
/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

1
IT
C
Creative-Commons

20
25
-2
02
6

Chapitre (S2) 1 Notion de graphe

1 Généralités . . . . . . . . . . . . . . . . . . . . .

2 Implémentations en Python . . . .

Objectifs
• Connaître la notion de graphe et le vo-

cabulaire associé.
• Savoir implémenter un graphe en Py-

thon sous la forme de matrice d’adja-
cence et de liste d’adjacence.

• Savoir mettre en oeuvre des algo-
rithmes de traitement des graphes.

Structure de données. Une structure de données est la description d’une
structure logique destinée à organiser et à agir sur des données.

Les structures de données linéaires l’organisent de manière séquentielle comme
dans les tableaux, les listes, les piles ou les files¹. Chaque donnée est précédée et
suivie d’une autre donnée.

Certains problèmes exigent une organisation non-linéaire des données. Les arbres
sont une telle structure de données qui organise les informations de manière hié-
rarchique. Les graphes en sont une autre qui organise les informations suivant un
schéma dit relationnel.

Les graphes : origine et motivations. De nombreux problèmes sont des
mises en situation des graphes et expliquent l’intérêt considérable porté au sujet.

• Par exemple, les réseaux informatiques permettent l’interconnexion d’ordina-
teurs, la communication entre les machines, à sens unique ou bidirectionnelle,
se faisant via des liens² établis entre elles. Chaque machine constitue un noeud

1. Les listes et les tableaux ont été vus en première partie d’année. Les piles et les files sont intro-
duites dans les prochains chapitres.

2. Physiques avec les câbles ou immatériels avec les communications hertziennes.

d’un graphe dont les liens sont appelés arêtes. Lorsque toutes les communica-
tions possibles sont bidirectionnelles, le graphe modélisé est dit non orienté ;
dans le cas contraire, il est qualifié de graphe orienté.

• Unautre exemple est celui du réseau routiermodélisable par un graphedont les
sommets du graphe sont les villes et ses arêtes sont les routes. Plus localement,
un réseau urbain peut être modélisé par un graphe dont les arêtes sont les rues
et les sommets leurs intersections. La recherche d’un plus court chemin³ dans
un tel réseau est une application de certains algorithmes de graphes.

• Rechercher le chemin menant à la sortie d’un labyrinthe est également un pro-
blème que l’approche en termes de graphe permet d’étudier, en particulier à
travers la thématique des algorithmes de parcours de graphes.

• Les jeux qui font évoluer une configuration vers une nouvelle configuration en
vue d’aboutir à une situation finale particulière peuvent être traités par des al-
gorithmes sur les graphes.

Ainsi, d’un problème historiquementmathématique⁴, le thème des graphes est pré-
sent dans de nombreuses branches de l’activité humaine⁵. Il constitue un intense
domaine d’activité informatique tant d’un point de vue théorique que d’un point de
vue pratique. L’algorithmique des graphes fourmille de solutions astucieuses et va-
riées que la complexité temporelle rend parfois inutilisables ! Des algorithmes d’une
autre nature, menant à des solutions approchées, leur sont parfois préférés. Appe-
lées heuristiques, l’une de ces solutions sera abordée dans un prochain chapitre.

L’objet de ce chapitre et des deux suivants est de formaliser la notion de graphe puis
d’en donner une description informatique à l’aide de deux implémentations. Des
fonctions de manipulation des graphes sont ensuite définies pour pouvoir travailler
sur ces derniers. En particulier, la question du parcours des graphes fait l’objet des
Chapitres (S2) 2 et (S2) 3.

3. En pratique, cela signifie utiliser un GPS!
4. On attribue à EULER et à sa résolution du problème des ponts de KOENISBERG le début de la

théorie des graphes.
5. Réseaux électriques, réseaux biologiques, réseaux sociaux, etc.

ITCCreative-Commons 2025-2026 1 / Lycée Michel Montaigne – Bordeaux



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

2
IT
C
Creative-Commons

20
25
-2
02
6

1 GÉNÉRALITÉS

1.1 Graphes orientés et non orientés

Définition 1 | Graphe
Un graphe G est la donnéed’un couple (S,A)où S etA sont deux ensembles finis :
• S = {𝑣1,…,𝑣𝑛} est l’ensemble des sommets (ou noeuds) du graphe.
• A= {𝑒1,…,𝑒𝑚} est l’ensemble de ses arêtes (ou arcs).

Chaque arête 𝑒𝑖 est définie par un couple de sommets de S appelés extrémités de
𝑒𝑖. Deux sommets reliés par une arête sont dits adjacents. On appelle ordre d’un
graphe son nombre de sommets, c’est-à-dire CardS.

Remarque 1 On rencontre souvent la notation G = (V,E) pour désigner un
graphe. L’ensemble des sommets est notéV, pour vertices en anglais ; l’ensemble
des arêtes est noté E, pour edges en anglais.

Les arêtes d’un graphe peuvent être orientées de sorte que le graphe est dit orienté.
Un graphe pour lequel les arêtes ne sont pas orientée est dit non orienté. ⁶

Les graphes peuvent être simplement représentés par un dessin. Chaque sommet est
représenté par un cercle. Chaque arête est représentée par une ligne courbe reliant
deux sommets adjacents.

Exemple de graphe non orienté. Considérons le graphe non oriénté G1 =
(S1,A1) d’ordre 5 dont les ensembles S1 et A1 dont définis ci-dessous en termes des
sommets𝑣0,𝑣1,𝑣2,𝑣3,𝑣4. La Figure 1 est une représentation graphiquedeG1. Lorsque
deux lignes se croisent, elles n’établissent pas pour autant de lien entre elles. Cette
représentation graphique n’est pas unique. Une infinité de représentation topologi-
quement (c’est-à-dire qui peuvent être obtenues en déformant le graphe sans rompre de liens entre ses
sommets) équivalentes sont possibles. La Figure 2 donne deux représentations gra-
phiques équivalentes du graphe G1 précédent.

6. En toute rigueur, un graphe orienté est muni d’un ensemble A de couples, ces derniers, par leur
nature, induisant une orientation. Si 𝑖 ≠ 𝑗, les couples (𝑖, 𝑗) et (𝑗, 𝑖) sont différents. Un graphe non
orienté est muni d’un ensemble de paires. Si 𝑖 ≠ 𝑗, les paires {𝑖, 𝑗} et {𝑗, 𝑖} sont identiques. Mais là en-
core, les sujets de concours ont l’habitude d’utiliser la notation des couples pour décrire aussi bien des
graphes orientés que des graphes non orientés. Il faut donc être vigilant !

𝑣0

𝑣1 𝑣2

𝑣3

𝑣4

G1 = (S1,A1)
S1 = {𝑣0,𝑣1,𝑣2,𝑣3,𝑣4}
A1 = {(𝑣0,𝑣2), (𝑣0,𝑣3), (𝑣0,𝑣4),

(𝑣1,𝑣2),
(𝑣2,𝑣0), (𝑣2,𝑣1), (𝑣2,𝑣3), (𝑣2,𝑣4),
(𝑣3,𝑣0), (𝑣3,𝑣2), (𝑣3,𝑣4),
(𝑣4,𝑣0), (𝑣4,𝑣2), (𝑣4,𝑣3), (𝑣4,𝑣4)}

FIGURE 1 : Représentation graphique de G1.

𝑣0

𝑣1 𝑣2

𝑣3

𝑣4

𝑣0𝑣1 𝑣2 𝑣3 𝑣4

FIGURE 2 : Deux représentations topologiquement équivalentes de G1.

Exemple de graphe orienté. Considérons le graphe orienté G2 = (S2,A2)
d’ordre 5 obtenu à partir du grapheG1 en orientant certaines arêtes. Certaines arêtes
de G1 sont maintenant absentes de l’ensemble des arêtes et A2 ne contient que les
couples de sommets des arêtes orientées.

𝑣0

𝑣1 𝑣2

𝑣3

𝑣4

G2 = (S2,A2)
S2 = {𝑣0,𝑣1,𝑣2,𝑣3,𝑣4}
A2 = {(𝑣0,𝑣2), (𝑣0,𝑣3), (𝑣0,𝑣4), (𝑣1,𝑣2),

(𝑣2,𝑣3), (𝑣2,𝑣4), (𝑣3,𝑣4), (𝑣4,𝑣4)}

FIGURE 3 : Représentation du graphe orienté G2.

Exercice 1 [Sol 1]

1. Dessiner tous les graphes non orientés sans boucle ayant exactement trois som-
mets A,B,C.

/ Lycée Michel Montaigne – Bordeaux 2 ITCCreative-Commons 2025-2026



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

3
IT
C
Creative-Commons

20
25
-2
02
6

2. Combien y a-t-il de graphes orientés sans boucle ayant trois sommets?

1.2 Degrés

Définition 2 | Degré, cas non orienté
Dans un graphe non orienté, on appelle degré d’un sommet s le nombre d’arêtes
noté d(𝑠) dont ce sommet est une extrémité. Ce degré vaut 0 si le sommet est
isolé (figure 4a), et une boucle compte double.

Dans un graphe orienté, le sens de l’arête doit être pris en compte. C’est pourquoi on
distingue le « degré sortant » du « degré entrant ».

Définition 3 | Degré, cas orienté
Dans un graphe orienté, on appelle :
• degré sortant d’un sommet s, noté d+(𝑠), le nombre d’arcs ayant 𝑠 pour ex-

trémité initiale ;
• degré entrant d’un sommet s, noté d−(𝑠), le nombre d’arcs ayant 𝑠 pour ex-

trémité finale ;
• degré d’un sommet s comme la somme d(𝑠) définie par :

d(𝑠) = d+(𝑠)+d−(𝑠).

Remarque 2 Un graphe non-orienté peut être vu comme un graphe orienté
où chaque arête simple est remplacée par deux arêtes orientées. Le degré d(𝑠)
(précédemment défini pour les graphes orientés pour chaque sommet 𝑠) cor-
respond alors au double de d(𝑠) défini pour les graphes non orientés.

𝑣0 𝑣1

𝑣2𝑣3 𝑣4

𝑣5

𝑠 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5
d(𝑠) 1 3 3 2 3 0

(a)

𝑣0 𝑣1

𝑣2𝑣3 𝑣4

𝑣5

𝑠 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5
d+(𝑠) 1 2 3 0 2 0

d−(𝑠) 1 2 1 2 2 0

d(𝑠) 2 4 4 2 4 0

(b)

FIGURE 4 : Deux exemples de graphes

Exercice 2 [Sol 2] Trois pays envoient chacun à une conférence deux espions;
chaque espion doit espionner tous les espions des autres pays (mais pas son propre
collègue!).

1. Représenter cette situation par un graphe orienté d’ordre 6 dans lequel la pré-
sence d’un arc du sommet 𝑖 vers le sommet 𝑗 signifie que 𝑖 espionne 𝑗.

2. Calculer le nombre d’arcs de ce graphe ainsi que le degré de chaque sommet.

1.3 Chemin et cycle

Définition 4 | Chemin, cycle
• Dansungraphe orienté ounon, on appelle chemin reliant un sommet𝑢 àun

sommet 𝑣 toute suite finie de sommets reliés deux à deux par des arêtes et
menant de 𝑢 à 𝑣. La longueur du chemin est le nombre d’arêtes (ou d’arcs)
dans le chemin.

• Par convention, il existe un chemin de longueur nulle d’un sommet 𝑠 à lui-
même. (il ne faut pas confondre avec les éventuels chemins (𝑠,𝑠,…,𝑠), si le graphe contient
la boucle (𝑠,𝑠))

• On dit qu’un chemin est simple s’il n’emprunte pas deux fois la même arête
(ou le même arc).

• Un chemin simple reliant un sommet à lui-même et contenant au moins
une arête (ou arc) est appelé un cycle.

ITCCreative-Commons 2025-2026 3 / Lycée Michel Montaigne – Bordeaux



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

4
IT
C
Creative-Commons

20
25
-2
02
6

𝑣0 𝑣1

𝑣2𝑣3

𝑣0 𝑣1

𝑣2𝑣3

(𝑣0,𝑣1,𝑣2,𝑣3), (𝑣0,𝑣1,𝑣3) et (𝑣0,𝑣3) sont des
chemins simples du sommet 𝑣0 vers le sommet 𝑣3 de

longueurs respectives 3, 2 et 1. En revanche,
(𝑣0,𝑣1,𝑣0) n’est pas un chemin simple; ce n’est pas

un cycle.

(𝑣0,𝑣1,𝑣2) et (𝑣0,𝑣3,𝑣1,𝑣2) sont des chemins du
sommet 𝑣0 vers le sommet 𝑣2 de longueurs

respectives 2 et 3. En revanche, il n’existe pas de
chemin de 𝑣2 vers 𝑣0. Le chemin (𝑣1,𝑣2,𝑣3,𝑣1) est

un cycle.

Exercice 3 [Sol 3] On considère le graphe orienté ci-dessous.

1. Pour tout entier 𝑘 ∈ J1,5K, existe-t-il un chemin de longueur 𝑘 reliant 𝑣0 à 𝑣7 ?

2. Peut-on trouver un chemin reliant 𝑣6 à 𝑣1 ?

3. Déterminer un cycle.

𝑣0 𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

𝑣6 𝑣7

1.4 Longueur d’un chemin & Distance entre sommets

Considérons les deux graphes ci-dessous.

𝑎 𝑏

𝑐𝑑𝑒

𝑓

𝑔
ℎ

𝑖

𝑗

𝑘
ℓ

𝑚

𝑛

𝑜
𝑝

𝑞

𝑟

𝑠

𝑡

𝑢

𝑣

𝑤

𝑥

𝑦

(a) Graphe G1 non orienté et non pondéré

𝑎 𝑏

𝑐
𝑑

𝑒

𝑓

𝑔 ℎ 𝑖

𝑗

𝑘ℓ𝑚

𝑛

𝑜 𝑝 𝑞

𝑟

𝑠
𝑡

𝑢

𝑣

𝑤
𝑥

𝑦

(b) Graphe G1𝑏 orienté et non pondéré

FIGURE 6 : Deux exemples de graphes

Dans la section précédente, on a défini un chemin dans un graphe comme une suite
de sommets adjacents. Par exemple, γ1 = (𝑎,𝑏, 𝑗,𝑟) ou γ2 = (𝑎,𝑒,𝑑,ℓ,𝑘, 𝑗,𝑟) sont
deux chemins dans le graphe G1 de la Figure 1. Ces deux chemins ont en commun
d’avoir les mêmes extrémités. Ils permettent tous les deux de relier les sommets 𝑎 et
𝑟. Mais leurs longueurs, exprimées en nombres d’arêtes, diffèrent. Notons les :

δ(γ1) = 3, δ(γ2) = 6.
La longueur d’un chemin se calcule de la même façon dans un graphe orienté, en
comptant le nombre d’arcs qui définissent un chemin. On a par exemple dans leG1𝑏
de la Figure 6b :

γ3 = (𝑎,𝑐,𝑏, 𝑗,𝑟) et δ(γ3) = 4,• γ4 = (𝑎,𝑖,ℎ,𝑝,𝑞, 𝑗,𝑟) et δ(γ4) = 6.•

Définition 5 | Distance
Ladistance entre deux sommets d’un graphe est la longueur d’unplus court che-
min qui relie ces sommets, en cas d’existence.

Sur le graphe G1, la distance de 𝑎 à 𝑟 est 3. Il n’existe d’ailleurs qu’un seul chemin de
𝑎 et 𝑟 de distance 3 : le chemin γ1 = (𝑎,𝑏, 𝑗,𝑟). Tous les autres chemins de 𝑎 à 𝑟 ont
des longueurs au moins égales à 4.

NotationΣ
Dans la suite, la distance d’un sommet𝑢 à un sommet𝑣 est notéed𝑢[𝑣]. Onnote
Γ𝑢(𝑣) l’ensemble des chemins de 𝑢 à 𝑣.

/ Lycée Michel Montaigne – Bordeaux 4 ITCCreative-Commons 2025-2026



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

5
IT
C
Creative-Commons

20
25
-2
02
6

Ainsi : d𝑢[𝑣] = min
γ∈Γ𝑢(𝑣)

δ(γ).

Dans la situation précédente, la détermination de d𝑎[𝑟] est relativement aisée et la
topologie du graphe aide grandement à ce calcul ! Se pose la question d’une mé-
thode systématique de calcul de la distance entre deux sommets qui permettrait de
résoudre ce problème de manière algorithmique (nous y répondrons dans les Cha-
pitres (S2) 2 et (S2) 3 après avoir avoir appris à parcourir des graphes).

Remarque 3 La notion de distance telle que définie ci-dessous n’est pas exacte-
ment celle d’une distance au sens mathématique du terme.
• La propriété de séparation est vérifiée : d𝑢[𝑣] = 0 ⟺ 𝑢=𝑣.
• L’inégalité triangulaire est vérifiée : d𝑢[𝑣] ⩽ d𝑢[𝑤]+d𝑤[𝑣].
• La propriété de symétrie est bien vérifiée pour les graphes non-orientés,

elle ne l’est pas toujours dans les graphes orientés. Par exemple dans le
graphe de la Figure 6b, on a : d𝑝[𝑞] = 1 et d𝑞[𝑝] = 3.

1.5 Connexité

Définition 6 | Connexité
Un graphe non orienté est dit connexe si, quels que soient les sommets 𝑢 et 𝑣 de
de graphe, il existe un chemin reliant 𝑢 et 𝑣.

Cela revient à dire que le graphe est « d’un seul tenant ».

A B

CD

(a) Graphe connexe

A B

C D E

F

(b) Graphe non connexe

1.6 Étiquette et pondération

Une information (mot, lettre, symbole, chiffre, liste, image, etc) peut être associée à
chaque sommet et/ou arête d’un graphe. On parle de graphe étiqueté.

Note
En ce qui concerne le formalisme G= (S,A), cela reviendrait à ajouter une
deuxième coordonnée aux éléments de S et/ou une troisième coordonnées aux
éléments de A

• Si l’étiquette d’un sommet est unique, elle peut être confondue avec le sommet.
On parle alors indifféremment du sommet A comme du sommet d’étiquette A.

• Si l’étiquette d’une arête est un nombre, elle définit une pondération de l’arête.
Ce qui permet également la définition dupoids oudu coût d’un chemin comme
la sommedes pondérations des arêtes.Un chapitre exploitera cette information
pour rechercher un plus court chemin dans un graphe.

A B

C

D

E F

in

duit for ma

ti

que

dé
mys

∅

(a) Graphe orienté et étiqueté.

A B C

DEF

10 3

6
33

3

6

3
(b) Graphe non orienté et pondéré.

2 IMPLÉMENTATIONS EN PYTHON

2.1 Notion d’implémentation

Le passage de la description formelle des graphes à leur mise en oeuvre informa-
tique constitue une étape fondamentale appelée implémentation. Celle-ci mène à
la construction d’une ou plusieurs structures de données concrètes qui définissent
un type associé aux objets manipulés et des fonctions de manipulation de ces ob-
jets. Préalablement à cette phase de concrétisation dont les choix conditionnent très
largement l’efficacité des traitements informatiques, une réflexion approfondie doit
être menée pour exprimer et anticiper les besoins répondant à des objectifs atten-
dus.

De manière schématique, cette étape formelle doit mener à la définition d’un type
abstrait de données, sorte de cahier des charges qui spécifie de manière rigoureuse
la nature des objets manipulés et les traitements à y apporter, indépendamment de
toute considération informatique. C’est la façon dont les données sont stockées et
organisées en mémoire et la façon dont elles sont traitées par des fonctions de ma-
nipulation qui doivent être détaillées. Les implémentations ne sont alors que des
déclinaisons informatiques possibles du type abstrait de données, répondant cha-
cune, par leurs caractéristiques intrinsèques, spécifiquement à certains besoins. On
les appelle alors des structures de données concrètes.

ITCCreative-Commons 2025-2026 5 / Lycée Michel Montaigne – Bordeaux



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

6
IT
C
Creative-Commons

20
25
-2
02
6

Insistons sur la possibilité d’implémenter plusieurs structures de données associées
à un seul et même type abstrait. Par exemple, définir un type abstrait de données
associé à un ensemble de données peut mener à la définition des types listes⁷ et ta-
bleaux et à leurs fonctions de manipulation associées. Même si ces deux implémen-
tations présentent de nombreux points communs, elles diffèrent de manière essen-
tielle sur certains de leurs aspects. Par exemple, un tableau est une structure de don-
nées statique dans le sens où sa taille est figée aumoment de sa création alors qu’une
liste est une structure de données dynamique, son nombre d’éléments pouvant évo-
luer au gré des besoins. Selon les circonstances, cette distinction est un avantage ou
un inconvénient. La question se pose bien évidemment de construire une structure
de données qui n’offre que des avantages. Ce n’est pas toujours possible. L’informa-
ticien doit donc faire des choix.

2.2 Implémentations des graphes

Il existe de nombreuses manières d’implémenter les graphes dans un langage de
programmation. Avant toute implémentation, il convient de préciser leur descrip-
tion informatique sous forme d’objets typés ; de définir et construire les fonctions
qui agissent sur ces objets en vue de réaliser certains traitements spécifiques.

Conformément au programme, ce chapitre présente deux implémentations, l’une
parmatrices d’adjacence, l’autre par dictionnaire d’adjacence, ces dernières pouvant
être déclinées sous plusieurs formes comme nous le verrons. L’exposé s’attache à
définir certaines de leurs fonctions de manipulation et compare leur efficacité. Ces
implémentations s’appuient sur des types pré-existants en Python : listes, tableaux,
dictionnaires. Les fonctions de manipulations sont alors construites pour s’adapter
à ces choix même si toutes répondent à un même objectif, indépendamment de
leur implémentation. Par exemple, une fois l’organisation des données d’un graphe
parfaitement définie et implémentée, les fonctions de manipulation devront toutes
au moins permettre l’ajout ou la suppression de noeuds et d’arêtes d’un graphe, la
modification de certaines étiquettes, la détermination de la taille d’un graphe, etc.
D’autres fonctions devront permettre le parcours d’un graphe, c’est-à-dire l’accès
d’une donnée à une autre en tenant compte de leurs liens. Les parcours de graphes
font l’objet d’un deuxième chapitre sur les graphes. Enfin, certains algorithmes sur
les graphes doivent permettre de répondre à des problèmes spécifiques comme la
recherche d’un plus court chemin dans un graphe ou la recherche de composantes
connexes. Ces points sont abordés dans un troisième chapitre.

7. Dans le cas du langage Python, les listes Python diffèrent des listes traditionnellement définies
dans les autres langages de programmation. Elles devraient plus logiquement être appelées tableau
dynamique. Mais conformément au programme, cette distinction n’est pas faite dans ce cours.

2.3 Cas non pondéré : matrice d’adjacence

On considère dans cette partie un graphe orienté formé deN noeuds, et on suppose
ici que ces noeuds sont désignés par des entiers consécutifs de 0 à N−1. On peut
représenter ce graphe par une matrice de N lignes et N colonnes, et dont chaque
case de ligne 𝑖 et colonne 𝑗 contient un booléen égal à True si le graphe possède un
arc du noeud 𝑖 vers le noeud 𝑗, et False sinon. Notons que l’on peut aussi faire le
choix de remplir la matrice par les entiers 1 et 0, où 1 code pour True et 0 code pour
False. Une telle matrice est appeléematrice d’adjacence.

0

1

2

3

De matrice d’adjacence :

0 1 2 3

0 False True False True

1 False False True True

2 False False False True

3 False True False False

En pratique, cettematrice peut être implémentée à l’aide d’un tableau bidimension-
nel du module numpy, la fonction np.array permettant de construire un tableau à
partir de la liste de ses lignes. Par exemple, la matrice précédente pourra être obte-
nue par la commande :
import numpy as np

G = np.array([

  [False, True, False, True],

  [False, False, True, True],

  [False, False, False, True],

  [False, True, False, False]])

Un graphe d’ordreN sans aucun arc pourra être défini par la commande suivante.
G = np.zeros((N, N), dtype=bool)

La fonction zeros construit un tableau rempli de 0 de taille spécifiée en premier
paramètre – tuple donnant le nombre de lignes puis de colonnes – et le deuxième
paramètre indique que le tableau est rempli de booléens – la valeur 0 étant alors
convertie en le booléen False.

Remarque 4 On peut représenter un graphe pondéré aussi à l’aide d’une ma-
trice ; on indique simplement les poids dans le tableau, en lieu et place des boo-
léens (et+∞ en cas d’absence d’arête). On parle alors dematrice des poids, mais
cette notion est hors-programme.

/ Lycée Michel Montaigne – Bordeaux 6 ITCCreative-Commons 2025-2026



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

7
IT
C
Creative-Commons

20
25
-2
02
6

Exercice 4 [Sol 4] La variable G est supposée contenir la matrice d’adjacence
d’un graphe orienté.

1. Écrire une fonction nb_arcs(G : np.array)->int renvoyant le nombre total
d’arcs du graphe.

2. Écrire une fonction voisins(G : np.array , n : int)->list renvoyant la
liste des noeuds voisins du noeud n (noeuds accessibles à partir de n en suivant
un seul arc).

3. Écrire une fonction un_graphe(N : int)->np.array renvoyant un graphe
formé deN⩾ 2 noeuds (numérotés de 0 àN−1) où chaque noeud 1 ⩽ 𝑖 ⩽N−2 a
pour voisins les deux noeuds 0 et 𝑖 +1 (le noeud 0 ayant pour unique voisin 1, et
le noeudN−1 pour unique voisin 0) :

0

1

2

3

N-1

N-2

N-3

FIGURE 9 : Graphe construit par un_graphe(N).

Avantages et inconvénients de l’implémentation Représenter un
graphe par une matrice d’adjacence a l’avantage de la simplicité. Cependant, une
telle implémentation occupe un espace mémoire proportionnel à N2. Dans le cas
où le graphe est peu dense, c’est-à-dire lorsqu’il comporte peu d’arcs par rapport au
nombre de noeuds, ce coût spatial n’est pas toujours pertinent. Dès lors, une solu-
tion occupant un espace mémoire proportionnel au nombre d’arcs peut être plus
avantageuse.

2.4 Cas pondéré ou non : dictionnaire d’adjacence

Dans cette partie, nous allons stocker le graphe en utilisant un dictionnaire, dont
les clés sont les noeuds du graphe, et la valeur associée est la liste de ses noeuds
voisins.

Voici pour le graphe de la partie précédente son dictionnaire d’adjacence :

0

1

2

3
0 : [1, 3], 1 : [2, 3], 2 : [3], 3 : [1]

Remarque 5 (Noeudsentiersnumérotésàpartir de0) Notonsque, dans le cas
où les noeuds sont des entiers successifs à partir de 0, on peut choisir de stocker
ces informations dans une liste au lieu d’un dictionnaire. La liste d’adjacence
est alors une liste de listes, l’élément d’indice 𝑖 contenant là encore la liste des
noeuds voisins du noeud 𝑖. Par exemple, le graphe précédent aurait été stocké
par la liste d’adjacence suivante : [[1,3], [2,3], [3], [1]].

Considérons maintenant plutôt un graphe pondéré. Dans ce cas, plutôt que d’intro-
duire une liste de sommets en valeur du dictionnaire, on indiquera à la place une
liste de couples contenant le poids de l’arc sortant et le nom du sommet voisin. Par
exemple,

0

1

2

3

2

1

3

2

2 1

0 : [(2, 1), (1, 3)], 1 : [(3, 2), (2, 3))], 2 : [(2,

3)], 3 : [(1, 1)]

Exercice 5 [Sol 5] La variable G est maintenant supposée contenir le diction-
naire d’adjacence d’un graphe non pondéré. Écrire les versions correspondantes des
fonctions nb_arcs, voisins et un_graphe de l’exercice précédent.

La représentation d’un graphe par un dictionnaire d’adjacence, moins gourmande
en espace mémoire, est généralement privilégiée (sauf dans le cas particulier de
graphes possédant de très nombreux arcs, où l’utilisation d’une matrice d’adjacente
peut s’avérer plus pertinente). En outre, même si c’est plus anecdotique, on notera
qu’avec la solution d’un dictionnaire d’adjacence, les sommets du graphe n’ont plus
besoind’être désignéspar des entiers (mais peuventpar exemple être stockés en tant
que chaînes de caractère).

ITCCreative-Commons 2025-2026 7 / Lycée Michel Montaigne – Bordeaux



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

8
IT
C
Creative-Commons

20
25
-2
02
6

2.5 Cas d’un graphe non orienté

Pour un graphe non orienté, on utilise une représentation de graphe orienté (sous
forme de matrice ou dictionnaire d’adjacence) de telle sorte que chacune des arêtes
non orientée soit représentée par deux arcs, un pour chacune des orientations. Au-
trement dit, l’arête non orientée :

𝑣𝑖 𝑣𝑗

est représenté par les deux arcs orientés :

𝑣𝑖 𝑣𝑗

Voici un graphe non orienté, son dictionnaire d’adjacence, et sa matrice d’adja-
cence.

0

1

2

3

De matrice d’adjacence :

0 1 2 3

0 False True False True

1 True False True True

2 False False False True

3 True True True False

De dictionnaire d’adjacence :

{0 : [1,3], 1 : [0,2,3],2 : [1,3],3 : [0,1,2]}

Notons que dans le cas d’un graphe non orienté, la matrice d’adjacence est symé-
trique. En résumé,

représentation par
MATRICE

D’ADJACENCE
=

une matrice de
taille le nombre de
sommets
indiquant la
présence d’arêtes

+ ( un dictionnaire
d’étiquetage, si
nécessaire )

représentation par
DICTIONNAIRE DES

VOISINS
= un dictionnaire de { CLEFS : les sommets 𝑠 ∈ S

VALEURS : les voisins de 𝑠

2.6 Un peu de coloriage

Terminons cette partie enprésentant un algorithmeclassique relatif au coloriage des
graphes (l’algorithme que nous allons exposer sera programmé en TP).

On considère ici un graphe non orienté (associé à par exemple à une carte⁸ de ré-
gions), pour lequel on veut associer à chacun de ses sommets une couleur de telle
sorte que deux sommets voisins aient une couleur différente, et en tâchant d’utiliser
le moins de couleurs possibles.

Un célèbre théorème, dit des quatre couleurs, affirme qu’il est toujours possible
d’obtenir un tel coloriage en utilisant quatre couleurs au plus, mais il n’existe pas
d’algorithme efficace permettant d’obtenir un tel coloriage optimal à tous les coups.
Voici néanmoins un algorithme conduisant généralement à une bonne solution,
même si celle-ci n’est pas toujours optimale. Il repose sur un principe d’algorithme
glouton de la manière suivante :

• les couleurs sont représentées par des entiers successifs à partir de 0 ;
• ondécrit un àun tous les sommets (dans l’ordre que l’on souhaite), et on associe

au sommet courant la plus petite couleur non déjà utilisée pour ses sommets
voisins.

Illustrons son principe sur le graphe suivant, représentant les régions de France mé-
tropolitaine continentale adjacentes (HFdésigne les hauts-de-France,N laNorman-
die, IF l’île-de-France, etc) :

Utilisons l’algorithme dans un sens de parcours nord-sud et ouest-est (HF, N, IF, GE,
B, etc) :

• HF n’a aucun voisin colorié, on lui affecte la couleur 0;
• N a pour seul voisin colorié HF avec la couleur 0, on lui affecte la couleur 1;

8. il est difficile de décrire l’ensemble des graphes tels que le théorème des 4 couleurs s’applique

/ Lycée Michel Montaigne – Bordeaux 8 ITCCreative-Commons 2025-2026



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

9
IT
C
Creative-Commons

20
25
-2
02
6

HF

N IF GE

B

PL CVL BFC

NA ARA

O PACA

FIGURE 10 : Graphe des régions de France métropolitaine continentale adjacentes.

• IF a pour voisins coloriés HF avec la couleur 0 et N avec la couleur 1, on lui
affecte la couleur 2;

• GE a pour voisins coloriés HF avec la couleur 0 et IF avec la couleur 2, on lui
affecte la couleur 1;

• B a pour seul voisin colorié N avec la couleur 1, on lui affecte la couleur 0;

et ainsi de suite, jusqu’à obtenir le coloriage suivant :

Notons que dans ce cas une solution optimale à quatre couleurs a bien été trouvée
par l’algorithme. Notons aussi que, bien sûr, le coloriage obtenu dépend de l’ordre
de parcours choisi sur les sommets, et que le nombre de couleurs utilisées peut alors
être différent. Par exemple, si les sommets du même graphe sont parcourus dans
l’ordre ARA,BFC,B,CVL,GE,HF,IF,N,NA,O,PL,PACA, vous vérifierez que l’on ob-
tient le nouveau coloriage suivant (où cinq couleurs ont dû être utilisées !).

HF(0)

N(1) IF(2) GE(1)

B(0)

PL(2) CVL(0) BFC(3)

NA(1) ARA(2)

O(0) PACA(1)

FIGURE 11 : Lemêmegraphe colorié pour un sens de parcours nord-sud et ouest-est.

HF(1)

N(4) IF(3) GE(0)

B(0)

PL(3) CVL(2) BFC(1)

NA(1) ARA(0)

O(2) PACA(1)

FIGURE 12 : Le même graphe colorié pour un autre sens de parcours.

ITCCreative-Commons 2025-2026 9 / Lycée Michel Montaigne – Bordeaux



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

10
IT
C
Creative-Commons

20
25
-2
02
6

SOLUTIONS DES EXERCICES

Solution 1

1. Il y en a exactement 8 :

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

2. Chaque couple (𝑢,𝑣) de sommets peut ne pas être relié par un arc, être relié par
un arc de 𝑢 vers 𝑣, par un arc de 𝑣 vers 𝑢 ou par deux arcs (un de 𝑢 vers 𝑣 et un de
𝑣 vers 𝑢), soit 4 possibilités pour chaque couple. Or, il y a 3 couples de sommets,
donc au total 43 = 64 graphes orientés différents.

Solution 2

1. Notons 1 et 2 les espions du premier pays, 3 et 4 les espions du deuxième pays et
5 et 6 les espions du troisième pays. On obtient le graphe suivant :

1

2

3

4

5

6

2. Chaque espion espionne 4 autres espions, donc, chaque sommet est le point de
départ de 4 arcs, et de même, est le point d’arrivée de 4 arcs. Il y a donc au total
24 arcs. Chaque sommet a un degré sortant égal à 4 et un degré entrant égal à 4,
donc, un degré total égal à 8.

Solution 3

1. Il n’y a pas d’arc reliant 𝑣0 à 𝑣7, donc, ce n’est pas possible pour 𝑘 = 1.

Il n’y a pas non plus de chemin de longueur 2 reliant 𝑣0 à 𝑣7.

Le chemin (𝑣0,𝑣1,𝑣3,𝑣7) est de longueur 3.

Il n’existe pas de chemin de longueur 4 reliant 𝑣0 à 𝑣7 car il n’existe pas de chemin
de longueur 2 reliant 𝑣1,𝑣2 ou 𝑣4 à 𝑣3, 𝑣5 ou 𝑣6.

Le chemin (𝑣0,𝑣2,𝑣3,𝑣4,𝑣5,𝑣7) est de longueur 5 reliant 𝑣0 à 𝑣7.

2. La réponse est non : en effet, un tel chemin possèderait nécessairement un arc
dont 𝑣0 serait une extrémité, ce qui n’est pas le cas.

3. (𝑣2,𝑣3,𝑣4,𝑣5,𝑣2) est un cycle.

Solution 4

/ Lycée Michel Montaigne – Bordeaux 10 ITCCreative-Commons 2025-2026



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

11
IT
C
Creative-Commons

20
25
-2
02
6

1. def nb_arcs(G : np.array)->int:

    """

    Renvoie le nombre d'arcs contenus dans le graphe de \

↪ matrice d'adjacence G

    """

    N = len(G) # nombre de sommets = nombre de lignes de la \

↪ matrice

    nba = 0

    for i in range(N):

        for j in range(N):

            if G[i,j]:

                    nba += 1

    return nba

2. def voisins(G : np.array , n : int)->list:

    """

    Renvoie la liste des noeuds voisins du noeud n dans le

    graphe de matrice d'adjacence G.

    Attention ! n doit être un noeud du graphe.

    """

    N = len(G)

    assert 0 <= n < N # Vérifie que n est un noeud

    vois = []

    for j in range(N):

        if G[n,j]:

            vois.append(j)

    return vois

3. def un_graphe(N : int)->list:

    """

    Renvoie la matrice d'adjacence d'un graphe à N noeuds où \

↪ le noeud 1<=i<=N-2

    a pour voisins les noeuds 0 et i+1 (le noeud 0 ayant pour \

↪ unique voisin 1,

    et le noeud N-1 pour unique voisin 0).

    Attention ! on doit avoir N>=2

    """

    assert N>=2

    G = np.zeros((N, N),dtype=bool)

    G[0, 1] = True

    for i in range(1, N-1):

        G[i, 0] = True

        G[i, i+1] = True

    G[N-1, 0] = True

    return G

Solution 5
1. def nb_arcs(G : np.array)->int:

    """

    Renvoie le nombre d'arcs contenus dans le graphe de \

↪ dictionnaire d'adjacence G

    """

    nba = 0

    for s in G :

        nba += len(G[s]) # nombre de voisins de s

    return nba

2. def voisins(G : np.array , n : int)->list:

    """

    Renvoie la liste des noeuds du noeud n dans le graphe de \

↪ dictionnaire d'adjacence G.

    Attention ! n doit être un noeud du graphe.

    """

    assert n in G # Vérifie que n est un noeud

    return G[n]

3. Une solution itérative :
def un_graphe(N : int)->list:

    """

    Renvoie le dictionnaire d'adjacence d'un graphe à N sommets

    où le noeud 1<=i<=N-2 a pour voisins les noeuds 0 et i+1

    (le noeud 0 ayant pour unique voisin 1, et le noeud N-1

    pour unique voisin 0).

    Attention ! on doit avoir N>=2

    """

    assert N>=2

    G = {}

    G[0] = [1]

    for i in range(1, N-1) :

         G[i] = [0,i+1]

    G[N-1] = [0]

    return G

ITCCreative-Commons 2025-2026 11 / Lycée Michel Montaigne – Bordeaux



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

12
IT
C
Creative-Commons

20
25
-2
02
6

et une solution récursive :
def un_graphe(N : int)->list:

    """

    Renvoie le dictionnaire d'adjacence d'un graphe à N \

↪ sommets où le noeud 1<=i<=N-2 a pour voisins les noeuds \

↪ 0 et i+1 (le noeud 0 ayant pour unique voisin 1, et le \

↪ noeud N-1 pour unique voisin 0).

    Attention ! on doit avoir N>=2

    """

    assert N>=2

    if N == 2 :

        return {0:[1], 1:[0]}

    else :

        G = un_graphe(N-1)

        G[N-2].append(N-1)

        G[N-1] = [0]

        return G

/ Lycée Michel Montaigne – Bordeaux 12 ITCCreative-Commons 2025-2026


	pbs@ARFix@6: 
	pbs@ARFix@7: 
	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 


