ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

(o BT TI{-M 7R B Notion de graphe
L Objectifs
1 GeneraliteS....coovvveeeenennens ® (Connaitre la notion de graphe et le vo-
2 Implémentations en Python..... cabulaire associé.

® Savoir implémenter un graphe en Py-
thon sous la forme de matrice d’adja-
cence et de liste d’adjacence.

® Savoir mettre en oeuvre des algo-
rithmes de traitement des graphes.

STRUCTURE DE DONNEES. Une structure de données est la description d'une
structure logique destinée a organiser et a agir sur des données.

Les structures de données linéaires 'organisent de maniere séquentielle comme
dans les tableaux, les listes, les piles ou les files'. Chaque donnée est précédée et
suivie d'une autre donnée.

Certains probléemes exigent une organisation non-linéaire des données. Les arbres
sont une telle structure de données qui organise les informations de maniere hié-
rarchique. Les graphes en sont une autre qui organise les informations suivant un
schéma dit relationnel.

LES GRAPHES : ORIGINE ET MOTIVATIONS. De nombreux problémes sont des
mises en situation des graphes et expliquent I'intérét considérable porté au sujet.

® Par exemple, les réseaux informatiques permettent I'interconnexion d’ordina-
teurs, la communication entre les machines, a sens unique ou bidirectionnelle,
se faisant via des liens * établis entre elles. Chaque machine constitue un noeud

1. Les listes et les tableaux ont été vus en premiere partie d’année. Les piles et les files sont intro-
duites dans les prochains chapitres.
2. Physiques avec les cables ou immatériels avec les communications hertziennes.

d’'un graphe dont les liens sont appelés arétes. Lorsque toutes les communica-
tions possibles sont bidirectionnelles, le graphe modélisé est dit non orienté;
dans le cas contraire, il est qualifié de graphe orienté.

® Un autre exemple est celui duréseau routier modélisable par un graphe dontles
sommets du graphe sont les villes et ses arétes sont les routes. Plus localement,
un réseau urbain peut étre modélisé par un graphe dont les arétes sont les rues
et les sommets leurs intersections. La recherche d'un plus court chemin® dans
un tel réseau est une application de certains algorithmes de graphes.

® Rechercher le chemin menant a la sortie d'un labyrinthe est également un pro-
bleme que 'approche en termes de graphe permet d’étudier, en particulier a
travers la thématique des algorithmes de parcours de graphes.

® Lesjeux qui font évoluer une configuration vers une nouvelle configuration en
vue d’aboutir a une situation finale particuliere peuvent étre traités par des al-
gorithmes sur les graphes.

Ainsi, d'un probleme historiquement mathématique *, le theme des graphes est pré-
sent dans de nombreuses branches de I'activité humaine®. Il constitue un intense
domaine d’activité informatique tant d’'un point de vue théorique que d’'un point de
vue pratique. Lalgorithmique des graphes fourmille de solutions astucieuses et va-
riées que la complexité temporelle rend parfois inutilisables! Des algorithmes d'une
autre nature, menant a des solutions approchées, leur sont parfois préférés. Appe-
lées heuristiques, 'une de ces solutions sera abordée dans un prochain chapitre.

Lobjet de ce chapitre et des deux suivants est de formaliser la notion de graphe puis
d’en donner une description informatique a 'aide de deux implémentations. Des
fonctions de manipulation des graphes sont ensuite définies pour pouvoir travailler
sur ces derniers. En particulier, la question du parcours des graphes fait I'objet des
Chapitres (S2) 2 et (S2) 3.

3. En pratique, cela signifie utiliser un GPS!

4. On attribue a EULER et a sa résolution du probleme des ponts de KOENISBERG le début de la
théorie des graphes.

5. Réseaux électriques, réseaux biologiques, réseaux sociaux, etc.
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n GENERALITES

n Graphes orientés et non orientés

— Définition 1| Graphe
Un graphe G estladonnée d’'un couple (S,A) ou S et A sont deux ensembles finis:

® S={y,...,v,} est’ensemble des sommets (ou noeuds) du graphe.

® A={e,...,e,} est'ensemble de ses arétes (ou arcs).
Chaque aréte ¢; est définie par un couple de sommets de S appelés extrémités de
e;. Deux sommets reliés par une aréte sont dits adjacents. On appelle ordre d'un
graphe son nombre de sommets, c’est-a-dire CardS.

Remarque 1 On rencontre souvent la notation G = (V,E) pour désigner un
graphe. Lensemble des sommets est noté V, pour vertices en anglais; 'ensemble
des arétes est noté E, pour edges en anglais.

Les arétes d'un graphe peuvent étre orientées de sorte que le graphe est dit orienté.
Un graphe pour lequel les arétes ne sont pas orientée est dit non orienté.®

Les graphes peuvent étre simplement représentés par un dessin. Chaque sommet est
représenté par un cercle. Chaque aréte est représentée par une ligne courbe reliant
deux sommets adjacents.

EXEMPLE DE GRAPHE NON ORIENTE. Considérons le graphe non oriénté G, =
(S;,A,) d’ordre 5 dont les ensembles S; et A; dont définis ci-dessous en termes des
sommets vy, 1}, U, U3, Uy La Figure 1 est une représentation graphique de G, . Lorsque
deux lignes se croisent, elles n’établissent pas pour autant de lien entre elles. Cette
représentation graphique n'est pas unique. Une infinité de représentation topologi-
quement (cest-a-dire qui peuvent étre obtenues en déformant le graphe sans rompre de liens entre ses
sommets) équivalentes sont possibles. La Figure 2 donne deux représentations gra-
phiques équivalentes du graphe G, précédent.

6. En toute rigueur, un graphe orienté est muni d'un ensemble A de couples, ces derniers, par leur
nature, induisant une orientation. Si i # j, les couples (i,j) et (j, i) sont différents. Un graphe non
orienté est muni d’'un ensemble de paires. Si i # j, les paires {i,j} et {j, i} sont identiques. Mais la en-
core, les sujets de concours ont ’habitude d’utiliser la notation des couples pour décrire aussi bien des
graphes orientés que des graphes non orientés. Il faut donc étre vigilant!

Y Gy =(51,A)

S1 = {vg, vy, vy, U3, U4}

Ay ={(w, ), (v, 13), (U, 1),
(n, 1),
(2, 1), (15, 1), (s, 13), (0, 1),
(vs, 1), (v3, 1), (v3, 1),

(vs, o), (vg, 1), (4, 13), (U, 1)}

( U > 2 Uy

FIGuUre 1 : Représentation graphique de G;.

O—EOI=

FIGURE 2 : Deux représentations topologiquement équivalentes de G;.

EXEMPLE DE GRAPHE ORIENTE. Considérons le graphe orienté G, = (S5,A,)
d’ordre 5 obtenu a partir du graphe G, en orientant certaines arétes. Certaines arétes
de G, sont maintenant absentes de 'ensemble des arétes et A, ne contient que les
couples de sommets des arétes orientées.

(1)

G, = (Serz)
Sy = {vp, vy, 1, 13, Uy}

Ay ={(w, ), (v, 13), (U, 1), (11, 1),

v v

@ > ) (2, 13), (v, 1), (15, 1y), (0, )}
FIGURE 3 : Représentation du graphe orienté G,.

Exercice 1  [sol1]

1. Dessiner tous les graphes non orientés sans boucle ayant exactement trois som-
mets A, B, C.
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2. Combien y a-t-il de graphes orientés sans boucle ayant trois sommets?

n Degrés

Définition 2 | Degré, cas non orienté
Dans un graphe non orienté, on appelle degré d'un sommet s le nombre d’arétes

noté d(s) dont ce sommet est une extrémité. Ce degré vaut 0 si le sommet est
isolé (figure 4a), et une boucle compte double.

Dans un graphe orienté, le sens de I'aréte doit étre pris en compte. C’est pourquoi on
distingue le « degré sortant » du « degré entrant ».

— Définition 3 | Degré, cas orienté
Dans un graphe orienté, on appelle :

® degré sortant d'un sommet s, noté d, (s), le nombre d’arcs ayant s pour ex-
trémité initiale;

® degré entrant d'un sommet s, noté d_(s), le nombre d’arcs ayant s pour ex-
trémité finale;

® degré d'un sommet s comme la somme d(s) définie par:

d(s)=d.(s)+d_(s).

Remarque 2 Un graphe non-orienté peut étre vu comme un graphe orienté
ol chaque aréte simple est remplacée par deux arétes orientées. Le degré d(s)
(précédemment défini pour les graphes orientés pour chaque sommet s) cor-
respond alors au double de d(s) défini pour les graphes non orientés.

@
@—Jf,\/ﬁo

S Wl | w|vu| vy

U3 Up Uy
N~ O:) dG6)|1l2]3]o]2]o0
S ||| V| v v d(s)|1|2|1]|2]|2]0
dis) | 1332310 dis) |2 |44 |2]4]0

Exercice 2

(a) (b)

FIGURE 4 : Deux exemples de graphes

[sol 2] Trois pays envoient chacun a une conférence deux espions;

chaque espion doit espionner tous les espions des autres pays (mais pas son propre
collegue!).

1.

— Définition 4 | Chemin, cycle

Représenter cette situation par un graphe orienté d’ordre 6 dans lequel la pré-
sence d'un arc du sommet i vers le sommet j signifie que i espionne j.

Calculer le nombre d’arcs de ce graphe ainsi que le degré de chaque sommet.

m Chemin et cycle

® Dans un graphe orienté ou non, on appelle cheminreliant un sommet z a un
sommet v toute suite finie de sommets reliés deux a deux par des arétes et
menant de u a v. La longueur du chemin est le nombre d’arétes (ou d’arcs)
dans le chemin.

® Par convention, il existe un chemin de longueur nulle d'un sommet s a lui-
meéme. (il nefaut pas confondre avec les éventuels chemins (s, s, ..., s), si le graphe contient
la boucle (s, s))

® Ondit qu'un chemin est simple s'il n”'emprunte pas deux fois la méme aréte
(oule méme arc).

® Un chemin simple reliant un sommet a lui-méme et contenant au moins
une aréte (ou arc) est appelé un cycle.
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(v, v1, V5, v3), (Vg, V1, 3) €t (vy, v3) sont des
chemins simples du sommet v, vers le sommet v3 de

g
i (vg, v1,0,) et (vy, v3, vy, U5) sont des chemins du
|
|

longueurs respectives 3, 2 et 1. En revanche, |
l
|
i
|
I

sommet v, vers le sommet v, de longueurs
respectives 2 et 3. En revanche, il n’existe pas de
(vg, V1, vp) Nest pas un chemin simple; ce n'est pas chemin de v, vers vgy. Le chemin (vy, v,, v3, V) est
un cycle. un cycle.

Exercice 3  [sol3] On considére le graphe orienté ci-dessous.
1. Pour tout entier k € [1,5], existe-t-il un chemin de longueur k reliant v, a v, ?

2. Peut-on trouver un chemin reliant y; a v; ?

3. Déterminer un cycle.

(%) (1)

(D—
O—O

Longueur d’'un chemin & Distance entre sommets

Considérons les deux graphes ci-dessous.

(a) Graphe G, non orienté et non pondéré

(b) Graphe G,,, orienté et non pondéré

FIGURE 6 : Deux exemples de graphes

Dans la section précédente, on a défini un chemin dans un graphe comme une suite
de sommets adjacents. Par exemple, y, = (a,b,j,r) ouy, = (a,e,d, ¥, k,j,r) sont
deux chemins dans le graphe G, de la Figure 1. Ces deux chemins ont en commun
d’avoir les mémes extrémités. Ils permettent tous les deux de relier les sommets a et
r. Mais leurs longueurs, exprimées en nombres d’arétes, difféerent. Notons les :

d(y1) =3, 8(y2) =6.
La longueur d’'un chemin se calcule de la méme facon dans un graphe orienté, en
comptant le nombre d’arcs qui définissent un chemin. On a par exemple dans le G,
de la Figure 6b :

®y;=(a,cb,jr) et 8(y;)=4, ®v,=(aihp,q,jr) et d(y,)=6.

Définition 5 | Distance
La distance entre deux sommets d'un graphe estlalongueur d'un plus court che-

min qui relie ces sommets, en cas d’existence.

Sur le graphe G, la distance de a a r est 3. Il n'existe d’ailleurs qu'un seul chemin de
a et r de distance 3 : le chemin vy, = (a, b, j, ). Tous les autres chemins de a a r ont
des longueurs au moins égales a 4.

Notation

Dans la suite, la distance d'un sommet © a un sommet v est notée d,, [v]. On note
I',(v) 'ensemble des chemins de u a v.
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Ainsi :

d,[v] = min &(y).
[v] /Din ()

Dans la situation précédente, la détermination de d,[r] est relativement aisée et la
topologie du graphe aide grandement a ce calcul! Se pose la question d'une mé-
thode systématique de calcul de la distance entre deux sommets qui permettrait de
résoudre ce probleme de maniere algorithmique (nous y répondrons dans les Cha-
pitres (S2) 2 et (S2) 3 aprés avoir avoir appris a parcourir des graphes).

Remarque 3 Lanotion de distance telle que définie ci-dessous n’est pas exacte-
ment celle d'une distance au sens mathématique du terme.
® [a propriété de séparation est vérifiée: d,[v]=0 < u=v.
® Linégalité triangulaire est vérifiée: d,[v]<d,[w]+d,[v].
® La propriété de symétrie est bien vérifiée pour les graphes non-orientés,
elle ne l'est pas toujours dans les graphes orientés. Par exemple dans le
graphe de la Figure 6b, ona: d,[g]=1etd,[p]=3.

m Connexité

Définition 6 | Connexité
Un graphe non orienté est dit connexe si, quels que soient les sommets u et v de

de graphe, il existe un chemin reliant u et v.

Cela revient a dire que le graphe est « d'un seul tenant ».

(a) Graphe connexe (b) Graphe non connexe

m Etiquette et pondération

Une information (mot, lettre, symbole, chiffre, liste, image, etc) peut étre associée a
chaque sommet et/ou aréte d'un graphe. On parle de graphe étiqueté.

En ce qui concerne le formalisme G = (S, A), cela reviendrait a ajouter une
deuxieme coordonnée aux éléments de S et/ou une troisieme coordonnées aux
éléments de A

Note

® Sil'étiquette d'un sommet est unique, elle peut étre confondue avec le sommet.
On parle alors indifféremment du sommet A comme du sommet d’étiquette A.

® Sil'étiquette d'une aréte est un nombre, elle définit une pondération de I'aréte.
Ce qui permet également la définition du poids ou du coiit d’'un chemin comme
lasomme des pondérations des arétes. Un chapitre exploitera cette information
pour rechercher un plus court chemin dans un graphe.

(a) Graphe orienté et étiqueté.

(b) Graphe non orienté et pondéré.

n IMPLEMENTATIONS EN PYTHON

m Notion d’'implémentation

Le passage de la description formelle des graphes a leur mise en oeuvre informa-
tique constitue une étape fondamentale appelée implémentation. Celle-ci meéne a
la construction d’'une ou plusieurs structures de données concretes qui définissent
un type associé aux objets manipulés et des fonctions de manipulation de ces ob-
jets. Préalablement a cette phase de concrétisation dont les choix conditionnent tres
largement l'efficacité des traitements informatiques, une réflexion approfondie doit
étre menée pour exprimer et anticiper les besoins répondant a des objectifs atten-
dus.

De maniere schématique, cette étape formelle doit mener a la définition d'un zype
abstrait de données, sorte de cahier des charges qui spécifie de maniére rigoureuse
la nature des objets manipulés et les traitements a y apporter, indépendamment de
toute considération informatique. C’est la facon dont les données sont stockées et
organisées en mémoire et la facon dont elles sont traitées par des fonctions de ma-
nipulation qui doivent étre détaillées. Les implémentations ne sont alors que des
déclinaisons informatiques possibles du type abstrait de données, répondant cha-
cune, par leurs caractéristiques intrinséques, spécifiquement a certains besoins. On
les appelle alors des structures de données concrétes.
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Insistons sur la possibilité d'implémenter plusieurs structures de données associées
a un seul et méme type abstrait. Par exemple, définir un type abstrait de données
associé a un ensemble de données peut mener a la définition des types listes’ et ta-
bleaux et a leurs fonctions de manipulation associées. Méme si ces deux implémen-
tations présentent de nombreux points communs, elles different de maniere essen-
tielle sur certains de leurs aspects. Par exemple, un tableau est une structure de don-
nées statique dans le sens ou sa taille est figée au moment de sa création alors qu'une
liste est une structure de données dynamique, son nombre d’éléments pouvant évo-
luer au gré des besoins. Selon les circonstances, cette distinction est un avantage ou
un inconvénient. La question se pose bien évidemment de construire une structure
de données qui n'offre que des avantages. Ce n'est pas toujours possible. L'informa-
ticien doit donc faire des choix.

m Implémentations des graphes

Il existe de nombreuses manieres d’'implémenter les graphes dans un langage de
programmation. Avant toute implémentation, il convient de préciser leur descrip-
tion informatique sous forme d’objets typés; de définir et construire les fonctions
qui agissent sur ces objets en vue de réaliser certains traitements spécifiques.

Conformément au programme, ce chapitre présente deux implémentations, I'une
par matrices dadjacence, I'autre par dictionnaire d'adjacence, ces dernieres pouvant
étre déclinées sous plusieurs formes comme nous le verrons. Lexposé s’attache a
définir certaines de leurs fonctions de manipulation et compare leur efficacité. Ces
implémentations s’appuient sur des types pré-existants en Python : listes, tableaux,
dictionnaires. Les fonctions de manipulations sont alors construites pour s'adapter
a ces choix méme si toutes répondent a un méme objectif, indépendamment de
leur implémentation. Par exemple, une fois 'organisation des données d'un graphe
parfaitement définie et implémentée, les fonctions de manipulation devront toutes
au moins permettre I'ajout ou la suppression de noeuds et d’arétes d'un graphe, la
modification de certaines étiquettes, la détermination de la faille d'un graphe, etc.
D’autres fonctions devront permettre le parcours d'un graphe, c’est-a-dire I'acces
d’'une donnée a une autre en tenant compte de leurs liens. Les parcours de graphes
font 'objet d'un deuxieme chapitre sur les graphes. Enfin, certains algorithmes sur
les graphes doivent permettre de répondre a des problémes spécifiques comme la
recherche d'un plus court chemin dans un graphe ou la recherche de composantes
connexes. Ces points sont abordés dans un troisieme chapitre.

7. Dans le cas du langage Python, les listes Python different des listes traditionnellement définies
dans les autres langages de programmation. Elles devraient plus logiquement étre appelées tableau
dynamique. Mais conformément au programme, cette distinction n'est pas faite dans ce cours.

m Cas non pondéré : matrice d’adjacence

On considére dans cette partie un graphe orienté formé de N noeuds, et on suppose
ici que ces noeuds sont désignés par des entiers consécutifs de 0 a N — 1. On peut
représenter ce graphe par une matrice de N lignes et N colonnes, et dont chaque
case de ligne i et colonne j contient un booléen égal a True si le graphe posséde un
arc du noeud i vers le noeud j, et False sinon. Notons que l'on peut aussi faire le
choix de remplir la matrice par les entiers 1 et 0, ou1 1 code pour True et 0 code pour
False. Une telle matrice est appelée matrice d'adjacence.

<

En pratique, cette matrice peut étre implémentée a I'aide d'un tableau bidimension-
nel du module numpy, la fonction np.array permettant de construire un tableau a
partir de la liste de ses lignes. Par exemple, la matrice précédente pourra étre obte-
nue par la commande :
import numpy as np
G = np.array([
[False, True, False, True],
[False, False, True, True],
[False, False, False, Truel,
[False, True, False, False]])

De matrice d’adjacence :

0 | False | True | False | True
1 | False | False | True | True
2 | False | False | False | True
3 | False | True | False | False

Un graphe d’ordre N sans aucun arc pourra étre défini par la commande suivante.
G = np.zeros((N, N), dtype=bool)

La fonction zeros construit un tableau rempli de 0 de taille spécifiée en premier
parametre — tuple donnant le nombre de lignes puis de colonnes - et le deuxiéme
parametre indique que le tableau est rempli de booléens — la valeur 0 étant alors
convertie en le booléen False.

Remarque 4 On peut représenter un graphe pondéré aussi a 'aide d'une ma-
trice; on indique simplement les poids dans le tableau, en lieu et place des boo-
léens (et +oo en cas d’absence d’aréte). On parle alors de matrice des poids, mais
cette notion est hors-programme.
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Exercice 4 [Sol 4] La variable G est supposée contenir la matrice d’adjacence
d’un graphe orienté.

1. Ecrire une fonction nb_arcs (G
d’arcs du graphe.

np.array)->int renvoyant le nombre total

2. Ecrire une fonction voisins(G : np.array , n int)->1list renvoyant la
liste des noeuds voisins du noeud n (noeuds accessibles a partir de n en suivant
un seul arc).

3. Ecrire une fonction un_graphe(N : int)->np.array renvoyant un graphe
formé de N = 2 noeuds (numérotés de 0 a N — 1) oit chaquenoeud 1 <i<N-2a
pour voisins les deux noeuds 0 et i + 1 (le noeud 0 ayant pour unique voisin 1, et
le noeud N — 1 pour unique voisin 0) :

FIGURE 9 : Graphe construit par un_graphe(N).

AVANTAGES ET INCONVENIENTS DE L'IMPLEMENTATION Représenter un
graphe par une matrice d’adjacence a 'avantage de la simplicité. Cependant, une
telle implémentation occupe un espace mémoire proportionnel 2 N2. Dans le cas
ol le graphe est peu dense, c’est-a-dire lorsqu’il comporte peu d’arcs par rapport au
nombre de noeuds, ce cofit spatial n’est pas toujours pertinent. Des lors, une solu-
tion occupant un espace mémoire proportionnel au nombre d’arcs peut étre plus
avantageuse.

Cas pondéré ou non : dictionnaire d’adjacence

Dans cette partie, nous allons stocker le graphe en utilisant un dictionnaire, dont
les clés sont les noeuds du graphe, et la valeur associée est la liste de ses noeuds
voisins.

Voici pour le graphe de la partie précédente son dictionnaire d’adjacence :

(9 (2)
\

O

[1, 31, 1 [2, 31, 2 [31, 3 [1]

Remarque5 (Noeudsentiers numérotésapartirde0) Notonsque,dansle cas
ol les noeuds sont des entiers successifs a partir de 0, on peut choisir de stocker
ces informations dans une liste au lieu d’'un dictionnaire. La liste d’adjacence
est alors une liste de listes, I’élément d’indice i contenant la encore la liste des
noeuds voisins du noeud i. Par exemple, le graphe précédent aurait été stocké

par la liste d’adjacence suivante: [[1,3], [2,3], [3]1, [11].

Considérons maintenant plutot un graphe pondéré. Dans ce cas, plutét que d’intro-
duire une liste de sommets en valeur du dictionnaire, on indiquera a la place une
liste de couples contenant le poids de I'arc sortant et le nom du sommet voisin. Par
exemple,

2%3
ogENo)
1%‘2

0 [(2, 1), (1, 3)1, 1

31, 3+ [(L,

[(3,
1

2), (2, 301, 2+ [(2,

Exercice 5 [Sol 5] La variable G est maintenant supposée contenir le diction-
naire d’adjacence d’un graphe non pondéré. Ecrire les versions correspondantes des
fonctions nb_arcs, voisins et un_graphe de 'exercice précédent.

La représentation d'un graphe par un dictionnaire d’adjacence, moins gourmande
en espace mémoire, est généralement privilégiée (sauf dans le cas particulier de
graphes possédant de trés nombreux arcs, ol 'utilisation d’'une matrice d’adjacente
peut s'avérer plus pertinente). En outre, méme si c’est plus anecdotique, on notera
qu’avec la solution d’un dictionnaire d’adjacence, les sommets du graphe n'ont plus
besoin d’étre désignés par des entiers (mais peuvent par exemple étre stockés en tant
que chaines de caractere).
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m Cas d'un graphe non orienté

Pour un graphe non orienté, on utilise une représentation de graphe orienté (sous
forme de matrice ou dictionnaire d’adjacence) de telle sorte que chacune des arétes
non orientée soit représentée par deux arcs, un pour chacune des orientations. Au-
trement dit, I'aréte non orientée :

est représenté par les deux arcs orientés :

Voici un graphe non orienté, son dictionnaire d’adjacence, et sa matrice d’adja-
cence.

De matrice d’adjacence :

0 | False | True | False | True
1| True | False | True | True
2 | False | False | False | True
3| True | True | True | False
De dictionnaire d’adjacence :
{0« [1,31, 1 : [0,2,3],2 : [1,3],3 : [0,1,2]}

Notons que dans le cas d'un graphe non orienté, la matrice d’adjacence est symé-
trique. En résumé,

une matrice de
taille le nombre de
sommets
indiquant la
présence d’arétes

( un dictionnaire
+ d’étiquetage, si
nécessaire )

représentation par
MATRICE —_
D’ADJACENCE

représentation par
— 90 . CLEFS :
DICTIONNAIRE DES — un dictionnaire de
VALEURS :
VOISINS

les sommets s € S
les voisins de s

m Un peu de coloriage

Terminons cette partie en présentant un algorithme classique relatif au coloriage des
graphes ('algorithme que nous allons exposer sera programmé en TP).

On consideére ici un graphe non orienté (associé a par exemple a une carte® de ré-
gions), pour lequel on veut associer a chacun de ses sommets une couleur de telle
sorte que deux sommets voisins aient une couleur différente, et en tichant d’utiliser
le moins de couleurs possibles.

Un célebre théoreme, dit des quatre couleurs, affirme qu'il est toujours possible
d’obtenir un tel coloriage en utilisant quatre couleurs au plus, mais il n'existe pas
d’algorithme efficace permettant d’obtenir un tel coloriage optimal a tous les coups.
Voici néanmoins un algorithme conduisant généralement a une bonne solution,
méme si celle-ci n'est pas toujours optimale. Il repose sur un principe d’algorithme
glouton de la maniere suivante :

® les couleurs sont représentées par des entiers successifs a partir de 0;

® ondécritunaun tousles sommets (dans’ordre que I'on souhaite), et on associe
au sommet courant la plus petite couleur non déja utilisée pour ses sommets
voisins.

Illustrons son principe sur le graphe suivant, représentant les régions de France mé-
tropolitaine continentale adjacentes (HF désigne les hauts-de-France, N la Norman-
die, IF I'ile-de-France, etc) :

Utilisons I'algorithme dans un sens de parcours nord-sud et ouest-est (HE N, IE GE,
B, etc):

® HF n’'a aucun voisin colorié, on lui affecte la couleur 0;
® N a pour seul voisin colorié HF avec la couleur 0, on lui affecte la couleur 1;

8. il est difficile de décrire 'ensemble des graphes tels que le théoréeme des 4 couleurs s’applique
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FIGURE 10 : Graphe des régions de France métropolitaine continentale adjacentes.

® IF a pour voisins coloriés HF avec la couleur 0 et N avec la couleur 1, on lui
affecte la couleur 2;

® GE a pour voisins coloriés HF avec la couleur 0 et IF avec la couleur 2, on lui
affecte la couleur 1;

® B a pour seul voisin colorié N avec la couleur 1, on lui affecte la couleur 0;

et ainsi de suite, jusqu’a obtenir le coloriage suivant :

Notons que dans ce cas une solution optimale a quatre couleurs a bien été trouvée
par l'algorithme. Notons aussi que, bien stir, le coloriage obtenu dépend de 'ordre
de parcours choisi sur les sommets, et que le nombre de couleurs utilisées peut alors
étre différent. Par exemple, si les sommets du méme graphe sont parcourus dans
l'ordre ARA,BFC, B, CVL, GE, HF,IF,N,NA, O, PL, PACA, vous vérifierez que 1'on ob-
tient le nouveau coloriage suivant (ol cinq couleurs ont da étre utilisées!).

FIGURE 11 : Le méme graphe colorié pour un sens de parcours nord-sud et ouest-est.

FIGURE 12 : Le méme graphe colorié pour un autre sens de parcours.
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SOLUTIONS DES EXERCICES 4

1. Ilyen aexactement 8 : 6 2

() (O
2. Chaque espion espionne 4 autres espions, donc, chaque sommet est le point de
départ de 4 arcs, et de méme, est le point d’arrivée de 4 arcs. Il y a donc au total
@ ') 0 24 arcs. Chaque sommet a un degré sortant égal a 4 et un degré entrant égal a 4,
donc, un degré total égal a 8.
()

(A

©

®
[ o
®

®
Q

(9
3
0 &) (&) (&) 0 &) (&) (&) 1. Iln'y a pas d’arc reliant v, a 14, donc, ce n'est pas possible pour k = 1.

IIn’y a pas non plus de chemin de longueur 2 reliant v, a v;.

2. Chaque couple (u, v) de sommets peut ne pas étre relié par un arc, étre relié par Le chemin (v, vy, 15, v;) est de longueur 3.
un arc de u vers v, par un arc de v vers u ou par deux arcs (un de u vers v et un de
v vers u), soit 4 possibilités pour chaque couple. Or, il y a 3 couples de sommets, Il n’existe pas de chemin de longueur 4 reliant y, a v, car il n'existe pas de chemin
donc au total 4° = 64 graphes orientés différents. de longueur 2 reliant v;,v, ou v, a v3, U5 OU U

Le chemin (v, v, U3, Uy, Us, 1) est de longueur 5 reliant v, a v;.

2. La réponse est non : en effet, un tel chemin posséderait nécessairement un arc
dont y, serait une extrémité, ce qui n'est pas le cas.

3. (v, 13,1y, U5, 1,) estun cycle.

1. Notons 1 et 2 les espions du premier pays, 3 et 4 les espions du deuxieme pays et
5 et 6 les espions du troisieme pays. On obtient le graphe suivant : 4
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1. def

2. def

3. def

nb_arcs(G :

np.array)->int:

Renvoie le nombre d'arcs contenus dans le graphe de \
— matrice d'adjacence G
N = len(G) # nombre de sommets = nombre de lignes de la |\
— matrice
nba = 0
for i in range(N):
for j in range(N):

if G[i,j]:
nba += 1
return nba
voisins(G : np.array , n : int)->list:

Renvoie la liste des noeuds voisins du noeud n dans le
graphe de matrice d'adjacence G.
Attention ! n doit étre un noeud du graphe.
N = len(G)
assert O <= n < N # Vérifie que n est un noeud
vois = []
for j in range(N):

if G[n,jl:

vois.append(j)

return vois

un_graphe(N : int)->list:

Renvoie la matrice d'adjacence d'un graphe a N noeuds ol |
— le noeud l<=i<=N-2
a pour voisins les noeuds 0 et i+l (le noeud O ayant pour |\
— unique voisin 1,
et le noeud N-1 pour unique voisin 0).
Attention ! on doit avoir N>=2
assert N>=2
G = np.zeros((N, N),dtype=bool)
G[O, 1] = True
for i in range(1l, N-1):
G[i, 0] = True

G[i, i+1] = True
G[N-1, 0] = True
return G

Solution 5

1. def

2. def

nb _arcs(G :

np.array)->int:

Renvoie 1le nombre d'arcs contenus dans le graphe de \
— dictionnaire d'adjacence G

nba = 0
for s in G :
nba += len(G[s]) # nombre de voisins de s
return nba
voisins(G : np.array , n : int)->list:

Renvoie la liste des noeuds du noeud n dans le graphe de \
— dictionnaire d'adjacence G.

Attention ! n doit étre un noeud du graphe.

assert n in G # Vérifie que n est un noeud

return G[n]

3. Une solution itérative :

def

un_graphe(N : int)->list:

Renvoie le dictionnaire d'adjacence d'un graphe a N sommets
ot le noeud 1<=i<=N-2 a pour voisins les noeuds 0 et i+l
(le noeud 0 ayant pour unique voisin 1, et le noeud N-1
pour unique voisin 0).
Attention ! on doit avoir N>=2
assert N>=2
G ={}
G[O] = [1]
for i in range(1, N-1)
G[i] = [0,i+1]
G[N-1] = [0]
return G



et une solution récursive :
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