne(L:list)->float :
 """Calcule la moyenne des éléments
 de la liste de nombres L"""
 S = 0
 for e in L :
 S += e
 return S/len(L)

complexité
• une affection avant la boucle for,
• dans la boucle for : une addition et une affectation, répétées n fois,
• une division dans la dernière ligne.

On a
C(n) = 1+ (1+ 1)× n+ 1 = 2n+ 2

35/48

Exercice : complexité d’une première fonction

fonction
def f1(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(n):
 x = x+1
 return x

complexité
• une affection avant la première boucle for,
• dans la boucle for en la variable j : une addition et une affectation,
répétées n fois, soit 2n opérations élémentaires

• la boucle for en la variable i, on répète n fois la boucle en la variable
j

On a
C(n) = 1+ n× (2n) = 1+ 2n2

36/48

Exercice : complexité d’une première fonction

fonction
def f1(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(n):
 x = x+1
 return x

complexité
• une affection avant la première boucle for,

• dans la boucle for en la variable j : une addition et une affectation,
répétées n fois, soit 2n opérations élémentaires

• la boucle for en la variable i, on répète n fois la boucle en la variable
j

On a
C(n) = 1+ n× (2n) = 1+ 2n2

36/48

Exercice : complexité d’une première fonction

fonction
def f1(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(n):
 x = x+1
 return x

complexité
• une affection avant la première boucle for,
• dans la boucle for en la variable j : une addition et une affectation,
répétées n fois, soit 2n opérations élémentaires

• la boucle for en la variable i, on répète n fois la boucle en la variable
j

On a
C(n) = 1+ n× (2n) = 1+ 2n2

36/48

Exercice : complexité d’une première fonction

fonction
def f1(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(n):
 x = x+1
 return x

complexité
• une affection avant la première boucle for,
• dans la boucle for en la variable j : une addition et une affectation,
répétées n fois, soit 2n opérations élémentaires

• la boucle for en la variable i, on répète n fois la boucle en la variable
j

On a
C(n) = 1+ n× (2n) = 1+ 2n2

36/48

Exercice : complexité d’une première fonction

fonction
def f1(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(n):
 x = x+1
 return x

complexité
• une affection avant la première boucle for,
• dans la boucle for en la variable j : une addition et une affectation,
répétées n fois, soit 2n opérations élémentaires

• la boucle for en la variable i, on répète n fois la boucle en la variable
j

On a
C(n) = 1+ n× (2n) = 1+ 2n2

36/48

Exercice : complexité d’une seconde fonction

fonction
def f2(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(i):
 x += 1
 return x

complexité
• une affection avant la première boucle for,
• dans la boucle for en la variable j : une addition et une affectation,
répétées i fois, soit 2i opérations élémentaires

• dans la boucle for en la variable i, on répète la boucle en la variable
j

On a

C(n) = 1+
n−1∑
i=0

(2i) = 1+ (n− 1)n

37/48

Exercice : complexité d’une seconde fonction

fonction
def f2(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(i):
 x += 1
 return x

complexité
• une affection avant la première boucle for,

• dans la boucle for en la variable j : une addition et une affectation,
répétées i fois, soit 2i opérations élémentaires

• dans la boucle for en la variable i, on répète la boucle en la variable
j

On a

C(n) = 1+
n−1∑
i=0

(2i) = 1+ (n− 1)n

37/48

Exercice : complexité d’une seconde fonction

fonction
def f2(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(i):
 x += 1
 return x

complexité
• une affection avant la première boucle for,
• dans la boucle for en la variable j : une addition et une affectation,
répétées i fois, soit 2i opérations élémentaires

• dans la boucle for en la variable i, on répète la boucle en la variable
j

On a

C(n) = 1+
n−1∑
i=0

(2i) = 1+ (n− 1)n

37/48

Exercice : complexité d’une seconde fonction

fonction
def f2(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(i):
 x += 1
 return x

complexité
• une affection avant la première boucle for,
• dans la boucle for en la variable j : une addition et une affectation,
répétées i fois, soit 2i opérations élémentaires

• dans la boucle for en la variable i, on répète la boucle en la variable
j

On a

C(n) = 1+
n−1∑
i=0

(2i) = 1+ (n− 1)n

37/48

Exercice : complexité d’une seconde fonction

fonction
def f2(n:int)->int:
 x = 0
 for i in range(n):
 for j in range(i):
 x += 1
 return x

complexité
• une affection avant la première boucle for,
• dans la boucle for en la variable j : une addition et une affectation,
répétées i fois, soit 2i opérations élémentaires

• dans la boucle for en la variable i, on répète la boucle en la variable
j

On a

C(n) = 1+
n−1∑
i=0

(2i) = 1+ (n− 1)n 37/48

Temps d’exécution pour certaines complexités usuelles

Processeur exécutant une opération élémentaire en une nanoseconde.
n 10 100 1000 10000 100000

lnn 2 ns 5 ns 7 ns 9 ns 12 ns

n 10 ns 0.1 µs 1 µs 10 µs 0.1 ms

n lnn 20 ns 0.5 µs 7 µs 90 µs 1 ms

n2 0.1 µs 10 µs 1 ms 0.1 s 10 s

n3 1 µs 1 ms 1 s 17 h 12 j

2n 1 µs 3.1013 a … … …

38/48

Désignation des complexités

O(1) complexité constante O(n lnn) complexité
quasi-linéaire

O(lnn) complexité
logarithmique

O
(
nk
)

complexité polynomiale

O(n) complexité linéaire O(2n) complexité
exponentielle

39/48

Exercice

Moyennes de Césaro d’une liste [u0,u1, . . . ,un]
Les moyennes de Césaro de la liste u = [u0,u1, . . . ,un] forment la liste
v = [v0, v1, . . . , vn] définie par :

v0 = u0
1 , v1 = u0+u1

2 , vn = u0+u1+···+un
n+1 .

def cesaro(u: list)->list :
 """Calcul de la liste de Césaro associée à la \

↪→ liste u"""
 v = []
 for k in range(len(u)) :
 m = moyenne(u[:k+1])
 v += [m]
 return v

• Calculer la complexité de la fonction cesaro

40/48

Exercice

Moyennes de Césaro d’une liste [u0,u1, . . . ,un]
Les moyennes de Césaro de la liste u = [u0,u1, . . . ,un] forment la liste
v = [v0, v1, . . . , vn] définie par :

v0 = u0
1 , v1 = u0+u1

2 , vn = u0+u1+···+un
n+1 .

def cesaro(u: list)->list :
 """Calcul de la liste de Césaro associée à la \

↪→ liste u"""
 v = []
 for k in range(len(u)) :
 m = moyenne(u[:k+1])
 v += [m]
 return v

• Proposer une fonction cesaro2 de complexité significativement
meilleure. 40/48

Exercice

def cesaro(u:list)->list :
 """Calcul de la liste de Césaro associée à la \

↪→ liste u"""
 v = []
 for k in range(len(u)) :
 m = moyenne(u[:k+1])
 v = v + [m]
 return(v)

Rappelons que la fonction moyenne vue précédemment appliquée à une
liste de longueur k a pour complexité 2k+2.On en déduit (ici n est
len(u)-1) :

complexité

C(n) = 1+
n∑
k=0

[3+ (2(k+ 1) + 2)] = ... = 8+ 8n+ n2 = O
(
n2
)
.

41/48

Exercice

def cesaro(u:list)->list :
 """Calcul de la liste de Césaro associée à la \

↪→ liste u"""
 v = []
 for k in range(len(u)) :
 m = moyenne(u[:k+1])
 v = v + [m]
 return(v)

Rappelons que la fonction moyenne vue précédemment appliquée à une
liste de longueur k a pour complexité 2k+2.On en déduit (ici n est
len(u)-1) :

complexité

C(n) = 1+
n∑
k=0

[3+ (2(k+ 1) + 2)] = ... = 8+ 8n+ n2 = O
(
n2
)
.

41/48

Césaro « amélioré »

Moyennes de Césaro d’une liste [u0,u1, · · · ,un]
L’algorithme précédent recalcule la somme des k+ 1 premières valeurs à
chaque appel, ce que l’on peut éviter.

def cesaro2(u:list)->list :
 ”””Calcul de la liste de Césaro associée à la liste u”””
 v = []
 S = 0
 for k in range(len(u)) :
 S = S + u[k]
 v = v + [S/(k+1)]
 return v

Complexité de cesaro2 :
C(n) = 2+ 6(n+ 1) = 8+ 6n = O(n) .

42/48

Césaro « amélioré »

Moyennes de Césaro d’une liste [u0,u1, · · · ,un]
L’algorithme précédent recalcule la somme des k+ 1 premières valeurs à
chaque appel, ce que l’on peut éviter.
def cesaro2(u:list)->list :
 ”””Calcul de la liste de Césaro associée à la liste u”””
 v = []
 S = 0
 for k in range(len(u)) :
 S = S + u[k]
 v = v + [S/(k+1)]
 return v

Complexité de cesaro2 :
C(n) = 2+ 6(n+ 1) = 8+ 6n = O(n) .

42/48

Césaro « amélioré »

Moyennes de Césaro d’une liste [u0,u1, · · · ,un]
L’algorithme précédent recalcule la somme des k+ 1 premières valeurs à
chaque appel, ce que l’on peut éviter.
def cesaro2(u:list)->list :
 ”””Calcul de la liste de Césaro associée à la liste u”””
 v = []
 S = 0
 for k in range(len(u)) :
 S = S + u[k]
 v = v + [S/(k+1)]
 return v

Complexité de cesaro2 :
C(n) = 2+ 6(n+ 1) = 8+ 6n = O(n) .

42/48

Exercice

def compte_it(n:int)->int:
 i = n
 x = 0
 while i > 1:
 i = i//2
 x += 1
 return x
1. Prouver la terminaison de cette fonction.
2. Justifier l’existence et l’unicité de p entier tel que : 2p 6 n < 2p+1.
3. Donner et prouver un invariant sur ik de la forme ik ∈ [ak,bk[où ak,bk
dépendent de k et p.

4. En déduire la complexité temporelle de compte_it. Quel est le rôle de
x ?

43/48

Meilleur et pire des cas

Nombre d’éléments strictement positifs d’une liste
def nbPositifs(liste:list)->float :
 """Nombre d'éléments positifs d'une liste"""
 nb = 0
 for elt in liste:
 if elt > 0 :
 nb = nb+1
 return nb

Présence d’un test if : complexité dans le meilleur et dans le pire des cas.

• Meilleur des cas, éléments tous négatifs : Cmeilleur(n) = 1+ n× 1 = n+ 1
• Pire des cas, éléments tous positifs : Cpire(n) = 1+ n× 3 = 3n+ 1
• Cas général : n+ 1 6 Cn 6 3n+ 1, donc C(n) = O (n).

44/48

Meilleur et pire des cas

Nombre d’éléments strictement positifs d’une liste
def nbPositifs(liste:list)->float :
 """Nombre d'éléments positifs d'une liste"""
 nb = 0
 for elt in liste:
 if elt > 0 :
 nb = nb+1
 return nb

Présence d’un test if : complexité dans le meilleur et dans le pire des cas.

• Meilleur des cas, éléments tous négatifs : Cmeilleur(n) = 1+ n× 1 = n+ 1
• Pire des cas, éléments tous positifs : Cpire(n) = 1+ n× 3 = 3n+ 1
• Cas général : n+ 1 6 Cn 6 3n+ 1, donc C(n) = O (n).

44/48

Meilleur et pire des cas

Nombre d’éléments strictement positifs d’une liste
def nbPositifs(liste:list)->float :
 """Nombre d'éléments positifs d'une liste"""
 nb = 0
 for elt in liste:
 if elt > 0 :
 nb = nb+1
 return nb

Présence d’un test if : complexité dans le meilleur et dans le pire des cas.

• Meilleur des cas, éléments tous négatifs : Cmeilleur(n) = 1+ n× 1 = n+ 1

• Pire des cas, éléments tous positifs : Cpire(n) = 1+ n× 3 = 3n+ 1
• Cas général : n+ 1 6 Cn 6 3n+ 1, donc C(n) = O (n).

44/48

Meilleur et pire des cas

Nombre d’éléments strictement positifs d’une liste
def nbPositifs(liste:list)->float :
 """Nombre d'éléments positifs d'une liste"""
 nb = 0
 for elt in liste:
 if elt > 0 :
 nb = nb+1
 return nb

Présence d’un test if : complexité dans le meilleur et dans le pire des cas.

• Meilleur des cas, éléments tous négatifs : Cmeilleur(n) = 1+ n× 1 = n+ 1
• Pire des cas, éléments tous positifs : Cpire(n) = 1+ n× 3 = 3n+ 1

• Cas général : n+ 1 6 Cn 6 3n+ 1, donc C(n) = O (n).

44/48

Meilleur et pire des cas

Nombre d’éléments strictement positifs d’une liste
def nbPositifs(liste:list)->float :
 """Nombre d'éléments positifs d'une liste"""
 nb = 0
 for elt in liste:
 if elt > 0 :
 nb = nb+1
 return nb

Présence d’un test if : complexité dans le meilleur et dans le pire des cas.

• Meilleur des cas, éléments tous négatifs : Cmeilleur(n) = 1+ n× 1 = n+ 1
• Pire des cas, éléments tous positifs : Cpire(n) = 1+ n× 3 = 3n+ 1
• Cas général : n+ 1 6 Cn 6 3n+ 1, donc C(n) = O (n).

44/48

Complexité fonction récursive

Calcul de n !
def FactorielleRec(n:int)->int :
 if n == 0:
 return 1
 else:
 return n*FactorielleRec(n-1)

• On trouve C(0) = 1 (car si n = 0, on compare juste n à 0)
• Si n ≥ 1, C(n) = 2+ C(n− 1) (on fait une comparaison à 0, une
multiplication puis C(n− 1) opérations élémentaires en appelant la
fonction avec le paramètre n− 1).

• On obtient donc une suite arithmétique raison 2, ce qui donne après
calculs C(n) = 1+ 2n = O(n).

45/48

Complexité fonction récursive

Calcul de n !
def FactorielleRec(n:int)->int :
 if n == 0:
 return 1
 else:
 return n*FactorielleRec(n-1)

• On trouve C(0) = 1 (car si n = 0, on compare juste n à 0)

• Si n ≥ 1, C(n) = 2+ C(n− 1) (on fait une comparaison à 0, une
multiplication puis C(n− 1) opérations élémentaires en appelant la
fonction avec le paramètre n− 1).

• On obtient donc une suite arithmétique raison 2, ce qui donne après
calculs C(n) = 1+ 2n = O(n).

45/48

Complexité fonction récursive

Calcul de n !
def FactorielleRec(n:int)->int :
 if n == 0:
 return 1
 else:
 return n*FactorielleRec(n-1)

• On trouve C(0) = 1 (car si n = 0, on compare juste n à 0)
• Si n ≥ 1, C(n) = 2+ C(n− 1) (on fait une comparaison à 0, une
multiplication puis C(n− 1) opérations élémentaires en appelant la
fonction avec le paramètre n− 1).

• On obtient donc une suite arithmétique raison 2, ce qui donne après
calculs C(n) = 1+ 2n = O(n).

45/48

Complexité fonction récursive

Calcul de n !
def FactorielleRec(n:int)->int :
 if n == 0:
 return 1
 else:
 return n*FactorielleRec(n-1)

• On trouve C(0) = 1 (car si n = 0, on compare juste n à 0)
• Si n ≥ 1, C(n) = 2+ C(n− 1) (on fait une comparaison à 0, une
multiplication puis C(n− 1) opérations élémentaires en appelant la
fonction avec le paramètre n− 1).

• On obtient donc une suite arithmétique raison 2, ce qui donne après
calculs C(n) = 1+ 2n = O(n).

45/48

Exercice

Complexité d’une fonction récursive
def SuiteU(n:int)->float :
 if n == 0:
 return 1
 else:
 return 2*SuiteU(n-1)+1/SuiteU(n-1)

• u0 = 1 et ∀n ∈ N , un+1 = 2un +
1
un
.

• C(0) = 1 (seulement un test lorsque n = 0)
• Si n ≥ 1, C(n) = 4+ C(n− 1) + C(n− 1) (on fait un test, une
multiplication, une addition, une division et 2× C(n− 1) opérations
élémentaires en appelant deux fois la fonction avec le paramètre
n− 1).

• On obtient donc une suite arithmético-géométrique ce qui donne
après calculs C(n) = 5× 2n − 4.

46/48

Exercice

Complexité d’une fonction récursive
def SuiteU(n:int)->float :
 if n == 0:
 return 1
 else:
 return 2*SuiteU(n-1)+1/SuiteU(n-1)

• u0 = 1 et ∀n ∈ N , un+1 = 2un +
1
un
.

• C(0) = 1 (seulement un test lorsque n = 0)
• Si n ≥ 1, C(n) = 4+ C(n− 1) + C(n− 1) (on fait un test, une
multiplication, une addition, une division et 2× C(n− 1) opérations
élémentaires en appelant deux fois la fonction avec le paramètre
n− 1).

• On obtient donc une suite arithmético-géométrique ce qui donne
après calculs C(n) = 5× 2n − 4.

46/48

Exercice

Complexité d’une fonction récursive
def SuiteU(n:int)->float :
 if n == 0:
 return 1
 else:
 return 2*SuiteU(n-1)+1/SuiteU(n-1)

• u0 = 1 et ∀n ∈ N , un+1 = 2un +
1
un
.

• C(0) = 1 (seulement un test lorsque n = 0)

• Si n ≥ 1, C(n) = 4+ C(n− 1) + C(n− 1) (on fait un test, une
multiplication, une addition, une division et 2× C(n− 1) opérations
élémentaires en appelant deux fois la fonction avec le paramètre
n− 1).

• On obtient donc une suite arithmético-géométrique ce qui donne
après calculs C(n) = 5× 2n − 4.

46/48

Exercice

Complexité d’une fonction récursive
def SuiteU(n:int)->float :
 if n == 0:
 return 1
 else:
 return 2*SuiteU(n-1)+1/SuiteU(n-1)

• u0 = 1 et ∀n ∈ N , un+1 = 2un +
1
un
.

• C(0) = 1 (seulement un test lorsque n = 0)
• Si n ≥ 1, C(n) = 4+ C(n− 1) + C(n− 1) (on fait un test, une
multiplication, une addition, une division et 2× C(n− 1) opérations
élémentaires en appelant deux fois la fonction avec le paramètre
n− 1).

• On obtient donc une suite arithmético-géométrique ce qui donne
après calculs C(n) = 5× 2n − 4.

46/48

Exercice

Complexité d’une fonction récursive
def SuiteU(n:int)->float :
 if n == 0:
 return 1
 else:
 return 2*SuiteU(n-1)+1/SuiteU(n-1)

• u0 = 1 et ∀n ∈ N , un+1 = 2un +
1
un
.

• C(0) = 1 (seulement un test lorsque n = 0)
• Si n ≥ 1, C(n) = 4+ C(n− 1) + C(n− 1) (on fait un test, une
multiplication, une addition, une division et 2× C(n− 1) opérations
élémentaires en appelant deux fois la fonction avec le paramètre
n− 1).

• On obtient donc une suite arithmético-géométrique ce qui donne
après calculs C(n) = 5× 2n − 4.

46/48

Exercice

Complexité d’une fonction récursive : amélioration
La fonction précédente ayant une complexité exponentielle, elle devient
inutilisable pour de grandes valeurs de n. Introduisons la fonction
suivante :
def SuiteU2(n:int)->float :
 if n == 0:
 return 1
 else:
 a = SuiteU2(n-1)
 return 2*a+1/a

• Là encore : u0 = 1 et : ∀n ∈ N , un+1 = 2un +
1
un
.

• C′
(0) = 1 (seulement un test lorsque n = 0)

• Si n ≥ 1, C′
(n) = 5+ C′

(n− 1) (on fait un test, une affectation, une
multiplication, une addition, une division et C′

(n− 1) opérations
élémentaires en appelant la fonction avec le paramètre n− 1). On
obtient donc une suite arithmétique qui donne après calculs
C′
(n) = 5n+ 1.

• On obtient une complexité linéaire : le gain est énorme !

47/48

Exercice

Complexité d’une fonction récursive : amélioration
La fonction précédente ayant une complexité exponentielle, elle devient
inutilisable pour de grandes valeurs de n. Introduisons la fonction
suivante :
def SuiteU2(n:int)->float :
 if n == 0:
 return 1
 else:
 a = SuiteU2(n-1)
 return 2*a+1/a

• Là encore : u0 = 1 et : ∀n ∈ N , un+1 = 2un +
1
un
.

• C′
(0) = 1 (seulement un test lorsque n = 0)

• Si n ≥ 1, C′
(n) = 5+ C′

(n− 1) (on fait un test, une affectation, une
multiplication, une addition, une division et C′

(n− 1) opérations
élémentaires en appelant la fonction avec le paramètre n− 1). On
obtient donc une suite arithmétique qui donne après calculs
C′
(n) = 5n+ 1.

• On obtient une complexité linéaire : le gain est énorme !

47/48

Exercice

Complexité d’une fonction récursive : amélioration
La fonction précédente ayant une complexité exponentielle, elle devient
inutilisable pour de grandes valeurs de n. Introduisons la fonction
suivante :
def SuiteU2(n:int)->float :
 if n == 0:
 return 1
 else:
 a = SuiteU2(n-1)
 return 2*a+1/a

• Là encore : u0 = 1 et : ∀n ∈ N , un+1 = 2un +
1
un
.

• C′
(0) = 1 (seulement un test lorsque n = 0)

• Si n ≥ 1, C′
(n) = 5+ C′

(n− 1) (on fait un test, une affectation, une
multiplication, une addition, une division et C′

(n− 1) opérations
élémentaires en appelant la fonction avec le paramètre n− 1). On
obtient donc une suite arithmétique qui donne après calculs
C′
(n) = 5n+ 1.

• On obtient une complexité linéaire : le gain est énorme !

47/48

Exercice

Complexité d’une fonction récursive : amélioration
La fonction précédente ayant une complexité exponentielle, elle devient
inutilisable pour de grandes valeurs de n. Introduisons la fonction
suivante :
def SuiteU2(n:int)->float :
 if n == 0:
 return 1
 else:
 a = SuiteU2(n-1)
 return 2*a+1/a

• Là encore : u0 = 1 et : ∀n ∈ N , un+1 = 2un +
1
un
.

• C′
(0) = 1 (seulement un test lorsque n = 0)

• Si n ≥ 1, C′
(n) = 5+ C′

(n− 1) (on fait un test, une affectation, une
multiplication, une addition, une division et C′

(n− 1) opérations
élémentaires en appelant la fonction avec le paramètre n− 1). On
obtient donc une suite arithmétique qui donne après calculs
C′
(n) = 5n+ 1.

• On obtient une complexité linéaire : le gain est énorme !

47/48

Exercice

Complexité d’une fonction récursive : amélioration
La fonction précédente ayant une complexité exponentielle, elle devient
inutilisable pour de grandes valeurs de n. Introduisons la fonction
suivante :
def SuiteU2(n:int)->float :
 if n == 0:
 return 1
 else:
 a = SuiteU2(n-1)
 return 2*a+1/a

• Là encore : u0 = 1 et : ∀n ∈ N , un+1 = 2un +
1
un
.

• C′
(0) = 1 (seulement un test lorsque n = 0)

• Si n ≥ 1, C′
(n) = 5+ C′

(n− 1) (on fait un test, une affectation, une
multiplication, une addition, une division et C′

(n− 1) opérations
élémentaires en appelant la fonction avec le paramètre n− 1). On
obtient donc une suite arithmétique qui donne après calculs
C′
(n) = 5n+ 1.

• On obtient une complexité linéaire : le gain est énorme ! 47/48

Complexité spatiale

Objectif
Mesurer « l’occupation mémoire » d’un programme en fonction de la taille
des données.

Méthode
Même principe en comptant le nombre C(n) « d’entités élémentaires de
mémoire » (à préciser suivant le contexte) nécessaires à l’exécution du
programme.

48/48

Complexité spatiale

Objectif
Mesurer « l’occupation mémoire » d’un programme en fonction de la taille
des données.

Méthode
Même principe en comptant le nombre C(n) « d’entités élémentaires de
mémoire » (à préciser suivant le contexte) nécessaires à l’exécution du
programme.

48/48

