ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Parcours de graphes non pondéres
& Applications

Chapitre (S2) 4

Objectifs
1 Parcours en largeur et profon- ® Connaitre les deux types de parcours
deur..ccooiiininiieisnnnenncnss d’un graphe : parcours en profondeur,
Pilesetfiles..........coeuuneees parcours en largeur.
. ® Savoir utiliser les structures de don-
Algorithmes de parcours......... nées piles et files a 'aide du module
Applications.................... deque.

® Savoir mettre en oeuvre les algo-
rithmes de parcours de graphes en
utilisant une pile et une file.

® Savoir adapter les algorithmes de par-
cours pour déterminer un chemin, la
distance entre deux sommets, déter-
miner la connexité et détecter un cycle
dans un graphe.

n PARCOURS EN LARGEUR ET PROFONDEUR

Les tableaux et les listes sont des structures de données séquentielles dans le sens
ol les informations qui y sont stockées peuvent étre lues ou modifiées en les par-
courant les unes a la suite des autres, suivant un ordre défini par 'implémentation.
En pratique, on se soucie guére de savoir comment les parcourir. Les langages de
programmation proposent des instructions qui facilitent ces opérations. C’est le cas
des instructions for et while qui permettent de répéter des blocs d’instruction. Or,
parcourir les données d’'une structure, c’est justement les passer en revue en répé-
tant une méme série d’'opérations. Et ces deux instructions le font en suivant I’ordre
spécifique d’organisation des données dans la structure.

Dans un graphe, les données ne sont plus organisées de maniére séquentielle mais
de maniére relationnelle : il existe des liens entre certaines données. Deés lors, com-
ment les parcourir? Dans quel ordre? Les réponses a ces questions ne sont plus

uniques mais dépendent du point de départ dans le graphe' et de I'objectif a at-
teindre : visiter tous les sommets du graphe, les modifier, en extraire seulement cer-
tains. C’est pourquoi deux parcours de graphes existent : le parcours en profondeur?®
(DFS) et le parcours en largeur® (BFS). Nous allons les présenter ci dessous.

OBJECTIFS. On souhaite définir deux algorithmes permettant de parcourir le
graphe précédent de « maniere intelligente », selon les principes suivants et a par-
tir d'un certain sommet de départ fixé.

® [Principe 1:en profondeur] Une fois que l'on s’engouffre dans une branche,
on poursuit jusqu’a blocage, avant de revenir au premier sommet disponible o
il n'y a plus de blocage. Ce principe est utile par exemple pour les problémes de
sortie de labyrinthe, une fois ledit labyrinthe traduit en graphe (chaque case du
labyrinthe étant un sommet du graphe).

1. Choix d'un sommet particulier
2. Depth First Search (DFS) en anglais, pour parcours en profondeur d’abord.
3. Breadth First Search (BFS) en anglais, pour parcours en largeur d’abord.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

® [Principe 2 : en largeur] On parcourt les sommets par «distances crois-
santes » a partir du sommet d’origine (donc d’abord les sommets a distance 1,
puis distance 2, etc.). Ce principe nous sera utile pour calculer la distance mini-
male entre deux sommets, ainsi qu'un chemin minimal.

Sil'on considere commet sommet de départle sommet 0, cela donnerait les parcours
suivants.

Ordre souhaité : (0,1,4,5,2,6,3) Ordre souhaité : (0,1,2,3,4,6,5)

(a) Parcours en profondeur (b) Parcours en largeur

FIGURE 1 : Deux types de parcours

n Parcours en profondeur ou DFS

PRESENTATION GENERALE Dans un parcours en profondeur, a partir d'un som-
met de départ, on parcourt des sommets en progressant le plus loin possible dans le
graphe suivant un certain chemin, tant que cela est possible (on ne peut pas passer
plus d’une fois par un sommet donné). Lorsqu’on est bloqué, on revient a un em-
branchement pour parcourir d’autres sommets la encore le plus loin possible dans
le graphe, et ainsi de suite jusqu’a avoir parcouru tous les sommets accessibles de-
puis le sommet de départ. Précisons le vocabulaire :

® 3 partir d'un sommet courant sur le lequel on se trouve, les sommets voisins
sont des sommets découverts,
® un sommet que I'on quitte est un sommet visité.

Quand un sommet est marqué comme visité, le parcours ne peut plus passer par lui.
Des lors, soit il est possible d’aller plus avant dans le graphe en découvrant un autre
sommet, soit il faut rebrousser chemin jusqu’a revenir a un sommet qui posséde des
sommets adjacents découverts mais non encore visités.

EXEMPLES Illustrons le parcours en profondeur avec le graphe non orienté ci-
dessous en adoptant les conventions graphiques de marquages suivantes des som-
mets : un sommet non encore découvert est sur fond blanc, un sommet découvert est
sur fond vert, un sommet visité est sur fond noir.

Partant de 0, ce sommet est marqué comme visité. Puis le parcours découvre les som-
mets adjacents : le sommet 1 et le sommet 3. Choisissons de passer par le sommet
découvert de plus grande étiquette*. Donc, apres 0, le sommet visité est 3. En pour-
suivant ainsi, les sommets successivement visités sont 7, 8, 5, 2, 4 et 1. A ce niveau
du parcours, il n'existe plus de chemin possible. Il faut revenir au dernier sommet
visité qui comporte des voisins non encore visités, en I'occurrence le sommet 7. Le
parcours reprend en passant le dernier sommet restant 6 et le marque comme visité.
Tous les sommets étant alors visités, le parcours est terminé. La figure 2 illustre les
différentes étapes de ce parcours.

Avec les choix adoptés, ce parcours fait découvrir les sommets dans I'ordre défini par
laliste suivante: [0, 3, 7, 8, 5, 2, 4, 1, 6].Cetteliste contient tous les som-
mets accessibles depuis le sommet de départ (soit ici tous les sommets du graphe),
mais elle ne dit pas le chemin qui a été emprunté pour aller du sommet de départ
al'un des sommets de la liste. Pour représenter cette derniére information, on peut
représenter 'ensemble des sommets accessibles depuis le sommet de départ, en fai-
sant figurer uniquement les arétes qui ont permis de passer d'un sommet a l'autre
lors du parcours. Une telle représentation graphique est appelée arbre couvrant et
permet de visualiser ce parcours (figure 5).

Figure 2 — PARCOURS EN PROFONDEUR D’'UN GRAPHE NON ORIENTE.

4. Ce choix est purement conventionnel mais a des conséquences sur l'ordre des visites des som-
mets.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

PARCOURS EN PROFONDEUR D’UN GRAPHE NON ORIENTE.

La figure 3 illustre le parcours en profondeur d'un autre graphe non orienté en par-
tant du sommet 2. Les mémes conventions d’ordre de découverte des sommets sont
adoptées. Le lecteur est invité a vérifier que laliste [2, 4, 6, 5, 3, 1, 0] définit
I'ordre de découverte des sommets. Larbre associé a ce parcours est donné en figure

Figure 3 — PARCOURS EN PROFONDEUR D'UN GRAPHE NON ORIENTE.

PARCOURS EN PROFONDEUR D’UN GRAPHE NON ORIENTE.

Considérons a présent une version orientée du premier graphe introduit dans cette
partie. La présence d’orientations contraint a présent les découvertes. La figure 4
illustre le parcours en profondeur depuis le sommet 0 en suivant les regles de dé-
couvertes énoncées plus haut. L'arbre associé a ce parcours est donné en figure 5.

Figure 4 — PARCOURS EN PROFONDEUR D’'UN GRAPHE ORIENTE.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

PARCOURS EN PROFONDEUR D’UN GRAPHE ORIENTE.

Les figures suivantes présentent les arbres couvrants qui permettent de visualiser les
parcours en profondeur relatifs aux trois graphes précédents.

Figure 5 — ARBRES COUVRANTS.

(5) O

C’estun arbre o chaque sommet n'a qu’un « parent » : le sommet d’ol1 'on provenait
au moment de sa visite.

n Parcours en largeur ou BFS

PRESENTATION GENERALE Le parcours en largeur procede d'une autre facon
pour parcourir le graphe. A partir d'un sommet de départ, on découvre les sommets
voisins, puis on visite chacun des sommets découverts. Pour chaque nouveau som-
met visité, on peut alors découvrir de nouveaux sommets, et 'on itére le processus

jusqu’a ce qu’il n’y ait plus de sommets a visiter accessibles depuis le sommet de
départ”.

EXEMPLES Pour illustrer le parcours en largeur, on reprend le graphe orienté pré-
cédent. Partant du sommet 0, la découverte des sommets se fait en découvrant
d’abord tous ses sommets voisins. La encore, un choix doit étre fait sur 'ordre de
découverte des sommets. On choisit ici de découvrir les sommets non découverts
par étiquettes croissantes. Ainsi, le sommet découvert apres le sommet 0 est le som-
met 1. Puis vient le sommet 3. On doit ensuite visiter les sommets voisins des som-
mets 1 et 3 non encore découverts. Ce qui mene a la découverte des sommets 2 et 7
respectivement. Et ainsi de suite jusqu’a découvrir tous les sommets de graphe. La
figure 6 illustre ce parcours (la cellule grisée correspond a I'arbre couvrant associée
au parcours).

Figure 6 — PARCOURS EN LARGEUR D'UN GRAPHE ORIENTE

5. On pourrait qualifier BFS de parcours en pelures d'oignon.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

PARCOURS EN LARGEUR D'UN GRAPHE ORIENTE

ARBRE COUVRANT

(0

OmOmO

m Liste d’attente des sommets a visiter

Pour chacun des parcours précédents, on voit que I'on progresse dans le graphe en
découvrant des sommets, puis en choisissant de visiter ces sommets découverts se-
lon une logique qui dépend du parcours. Il est donc nécessaire de disposer une liste
dattente des sommets a parcourir, qui permettra notamment de gérer les retours en
arriere (ou embranchements) dans le parcours en profondeur, et de parcourir les
sommets par « couches successives » pour le parcours en largeur. Cette liste d’attente
peut étre réalisée par deux structures de données nouvelles, a savoir les piles et les

files.

n PILES ET FILES

2N Généralites

Les piles («Stack» en anglais) et les files («Queue» en anglais) sont des structures de
données linéaires pouvant contenir des données de types divers. Mais a la différence
des tableaux ou des listes, les données ne peuvent étre ajoutées ou supprimées de
ces structures qu'en suivant des procédures spécifiques.

SUR LES PILES Dans les piles, une information ne peut étre ajoutée ou retirée
qu’'au niveau de ce qu'on appelle le sommet de la pile. En représentant une pile
comme une superposition de cases mémoires (figure 7), seule celle située au som-
met de cette représentation est accessible. Toutes les autres ne sont pas directement
accessibles mais le deviennent des que celles situées « au-dessus » ont été retirées.

On dit qu'une pile suit le principe LIFO : Last In First Out®. Les opérations d’ajout et
de suppression d’'une information sont appelées empilement et dépilement.

On peut s’interroger sur I'intérét réel d'une telle structure de données mais certains
composants électroniques ne font rien d’autres que ces opérations élémentaires. Et
ils le font de maniere trés efficace. La figure 7 illustre la représentation d'une pile et
les opérations d’empilement et de dépilement.

Figure 7 — REPRESENTATION D’OPERATIONS D’EMPILEMENT ET DE DEPILEMENT

empilement de ¢ dépilement de ¢

¢ au sommet

i n i 0 i ") i
I Q I Q I (¢} I
1 ° ; o l o !
| — | 4 | — |
| S | S | < |
= +— +—
i o i o i A i
| | | a |
i pile vide i empilement de a i empilement de b i
| / c | | / c |
i n i) i) i
|) | |) |
1 . 1 S 1 © 1
+— +—
: o - ! ol 1 S ‘
1)b 1 &[b 1 (b 1
| a | a i a 3

SUR LES FILES. Dans les files, une information ne peut étre ajoutée qu’au niveau
de ce qu'on appelle la gueue de la file et ne peut étre retirée qu'au niveau de la téte
de la file. La encore, une représentation (figure 8) peut aider a fixer les idées. Si une
file est représentée comme une succession de cases mémoires, seules celles situées
a ses deux extrémités sont accessibles, 'une pour y ajouter une information, 'autre
pour en retirer une. Toutes les autres ne sont pas directement accessibles mais le
deviennent des que celles situées « avant »* ont été retirées. On dit qu'une file suit

6. Dernier entré, premier sorti.
7. C’est-a-dire situées entre la téte de la file et I’élément a retirer.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

le principe FIFO : First In First Out®. Les opérations d’ajout et de suppression d’'une
information sont appelées enfilement et défilement.

Figure 8 — REPRESENTATION D’OPERATIONS D'ENFILEMENT ET DE DEFILEMENT

| | o Ia <
3 file vide 3 enfilement de a 3 quglrll?ilernent de b 3
- we o tete ”””””””””””””” e |
3 la|b] < [al5]<] a4~ [b]c] 3
| queue | | queue |
| enfilement de ¢ | queue | défilement de a |

Des fonctions, autres que celles d’ajout ou de retrait d'une information sont dis-
ponibles, comme créer une structure vide, savoir si elle est vide ou éventuellement
pleine?, ou encore connaitre son nombre d’éléments.

Il importe de retenir que ces structures de données linéaires sont non indexées : il
n'est pas possible d’accéder a une information a 'aide d'un indice, cette derniére
notion n‘ayant d’ailleurs pas vraiment de sens dans un tel contexte. Linterface'® de
chaque structure pourrait étre définie de maniére simplifiée comme suit.

Pile ‘ File ‘

Création d’une pile vide Création d’une file vide

m Implémentation par listes Python

Les listes Python disposent de fonctions qui répondent au cahier des charges pré-
cédent. En fait, les listes Python font bien plus que répondre aux besoins. Il s’agit ici
d'un « détournement » de leur role premier en vue de répondre a des besoins spé-
cifiques. Les complexités temporelles sont données en fonction du nombre n d’élé-
ments présents dans la structure.

CAS DES PILES. Limplémentation d'une pile correspond a Iutilisation d'une liste

Python dont la derniére case remplie définit le sommet de la pile. Toutes les opéra-
tions désirées sont alors de complexité constante ''.

Instruction ‘ Complexité
Création s =[] 0(1)
Empilement s.append('a') O(1)
Dépilement s.pop() 0(1)
Test pile vide s == [] 0(1)

CAS DES FILES. Limplémentation d’une file correspond a 'utilisation d’une liste
Python dont la premiére case correspond a la téte delafile, la derniere case ala queue
de la file **.

Empilement

Enfilement

Dépilement

Défilement

Tester si une file est vide

Tester si une pile est vide
La suite de cette partie présente différentes implémentations des ces deux structures
de données en Python. Deux implémentations utilisent la structure de données pré-
existante du langage Python : les listes Python. Deux autres utilisent un module spé-
cifique qui optimise les complexités des traitements.

8. Premier entré, premier sorti.
9. Dans le cas ol 'espace mémoire alloué est imposé.
10. A savoir, la description des fonctions de définition et de manipulation d’'une structure de don-
nées.

Instruction Complexite
q =10l
Enfilement g.append(‘'a') 0(1)
Défilement g.pop(0) O(n)
Test file vide q == [] 0o(1)

On note que l'opération de défilement telle que choisie ici est de complexité non
constante, linéaire en la taille de la liste (en effet, les éléments d’une liste étant in-
dexés, la suppression de I’élément indexé par 0 entraine de fait la ré-indexation de
tous les éléments suivants, soit O (1) opérations). Ce point constitue un obstacle a

11. Entouterigueur, il conviendrait de préciser que le cotit de 'ajout d’'un élément est de complexité
amortie constante, c’est-a-dire presque toujours constante excepté lorsque la liste doit étre redimen-
sionnée pour pouvoir stocker plus d’éléments qu’elle ne le pouvait initialement.

12. 1l ne s’agit que d'un choix particulier. Définir la premiére case de la liste comme la queue de la
file et sa derniere case comme la téte de la file est un choix tout aussi pertinent.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

l'utilisation d’une telle implémentation pour une file. Idéalement, une complexité
constante de défilement est préférable.

m Module spécifique et « Double Ended Queue »

Le module collections de Python définit des objets deque (pour « Double Ended
Queue») qui implémentent une structure de données linéaire généralisant les piles
et les files dans laquelle I'ajout et le retrait d'une information peuvent se faire a cotit
pratiquement constant aux deux extrémités de la structure. Par construction,

® elle permet I'implémentation d'une pile en définissant I'une des extrémités
comme le sommet de la pile.
® Elle permet I'implémentation d'une file en définissant I'une des extrémités
comme la téte de la file et I'autre extrémité comme sa queue. Pour importer la
structure, le code doit comporter la ligne suivante.
from import deque

Les fonctions de manipulation utiles pour nos besoins sont les suivantes.

Instruction Complexité

Création d = deque() 0(1)

Ajout a gauche d.appendleft('a') 0(1)

Ajout a droite d.append('b") 0(1)

Retrait a gauche d.popleft() O(1)

Retrait a droite d.pop() 0(1)

Test vide len(d) == 0(1)
Dans la suite de ce chapitre, nous adoptons les conventions suivantes de définition
des piles et des files.

e sncin
Création s = deque() Création g = deque()
Empilement | s.append('a') Enfilement | q.append('a')
Dépilement | s.pop() Défilement | q.popleft()
Test pile vide | len(s) == Test file vide | len(q) ==

Remarque1 Python propose un module natif (on dit souvent un built-in module
pour préciser que le module fait partie intégrante des fonctionnalités fournies

par défaut avec le noyau Python) nommé queue qui permet la définition d’'objets
Queue pour les files et d'objets LifoQueue pour les piles. Le lecteur intéressé peut
lire ladocumentation sur le site officiel de Python (https://docs.python.org/
3/library/queue.html).

n ALGORITHMES DE PARCOURS

La mise en oeuvre informatique des parcours précédents requiert |'utilisation des
piles et des files présentées précédemment. En stockant les sommets découverts,
ces dernieres donnent la possibilité de « mémoriser » les sommets sur lesquels il
convient de revenir pour avancer dans un parcours.

m Parcours en profondeur « DFS »

Illustrons notre propos avec le parcours en profondeur du graphe non orienté ci-
dessous étiqueté par des caracteres, implémenté par un dictionnaire grph.

[>

a (©)

O—)

grph = {
‘a' : ['b', 'c'l, ‘b’z [a', 'd'l,
‘¢’ : ['a', 'd', 'e'l, 'd" : ['b', 'c'],
‘e' 1 ['et, 'fY, 'g'l, ‘f'ox ['e', 'g'l,
‘9" [let, '

FIGURE 9 : Graphe non orienté et son dictionnaire d’adjacence.

On crée un dictionnaire des sommets visités, dont les clés sont les étiquettes du
graphe et dont les valeurs initiales sont False, et qui permet de marquer un som-
met visité en passant sa valeur a True.

Lors du parcours du graphe, les sommets voisins a un sommet et non encore visités
sont stockés dans une pile dans l'ordre de leur lecture dans la liste. Cet empilement
correspond a I'étape de découverte d'un sommet. Chaque fois qu'un sommet est dé-
pilé, il est marqué comme visité, s'il ne 'est pas déja.

https://docs.python.org/3/library/queue.html
https://docs.python.org/3/library/queue.html

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

dictionnaire de booléens des sommets visités
visited = {x : False for x in grph}

création d'une pile vide 8?
s = deque() g T
3|da

la

Choisissons le sommet ¢ comme sommet de départ d’'un parcours en profondeur. sommets visités: ['c', 'e'] o

Reprenant le vocabulaire des parties précédentes, ce sommet est découvert et son
étiquette est empilée dans s. Le schéma suivant montre 1'état de la pile et du graphe

a ce moment du parcours.
Le sommet g est ensuite dépilé et marqué comme visité. Ses sommets voisins non

encore visités sont empilés. Il n'y a qu'un seul sommet, déja découvert mais non
encore visité, a empiler : le sommet f.

a Cc

étatde s

>
O—@ O

sommets visités : []

étatde s
[3 [][]

sommets visités: ['c','e','g"]

Létape suivante dépile c de s etle marque comme visité. Puis ses sommets adjacents
sont découverts et empilés dans l'ordre de lecture séquentielle de la liste : a d’abord,

i AR) ’ . Le sommet f est dépilé et marqué comme visité. Il ne comporte aucun sommet ad-
d ensuite, e enfin. Ce qui mene a l'état de la pile représenté ci-contre.

jacent non encore visité. Rien n'est empilé.

étatde s
étatde s

[s]a]<]

S
4|
4]

sommets visités: ['c"] sommets visités: ['c','e','g", ' f']

Le sommet f est dépilé a nouveau. Comme il a déja été visité, on passe au sommet
Le sommet e est alors dépilé et marqué comme visité. Ses sommets voisins non en- suivant de la pile qui est le sommet d. Ce dernier est dépilé et marqué comme vi-
core visités sont empilés. Le sommet ¢ n'est donc pas empilé. Les sommets f et gle sité. Ses sommets adjacents non encore visités sont découverts et empilés. Seul le
sont dans cet ordre. sommet b est empilé.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

étatde s
étatde s

sommets visités: ['c','e','qg"','f',"'d"] sommets visités: ['c','e','g','f','d",'b",'a'] —

Exercice 1 Exemple de parcours DFS [sol 1] Sur le méme principe, appliquer
Le sommet b est dépilé et marqué comme visité. Le sommet a est empilé, seul som- yp parcours DFS au graphe orienté présenté en figure 4, en partant du sommet 0 et

met voisin de b non encore visité. en précisant I'état de la pile et la liste des sommets visités a chaque itération.
m Parcours en largeur « BFS »
(7]
S
= Pour le parcours en largeur, on applique la méme méthode en remplacant la pile
Q|a servant a stocker les sommets découverts par une file. On peut a nouveau illustrer
a le fonctionnement du parcours en largeur sur le graphe ci-dessous, et en précisant
sommets visités: ['c’, 'e’,'g", "f',"d", 'b"] o I'état de la file a chaque itération.
a () e
Le sommet a est dépilé. Comme il ne comporte aucun sommet voisin non encore ’
visité, aucun autre sommet n'est empilé. O @ D
grph = {
Ial [Ibl’ ICI]’ Ibl : [Ial’ Idl]’
ICI [Ial’ Idl, lel]’ Idl : [Ibl’ ICI],
g Iel [ICI' I-fl’ Igl]’ I-fl : [IeI' Igl]'
E 1 g 1 [1 e 1 , 1 .f 1] }
3
— FIGURE 10 : Graphe non orienté et son dictionnaire d’adjacence.
a

sommets visités: ['c','e','g','f','d",'b",'a"']
Comme précédemment, on crée un dictionnaire des sommets visités, et on initialise

une file vide, nécessaire pour ce parcours en largeur.
dictionnaire de booléens des sommets visités
Le sommet a est de nouveau dépilé. Etant déja marqué somme visité, rien n'est fait. ~ visited = {x : False for x in grph}

La pile est alors vide. Il n'y a plus aucun sommet a découvrir. Le parcours du graphe ~ # ¢réation d'une file vide
est terminé. g = deque()

ITC © 2025-2026

10

/M/ Lycée Michel MONTAIGNE — Bordeaux

On part du sommet ¢, ce sommet est découvert et son étiquette est enfilée dans q. Le
schéma suivant montre I'état de la file et du graphe a ce moment du parcours.

a O) e ,
@ sommets visités: ['c','a", 'd"]
D—@@D) O [elb]b]

sommets visités : []
<]

Le sommet e est défilé et marqué comme visité. Les sommets f et g sont enfilés.

Létape suivante défile c de q et le marque comme visité. Puis ses sommets adjacents
sont découverts et enfilés dans I'ordre de lecture séquentielle de la liste : a d’abord,
d ensuite, e enfin. On obtient donc le résultat suivant

’@ sommets visités: ['c','a','d', 'e']
A 515 712]

sommets visités: ['c']
[ald]e]

Le sommet b est défilé et marqué comme visité. Il n'a plus de sommets voisins non

visités, aucun sommet n'est rajouté dans la file.
On défile le sommet a et on le marque comme visité. On enfile les voisins de a qui

n'ont pas encore été visités : seul b est enfilé.

sommets visités: ['c','a','d','e"','b"]

sommets visités: ['c', 'a'] ‘b‘f‘g‘
[ale]b]

Le sommet d est défilé et marqué comme visité. Le sommet b, voisin de d et non Le sommet b est a nouveau défilé, mais comme il est déja marqué comme visité, on
encore visité, est a nouveau enfilé. ne fait rien de plus a cette étape.

ITC © 2025-2026

11

/M/ Lycée Michel MONTAIGNE — Bordeaux

sommets visités: ['c','a','d','e"','b"]

[718]

Le sommet f est défilé, on le marque comme visité, et on enfile a nouveau le sommet

8.

sommets visités: ['c','a','d','e','b", ' f']

8]8]

Le sommet g est défilé, on le marque comme visité. Aucun autre sommet n'est en-

filé.

sommets visités: ['c','a','d"','e','b','f','g"]

8]

Le sommet g est a nouveau défilé, comme il est déja visité, on ne fait rien d’autre. La

file est vide, le parcours est terminé.

sommets visités: ['c','a','d"','e','b",'f','g"]

Exercice 2 Exemple de parcours BFS [sol 2] Sur le méme principe, appliquer
un parcours BFS au graphe orienté présenté en 6, en partant du sommet 0 et en pré-
cisant I'état de la file et la liste des sommets visités a chaque itération.

m Exemples de codes

En utilisant une représentation d'un graphe par un dictionnaire d’adjacence, on peut
proposer les codes ci-dessous pour les fonctions dfs et bfs qui mettent en oeuvre
les algorithmes présentés ci-dessus. Uneliste st _visitedinitialement vide est pro-
gressivement remplie avec les sommets visités. Elle permet de mémoriser 'ordre de
visite des sommets. Un dictionnaire visited est défini comme indiqué plus haut.
Dans la fonction dfs, une pile s sert a stocker les sommets au fur et mesure de leur
découverte, alors que dans la fonction bfs, c’est une file q qui joue ce réle. On peut
remarquer la similarité dans la structure des codes.
def dfs(grph, v):

s = deque() création d'une pile vide
visited = {x : False \

for x in grph} dictionnaire de booléens des sommets visités

lst visited = [] liste des sommets visités

s.append(v) empilement du sommet de départ

while len(s) > 0: parcours des sommets non visités

w = s.pop() dépilement du sommet de s

if not visited[w]: si w non déja visité

visited[w] = True w marqué comme visité

lst visited.append(w) ajout de w a la liste des sommets visités

for u in grph[w]: parcours des voisins u de w

if not visited[u]: si u non déja visité

s.append(u) empilement de u

return lst visited

ITC © 2025-2026

12

/M/ Lycée Michel MONTAIGNE — Bordeaux

def bfs(grph, v):

q = deque()
visited = {x False \
for x in grph}
lst visited = []
g.append(v)
while len(q) > 0:
w = q.popleft()

création d'une file vide

dictionnaire de booléens des sommets visités
liste des sommets visités

enfilement du sommet de départ

parcours des sommets non visités
défilement du sommet de q

if not visited[w]:
visited[w] = True
lst visited.append(w)
for u in grph[w]:
if not visited[u]:
q.append(u)
return lst visited

si w non déja visité

w marqué comme visité

ajout de w a la liste des sommets visités
parcours des voisins u de w

si u non déja visité

enfilement de u

VISION UNIFIEE DES DEUX PARCOURS On peutregrouper les deux parcours d’'un
graphe G = (S,A) a partir d'un sommet s en les considérant comme deux variantes
d’'un méme algorithme, ce dernier utilisant une structure de donnée générale pour
stocker les sommets découverts, notée ici Z.

Parcours de graphe ‘

Données : Le graphe G = (S,A) et un sommet de départ s

Résultat : La liste des sommets visités
Z —s,
tantque Z + @

® retirer un sommet w de Z

® si w n'est pas visité, le marquer comme visité

® pour chaque voisin u de w non visité, ajouter u a Z
renvoyer la liste des sommets visités.

Pour un parcours en profondeur, Z aura une structure de pile, alors que pour un
parcours en largeur, Z aura une structure de file.

VARIANTES DES ALGORITHMES PRECEDENTS Les parcours de graphe présen-
tés renvoient ici uniquement la liste 1st_visited des sommets visités dans 'ordre
de leur visite. Dans cette liste, tous les sommets de départ sont accessibles depuis le
point de départ. Mais cette liste ne permet pas de retrouver le chemin qui conduit du

sommet de départ a l'un des sommets de la liste. Si cette derniere information nous
intéresse, on pourra chercher a créer, lors du parcours, un dictionnaire des prédéces-
seurs pred associé au parcours donné d’'un graphe, tel que pred[u] corresponde au
sommet w par lequel on arrive sur le sommet u lors du parcours.

Tel qu'il a été présenté ci-dessus, 1'algorithme DSF (resp. BES) peut empiler (resp.
enfiler) plusieurs fois un méme sommet. Cela peut constituer une difficulté si la pile
(resp. file) devient de grande taille. On peut chercher a construire un algorithme qui
évite cet empilement multiple.

On peut aussi choisir de représenter le graphe par un tableau contenant la matrice
d’adjacence du graphe. Dans ce cas, il faut 1égerement modifier le code de chaque
parcours pour tenir compte de ce choix.

De manieére plus générale, les deux parcours présentés doivent étre considérés
comme deux fagons de parcourir les sommets d’'un graphe donné, et constituent
en quelque sorte 'équivalent d'une boucle for pour une liste, un tableau ou toute
structure séquentielle. On peut ensuite, a partir de ces parcours, effectuer tout type
d’opérations sur les graphes.

<¥3l Implémentation du graphe et complexité

I peut étre intéressant de déterminer la complexité temporelle de ces deux algo-
rithmes, ou du moins sa complexité asymptotique (suffisante pour déterminer 'ef-
ficacité des algorithmes). Pour un graphe G = (S,A), on note ici n = |S| le nombre de
sommets et m = |A| le nombre d’arétes (ou d’arcs). La complexité des parcours va
dépendre de la facon dont le graphe étudié est implémenté en mémoire.

GRAPHE REPRESENTE PAR LISTE D’ADJACENCE. Clest le cas des exemples déve-
loppés précédemment. D’apres les algorithmes décrits, pour chaque sommet w par-
couruy, on a un petit nombre d’opérations, puis, pour chaque aréte (ou arc) issue de
ce sommet, on réalise encore un petit nombre d’'opérations. A la fin de l'algorithme,
on aura parcouru une fois chaque sommet et parcouru une fois chaque aréte. On a

doncdanscecas: |C=0(n+m)|

GRAPHE REPRESENTE PAR MATRICE D’ADJACENCE Icila situation est différente,
car lors de I'exploration des voisins de w, on réalise n tests, 'information « u est un
voisin de w» étant stockée dans uneligne de taille n. On adonc ala fin del'algorithme
réalisé n parcours de sommets et n? tests sur les arétes. Onadonc: |[C=0 (nz)

ITC © 2025-2026

13

/M/ Lycée Michel MONTAIGNE — Bordeaux

BILAN Pour tout graphe orienté, ona m,,,, = n(n—1). Pour un graphe non orienté,
My = R(n—1)/2.

® Le cas des graphes peu denses correspond a la situation m <« m,,, de sorte
que O (n + m) = O(n). Limplémentation par liste d’adjacence est donc d’autant
plus efficace en terme de complexité pour ces parcours que le nombre d’arétes
par sommet est faible.

® Pour les graphes denses, on a m = O(n?) de sorte que O (n+ m) = O(n?); les
deux complexités sont équivalentes.

APPLICATIONS

Les parcours de graphe font I'objet de nombreuses applications. On en présente ra-
pidement trois ci-dessous qui seront étudiées en TP.

m Existence de chemins

Partant d'un sommet d’un graphe, les parcours en profondeur ou en largeur visitent
tous les sommets accessibles depuis ce sommet. Il est alors simple de vérifier I'exis-
tence ou non d'un chemin de ce sommet de départ a tout autre sommet du graphe.
Dans le graphe de la Figure 11, il existe au moins un chemin de a vers i. Le chemin
a—b—e—g—j—ienestun;lechemina—-b—-c—f—-h—-k—-¥¢—j—i
en est un autre. En revanche, il n'existe aucun chemin de k vers e.

FIGURE 11 : Graphe orienté et chemins.

Calcul de la distance entre deux sommets

Les parcours de graphes visitent tous leurs sommets une seule fois. Seul 'ordre de
leur visite differe selon la nature du parcours, en largeur et en profondeur, mais éga-
lement selon 'ordre dans lequel les sommets sont découverts. D'un point de vue
informatique, ce dernier point est directement lié a la fagcon dont les voisins d'un
sommet sont stockés dans la liste des voisins. On peut s’interroger sur la possibi-
lité d'utiliser ces parcours pour déterminer des longueurs de chemin, voire des dis-
tances entre sommets. Considérons a nouveau le graphe G, introduit dans le Cha-
pitre (S2) 3.

FIGURE 12 : Graphe G,

Si on consideére un parcours en largeur du graphe G, définie, on sait que les sommets
sont visités par distance croissante depuis un sommet de départ donné. Sil'ordre de
leur découverte importe pour préciser 'ordre de visite des sommets, il est totalement
inutile pour calculer la longueur d’'un chemin liant un sommet de départ a chaque
sommet visité. La topologie en cercles concentriques du graphe G, est particuliére-
ment adaptée pour illustrer les sommets visités lors d'un parcours en largeur issu du
sommet a.

ITC © 2025-2026

14

/M/ Lycée Michel MONTAIGNE — Bordeaux

Une simple adaptation du parcours en largeur doit donc permettre de calculer les
longueurs des chemins liant un sommet de départ a tout autre sommet du graphe.
Et qui plus est, en raison de la nature méme du parcours en largeur, ces longueurs
sont aussi les distances du sommet de départ aux autres sommets.

Le code suivant met en oeuvre le parcours en largeur et calcule, dans un dictionnaire,
les distances d'un sommet de départ v a tous les autres sommets d'un graphe g.
def bfs dist essai(grph, v):
q = deque()
visited = {x: False for x in grph}
dist = {x for x in grph}
q.append(v)
while len(qg) >
w = q.popleft()
if not visited[w]:
visited[w] = True
for u in grph[w]:

déclaration d’'une file vide
dictionnaire des sommets visités
dictionnaire des distances

le sommet de départ est enfilé
visite de tous les sommets
défilement du sommet w

si w non déja visité

w est marqué comme visité

parcours des voisins de w

if not visited[ul]:

g.append(u) et enfilé
if dist[u] == dans le cas d’'une premiére découverte
dist[u] = + dist([w] sa distance a v est mise a

Jjour
return dist

Voici par exemple un essai sur le graphe grph défini en début de section.

[>

a (©)

O—)

grph = {
‘a' ['b', 'c'], 'b' ['a', 'd'],
'c' [‘a', 'd', 'e'], 'd' ['b', 'c'],
‘e ['c', 'f', 'g'l, 'f' i ['e, 'g'l,
‘g s [et, U1}
>>> bfs dist essai(grph, "a")
{'a': 0, 'b': 1, 'c': 1, 'd': 2, 'e': 2, 'f': 3, 'g': 3}

AMELIORATION POSSIBLE. On peut améliorer la version précédente, et s’écono-
miser les tests sur les distances. En effet, on peut marquer les sommets comme visi-
tés des leur enfilement, puisqu’'une fois qu'on les a découvert une premiére fois, on
a leur distance depuis le sommet d’origine; il ne faut pas y retoucher ensuite.

On pourrait améliorer ainsi de la méme fagon le code de bfs, mais la
présentation faite en cours a le mérite de l'unification avec dfs.

def bfs dist(grph, v):

Note

q = deque() déclaration d’'une file vide
visited = {x : False for x in grph} dictionnaire des sommets visités
dist = {x : for x in grph} dictionnaire des distances

g.append(v)
visited[v] = True
while len(qg) >
w = q.popleft()
for u in grph[w]:
if not visited[u]: si un sommet n'a pas été visité
visited[u] = True

le sommet de départ est enfilé
et marqué comme visité
visite de tous les sommets
défilement du sommet w

parcours des voisins de w

il est marqué comme visité

ITC © 2025-2026

15

/M/ Lycée Michel MONTAIGNE — Bordeaux

q.append(u)
dist[u] = 1 + dist[w]

et enfilé
sa distance a v est mise a jour
return dist

Voici par exemple un essai sur le graphe grph défini en début de section. C’est bien
cohérent avec la premiére version, mais est plus économique en calculs.
>>> bfs dist(grph, "a")

{Ial: O' Ibl: 1’ ICI: 1’ Idl: 2’ Iel: 2’ Ifl: 3, Igl: 3}
Exercice 3 [sol3] Adapterle code précédent au cas d’un graphe codé par matrice
d’adjacence.

Remarque 2 Ladistance entre deux sommets, fournie par le parcours en largeur,
ne donne en revanche pas un chemin de longueur minimale. Nous verrons en
TP comment en obtenir un.

m Composantes connexes

Ala fin d’'un parcours d'un graphe non orienté, tous les sommets rencontrés depuis
un sommet donné appartiennent a une méme composante connexe du graphe. Pour
déterminer les éventuelles autres composantes connexes, on peut effectuer un nou-
veau parcours a partir d'un des sommets non encore visités, et ce jusqu’'a ce qu’il n’y
ait plus aucun sommet non visités.

Le graphe représenté ci-contre est non connexe et
comporte deux composantes connexes qu'on peut
définir par les ensembles de sommets {1,2,4} et
{3,5,6}.

(3
(5—©

Remarque 3 Une notion de connexité peut également étre définie pour les
graphes orientés mais elle s’écarte un peu de la notion de connexité simple. En
effet, un graphe orienté peut étre d'un seul tenant mais il n’existe pas toujours de
chemin entre deux sommets du graphe en raison des orientations. Les sommets
qui sont liés par des chemins forment des composantes fortement connexes. Ce
sujet étant hors-programme, il ne sera pas développé.

FIGURE 13 : Composantes fortement connexes d'un graphe orienté.

Détection de cycle

GRAPHES NON ORIENTES. Pour un graphe non orienté, si lors d’'un parcours
on découvre deux fois le méme sommet v, alors il existe un cycle contenant v. Par
exemple, lors d'un des parcours en profondeur étudiés précédemment, on a :

étatde s

/]

S

d
a

sommets visités: ['c','e','g"]

Le sommet f est présent deux fois dansla pile, car il a été découvert une premiere fois
a partir de e, puis une deuxieme fois a partir de g. Ceci est bien associé a 'existence
ducyclee,f,g.

GRAPHES ORIENTES Lalgorithme de parcours en profondeur permet également
la détection de cycles dans un graphe orienté, c’'est-a-dire I'existence de chemins qui
se referment. Le graphe représenté en figure 14 présente de nombreux cycles parmi
lesquelsb - e—b,g—j—i—g.

ITC © 2025-2026

16

/M/ Lycée Michel MONTAIGNE — Bordeaux

O @0

0 8-0
20
“© ©
&

FIGURE 14 : Deux cycles dans un graphe orienté.

Lalgorithme de parcours en profondeur marque comme visités les sommets décou-
verts. Rencontrer deux fois le méme sommet ne suffit cependant pas a affirmer I'exis-
tence d’'un cycle. Sur la figure 14, au moins deux chemins relient e a & : le chemin
e — f — h etle chemin e — g — h. Un algorithme de parcours qui visite les som-
mets depuis le sommet e trouvera donc le premier de ces chemins et marquera le
sommet i comme visité. Par le second de ces chemins, le sommet & est de nouveau
rencontré et marqué comme visité. Mais la suite des sommets e, f, h, g ne forme pas
un cycle. Il conviendra donc de trouver un moyen de distinguer les sommets visités
selon qu’aucun autre parcours ne les visitera de nouveau ou selon qu’ils sont sus-
ceptibles d’étre encore visités.

SOLUTIONS DES EXERCICES

Solution 3

	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:

