
/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

1
IT
C
Creative-Commons

20
25
-2
02
6

Chapitre (S2) 4
Parcours de graphes non pondérés
& Applications

1 Parcours en largeur et profon-
deur .

2 Piles et files .

3 Algorithmes de parcours

4 Applications .

Objectifs
• Connaître les deux types de parcours

d’un graphe : parcours en profondeur,
parcours en largeur.

• Savoir utiliser les structures de don-
nées piles et files à l’aide du module
deque.

• Savoir mettre en oeuvre les algo-
rithmes de parcours de graphes en
utilisant une pile et une file.

• Savoir adapter les algorithmes de par-
cours pour déterminer un chemin, la
distance entre deux sommets, déter-
miner la connexité et détecter un cycle
dans un graphe.

1 PARCOURS EN LARGEUR ET PROFONDEUR

Les tableaux et les listes sont des structures de données séquentielles dans le sens
où les informations qui y sont stockées peuvent être lues ou modifiées en les par-
courant les unes à la suite des autres, suivant un ordre défini par l’implémentation.
En pratique, on se soucie guère de savoir comment les parcourir. Les langages de
programmation proposent des instructions qui facilitent ces opérations. C’est le cas
des instructions for et while qui permettent de répéter des blocs d’instruction. Or,
parcourir les données d’une structure, c’est justement les passer en revue en répé-
tant une même série d’opérations. Et ces deux instructions le font en suivant l’ordre
spécifique d’organisation des données dans la structure.

Dans un graphe, les données ne sont plus organisées de manière séquentielle mais
de manière relationnelle : il existe des liens entre certaines données. Dès lors, com-
ment les parcourir? Dans quel ordre? Les réponses à ces questions ne sont plus

uniques mais dépendent du point de départ dans le graphe¹ et de l’objectif à at-
teindre : visiter tous les sommets du graphe, les modifier, en extraire seulement cer-
tains. C’est pourquoi deux parcours de graphes existent : le parcours en profondeur²
(DFS) et le parcours en largeur³ (BFS). Nous allons les présenter ci dessous.

0

1 2 3

4

5

6

Objectifs. On souhaite définir deux algorithmes permettant de parcourir le
graphe précédent de « manière intelligente », selon les principes suivants et à par-
tir d’un certain sommet de départ fixé.

• [Principe 1 : en profondeur] Une fois que l’on s’engouffre dans une branche,
on poursuit jusqu’à blocage, avant de revenir au premier sommet disponible où
il n’y a plus de blocage. Ce principe est utile par exemple pour les problèmes de
sortie de labyrinthe, une fois ledit labyrinthe traduit en graphe (chaque case du
labyrinthe étant un sommet du graphe).

1. Choix d’un sommet particulier
2. Depth First Search (DFS) en anglais, pour parcours en profondeur d’abord.
3. Breadth First Search (BFS) en anglais, pour parcours en largeur d’abord.

ITCCreative-Commons 2025-2026 1 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

2
IT
C
Creative-Commons

20
25
-2
02
6 • [Principe 2 : en largeur] On parcourt les sommets par « distances crois-

santes » à partir du sommet d’origine (donc d’abord les sommets à distance 1,
puis distance 2, etc.). Ce principe nous sera utile pour calculer la distance mini-
male entre deux sommets, ainsi qu’un chemin minimal.

Si l’on considère commet sommet dedépart le sommet 0, cela donnerait les parcours
suivants.

0

1 2 3

4

5

6

Ordre souhaité : (0,1,4,5,2,6,3)

(a) Parcours en profondeur

0

1 2 3

4

5

6

Ordre souhaité : (0,1,2,3,4,6,5)

(b) Parcours en largeur

FIGURE 1 : Deux types de parcours

1.1 Parcours en profondeur ou DFS

Présentation générale Dans un parcours en profondeur, à partir d’un som-
met de départ, on parcourt des sommets en progressant le plus loin possible dans le
graphe suivant un certain chemin, tant que cela est possible (on ne peut pas passer
plus d’une fois par un sommet donné). Lorsqu’on est bloqué, on revient à un em-
branchement pour parcourir d’autres sommets là encore le plus loin possible dans
le graphe, et ainsi de suite jusqu’à avoir parcouru tous les sommets accessibles de-
puis le sommet de départ. Précisons le vocabulaire :

• à partir d’un sommet courant sur le lequel on se trouve, les sommets voisins
sont des sommets découverts,

• un sommet que l’on quitte est un sommet visité.

Quand un sommet estmarqué comme visité, le parcours ne peut plus passer par lui.
Dès lors, soit il est possible d’aller plus avant dans le graphe en découvrant un autre
sommet, soit il faut rebrousser chemin jusqu’à revenir à un sommet qui possède des
sommets adjacents découverts mais non encore visités.

Exemples Illustrons le parcours en profondeur avec le graphe non orienté ci-
dessous en adoptant les conventions graphiques de marquages suivantes des som-
mets : un sommet non encore découvert est sur fond blanc, un sommet découvert est
sur fond vert, un sommet visité est sur fond noir.

Partantde0, ce sommetestmarquécommevisité. Puis leparcoursdécouvre les som-
mets adjacents : le sommet 1 et le sommet 3. Choisissons de passer par le sommet
découvert de plus grande étiquette⁴. Donc, après 0, le sommet visité est 3. En pour-
suivant ainsi, les sommets successivement visités sont 7, 8, 5, 2, 4 et 1. À ce niveau
du parcours, il n’existe plus de chemin possible. Il faut revenir au dernier sommet
visité qui comporte des voisins non encore visités, en l’occurrence le sommet 7. Le
parcours reprend en passant le dernier sommet restant 6 et lemarque comme visité.
Tous les sommets étant alors visités, le parcours est terminé. La figure 2 illustre les
différentes étapes de ce parcours.

Avec les choix adoptés, ce parcours fait découvrir les sommets dans l’ordre défini par
la liste suivante : [0, 3, 7, 8, 5, 2, 4, 1, 6]. Cette liste contient tous les som-
mets accessibles depuis le sommet de départ (soit ici tous les sommets du graphe),
mais elle ne dit pas le chemin qui a été emprunté pour aller du sommet de départ
à l’un des sommets de la liste. Pour représenter cette dernière information, on peut
représenter l’ensemble des sommets accessibles depuis le sommet de départ, en fai-
sant figurer uniquement les arêtes qui ont permis de passer d’un sommet à l’autre
lors du parcours. Une telle représentation graphique est appelée arbre couvrant et
permet de visualiser ce parcours (figure 5).

Figure 2 – PARCOURS EN PROFONDEUR D’UN GRAPHE NON ORIENTÉ.

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

4. Ce choix est purement conventionnel mais a des conséquences sur l’ordre des visites des som-
mets.

/ Lycée Michel Montaigne – Bordeaux 2 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

3
IT
C
Creative-Commons

20
25
-2
02
6 PARCOURS EN PROFONDEUR D’UN GRAPHE NON ORIENTÉ.

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

0

1 2

3 4 5

6 7 8

La figure 3 illustre le parcours en profondeur d’un autre graphe non orienté en par-
tant du sommet 2. Les mêmes conventions d’ordre de découverte des sommets sont
adoptées. Le lecteur est invité à vérifier que la liste [2, 4, 6, 5, 3, 1, 0] définit
l’ordre de découverte des sommets. L’arbre associé à ce parcours est donné en figure
5.

Figure 3 – PARCOURS EN PROFONDEUR D’UN GRAPHE NON ORIENTÉ.

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

PARCOURS EN PROFONDEUR D’UN GRAPHE NON ORIENTÉ.

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

Considérons à présent une version orientée du premier graphe introduit dans cette
partie. La présence d’orientations contraint à présent les découvertes. La figure 4
illustre le parcours en profondeur depuis le sommet 0 en suivant les règles de dé-
couvertes énoncées plus haut. L’arbre associé à ce parcours est donné en figure 5.

Figure 4 – PARCOURS EN PROFONDEUR D’UN GRAPHE ORIENTÉ.

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

ITCCreative-Commons 2025-2026 3 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

4
IT
C
Creative-Commons

20
25
-2
02
6 PARCOURS EN PROFONDEUR D’UN GRAPHE ORIENTÉ.

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

Les figures suivantes présentent les arbres couvrants qui permettent de visualiser les
parcours en profondeur relatifs aux trois graphes précédents.

Figure 5 – ARBRES COUVRANTS.

0

3

7

8

5

2

4

1

6

PARCOURS DE LA FIGURE 2

2

4

6

5

3

1

0

PARCOURS DE LA FIGURE 3

0

3

7

8

5

6

2

4

1

PARCOURS DE LA FIGURE 4

C’est un arbre où chaque sommet n’a qu’un «parent » : le sommet d’où l’on provenait
au moment de sa visite.

1.2 Parcours en largeur ou BFS

Présentation générale Le parcours en largeur procède d’une autre façon
pour parcourir le graphe. A partir d’un sommet de départ, on découvre les sommets
voisins, puis on visite chacun des sommets découverts. Pour chaque nouveau som-
met visité, on peut alors découvrir de nouveaux sommets, et l’on itère le processus

jusqu’à ce qu’il n’y ait plus de sommets à visiter accessibles depuis le sommet de
départ⁵.

Exemples Pour illustrer le parcours en largeur, on reprend le graphe orienté pré-
cédent. Partant du sommet 0, la découverte des sommets se fait en découvrant
d’abord tous ses sommets voisins. Là encore, un choix doit être fait sur l’ordre de
découverte des sommets. On choisit ici de découvrir les sommets non découverts
par étiquettes croissantes. Ainsi, le sommet découvert après le sommet 0 est le som-
met 1. Puis vient le sommet 3. On doit ensuite visiter les sommets voisins des som-
mets 1 et 3 non encore découverts. Ce qui mène à la découverte des sommets 2 et 7
respectivement. Et ainsi de suite jusqu’à découvrir tous les sommets de graphe. La
figure 6 illustre ce parcours (la cellule grisée correspond à l’arbre couvrant associée
au parcours).

Figure 6 – PARCOURS EN LARGEUR D’UN GRAPHE ORIENTÉ

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

5. On pourrait qualifier BFS de parcours en pelures d’oignon.

/ Lycée Michel Montaigne – Bordeaux 4 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

5
IT
C
Creative-Commons

20
25
-2
02
6 PARCOURS EN LARGEUR D’UN GRAPHE ORIENTÉ

0
1 2

3 4 5

6 7 8

0
1 2

3 4 5

6 7 8

0

1

2

4

3

7

5 6 8

ARBRE COUVRANT

1.3 Liste d’attente des sommets à visiter

Pour chacun des parcours précédents, on voit que l’on progresse dans le graphe en
découvrant des sommets, puis en choisissant de visiter ces sommets découverts se-
lon une logique qui dépend du parcours. Il est donc nécessaire de disposer une liste
d’attente des sommets à parcourir, qui permettra notamment de gérer les retours en
arrière (ou embranchements) dans le parcours en profondeur, et de parcourir les
sommets par «couches successives » pour le parcours en largeur. Cette liste d’attente
peut être réalisée par deux structures de données nouvelles, à savoir les piles et les
files.

2 PILES ET FILES

2.1 Généralités

Les piles (« Stack » en anglais) et les files (« Queue » en anglais) sont des structures de
données linéaires pouvant contenir des données de types divers.Mais à la différence
des tableaux ou des listes, les données ne peuvent être ajoutées ou supprimées de
ces structures qu’en suivant des procédures spécifiques.

Sur les piles Dans les piles, une information ne peut être ajoutée ou retirée
qu’au niveau de ce qu’on appelle le sommet de la pile. En représentant une pile
comme une superposition de cases mémoires (figure 7), seule celle située au som-
met de cette représentation est accessible. Toutes les autres ne sont pas directement
accessibles mais le deviennent dès que celles situées « au-dessus » ont été retirées.

On dit qu’une pile suit le principe LIFO : Last In First Out⁶. Les opérations d’ajout et
de suppression d’une information sont appelées empilement et dépilement.

On peut s’interroger sur l’intérêt réel d’une telle structure de données mais certains
composants électroniques ne font rien d’autres que ces opérations élémentaires. Et
ils le font de manière très efficace. La figure 7 illustre la représentation d’une pile et
les opérations d’empilement et de dépilement.

Figure 7 – REPRÉSENTATION D’OPÉRATIONS D’EMPILEMENT ET DE DÉPILEMENT

ét
at

de
s

pile vide

ét
at

de
s

𝑎

empilement de 𝑎

ét
at

de
s

𝑎

𝑏

empilement de 𝑏

ét
at

de
s

𝑎
𝑏

𝑐

empilement de 𝑐

ét
at

de
s

𝑎
𝑏
𝑐

𝑐 au sommet

ét
at

de
s

𝑎
𝑏

𝑐

dépilement de 𝑐

Sur les files. Dans les files, une information ne peut être ajoutée qu’au niveau
de ce qu’on appelle la queue de la file et ne peut être retirée qu’au niveau de la tête
de la file. Là encore, une représentation (figure 8) peut aider à fixer les idées. Si une
file est représentée comme une succession de cases mémoires, seules celles situées
à ses deux extrémités sont accessibles, l’une pour y ajouter une information, l’autre
pour en retirer une. Toutes les autres ne sont pas directement accessibles mais le
deviennent dès que celles situées « avant »⁷ ont été retirées. On dit qu’une file suit

6. Dernier entré, premier sorti.
7. C’est-à-dire situées entre la tête de la file et l’élément à retirer.

ITCCreative-Commons 2025-2026 5 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

6
IT
C
Creative-Commons

20
25
-2
02
6

le principe FIFO : First In First Out⁸. Les opérations d’ajout et de suppression d’une
information sont appelées enfilement et défilement.

Figure 8 – REPRÉSENTATION D’OPÉRATIONS D’ENFILEMENT ET DE DÉFILEMENT

file vide

𝑎

enfilement de 𝑎

𝑏𝑎
tête

queue
enfilement de 𝑏

𝑐𝑎 𝑏
tête

queue
enfilement de 𝑐

𝑎 𝑏 𝑐
tête

queue

𝑎 𝑏 𝑐
tête

queue
défilement de 𝑎

Des fonctions, autres que celles d’ajout ou de retrait d’une information sont dis-
ponibles, comme créer une structure vide, savoir si elle est vide ou éventuellement
pleine⁹, ou encore connaître son nombre d’éléments.

Il importe de retenir que ces structures de données linéaires sont non indexées : il
n’est pas possible d’accéder à une information à l’aide d’un indice, cette dernière
notion n’ayant d’ailleurs pas vraiment de sens dans un tel contexte. L’interface¹⁰ de
chaque structure pourrait être définie de manière simplifiée comme suit.

Pile File

Création d’une pile vide Création d’une file vide

Empilement Enfilement

Dépilement Défilement

Tester si une pile est vide Tester si une file est vide
La suite de cette partie présente différentes implémentations des ces deux structures
de données en Python. Deux implémentations utilisent la structure de données pré-
existante du langage Python : les listes Python. Deux autres utilisent un module spé-
cifique qui optimise les complexités des traitements.

8. Premier entré, premier sorti.
9. Dans le cas où l’espace mémoire alloué est imposé.

10. À savoir, la description des fonctions de définition et de manipulation d’une structure de don-
nées.

2.2 Implémentation par listes Python

Les listes Python disposent de fonctions qui répondent au cahier des charges pré-
cédent. En fait, les listes Python font bien plus que répondre aux besoins. Il s’agit ici
d’un « détournement » de leur rôle premier en vue de répondre à des besoins spé-
cifiques. Les complexités temporelles sont données en fonction du nombre 𝑛 d’élé-
ments présents dans la structure.

Cas des piles. L’implémentation d’une pile correspond à l’utilisation d’une liste
Python dont la dernière case remplie définit le sommet de la pile. Toutes les opéra-
tions désirées sont alors de complexité constante¹¹.

Pile Instruction Complexité

Création s = [] O(1)

Empilement s.append('a') O(1)

Dépilement s.pop() O(1)

Test pile vide s == [] O(1)

Cas des files. L’implémentation d’une file correspond à l’utilisation d’une liste
Pythondont lapremière case correspondà la têtede lafile, la dernière case à laqueue
de la file¹².

File Instruction Complexité

Création q = [] O(1)

Enfilement q.append('a') O(1)

Défilement q.pop(0) O(𝑛)

Test file vide q == [] O(1)

On note que l’opération de défilement telle que choisie ici est de complexité non
constante, linéaire en la taille de la liste (en effet, les éléments d’une liste étant in-
dexés, la suppression de l’élément indexé par 0 entraine de fait la ré-indexation de
tous les éléments suivants, soit O(𝑛) opérations). Ce point constitue un obstacle à

11. En toute rigueur, il conviendrait de préciser que le coût de l’ajout d’un élément est de complexité
amortie constante, c’est-à-dire presque toujours constante excepté lorsque la liste doit être redimen-
sionnée pour pouvoir stocker plus d’éléments qu’elle ne le pouvait initialement.

12. Il ne s’agit que d’un choix particulier. Définir la première case de la liste comme la queue de la
file et sa dernière case comme la tête de la file est un choix tout aussi pertinent.

/ Lycée Michel Montaigne – Bordeaux 6 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

7
IT
C
Creative-Commons

20
25
-2
02
6

l’utilisation d’une telle implémentation pour une file. Idéalement, une complexité
constante de défilement est préférable.

2.3 Module spécifique et « Double Ended Queue »

Le module collections de Python définit des objets deque (pour « Double Ended
Queue ») qui implémentent une structure de données linéaire généralisant les piles
et les files dans laquelle l’ajout et le retrait d’une information peuvent se faire à coût
pratiquement constant aux deux extrémités de la structure. Par construction,

• elle permet l’implémentation d’une pile en définissant l’une des extrémités
comme le sommet de la pile.

• Elle permet l’implémentation d’une file en définissant l’une des extrémités
comme la tête de la file et l’autre extrémité comme sa queue. Pour importer la
structure, le code doit comporter la ligne suivante.

from collections import deque

Les fonctions de manipulation utiles pour nos besoins sont les suivantes.

Deque Instruction Complexité

Création d = deque() O(1)

Ajout à gauche d.appendleft('a') O(1)

Ajout à droite d.append('b') O(1)

Retrait à gauche d.popleft() O(1)

Retrait à droite d.pop() O(1)

Test vide len(d) == 0 O(1)

Dans la suite de ce chapitre, nous adoptons les conventions suivantes de définition
des piles et des files.

Pile Instruction

Création s = deque()

Empilement s.append('a')

Dépilement s.pop()

Test pile vide len(s) == 0

File Instruction

Création q = deque()

Enfilement q.append('a')

Défilement q.popleft()

Test file vide len(q) == 0

Remarque 1 Pythonproposeunmodulenatif (ondit souventunbuilt-inmodule
pour préciser que le module fait partie intégrante des fonctionnalités fournies

par défaut avec le noyauPython)nommé queuequi permet la définitiond’objets
Queuepour les files et d’objetsLifoQueuepour les piles. Le lecteur intéressépeut
lire la documentation sur le site officiel de Python (https://docs.python.org/
3/library/queue.html).

3 ALGORITHMES DE PARCOURS

La mise en oeuvre informatique des parcours précédents requiert l’utilisation des
piles et des files présentées précédemment. En stockant les sommets découverts,
ces dernières donnent la possibilité de « mémoriser » les sommets sur lesquels il
convient de revenir pour avancer dans un parcours.

3.1 Parcours en profondeur « DFS »

Illustrons notre propos avec le parcours en profondeur du graphe non orienté ci-
dessous étiqueté par des caractères, implémenté par un dictionnaire grph.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

grph = {

 'a' : ['b', 'c'], 'b' : ['a', 'd'],

 'c' : ['a', 'd', 'e'], 'd' : ['b', 'c'],

 'e' : ['c', 'f', 'g'], 'f' : ['e', 'g'],

 'g' : ['e', 'f']}

FIGURE 9 : Graphe non orienté et son dictionnaire d’adjacence.

On crée un dictionnaire des sommets visités, dont les clés sont les étiquettes du
graphe et dont les valeurs initiales sont False, et qui permet de marquer un som-
met visité en passant sa valeur à True.

Lors du parcours du graphe, les sommets voisins à un sommet et non encore visités
sont stockés dans une pile dans l’ordre de leur lecture dans la liste. Cet empilement
correspond à l’étape de découverte d’un sommet. Chaque fois qu’un sommet est dé-
pilé, il est marqué comme visité, s’il ne l’est pas déjà.

ITCCreative-Commons 2025-2026 7 / Lycée Michel Montaigne – Bordeaux

https://docs.python.org/3/library/queue.html
https://docs.python.org/3/library/queue.html

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

8
IT
C
Creative-Commons

20
25
-2
02
6

dictionnaire de booléens des sommets visités

visited = {x : False for x in grph}

création d'une pile vide

s = deque()

Choisissons le sommet 𝑐 comme sommet de départ d’un parcours en profondeur.
Reprenant le vocabulaire des parties précédentes, ce sommet est découvert et son
étiquette est empilée dans s. Le schéma suivant montre l’état de la pile et du graphe
à ce moment du parcours.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : []

𝑐

ét
at

de
s

𝑐

L’étape suivante dépile 𝑐de s et lemarque comme visité. Puis ses sommets adjacents
sont découverts et empilés dans l’ordre de lecture séquentielle de la liste : 𝑎 d’abord,
𝑑 ensuite, 𝑒 enfin. Ce qui mène à l’état de la pile représenté ci-contre.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c']

𝑐𝑎

𝑑

𝑒

ét
at

de
s

𝑎
𝑑
𝑒

Le sommet 𝑒 est alors dépilé et marqué comme visité. Ses sommets voisins non en-
core visités sont empilés. Le sommet 𝑐 n’est donc pas empilé. Les sommets 𝑓 et 𝑔 le
sont dans cet ordre.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','e']

𝑐 𝑒𝑎

𝑑 𝑓

𝑔

ét
at

de
s

𝑎
𝑑
𝑓
𝑔

Le sommet 𝑔 est ensuite dépilé et marqué comme visité. Ses sommets voisins non
encore visités sont empilés. Il n’y a qu’un seul sommet, déjà découvert mais non
encore visité, à empiler : le sommet 𝑓.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','e','g']

𝑐 𝑒

𝑔

𝑎

𝑑 𝑓 ét
at

de
s

𝑎
𝑑
𝑓
𝑓

Le sommet 𝑓 est dépilé et marqué comme visité. Il ne comporte aucun sommet ad-
jacent non encore visité. Rien n’est empilé.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','e','g','f']

𝑐 𝑒

𝑔

𝑓

𝑎

𝑑 ét
at

de
s

𝑎
𝑑
𝑓

Le sommet 𝑓 est dépilé à nouveau. Comme il a déjà été visité, on passe au sommet
suivant de la pile qui est le sommet 𝑑. Ce dernier est dépilé et marqué comme vi-
sité. Ses sommets adjacents non encore visités sont découverts et empilés. Seul le
sommet 𝑏 est empilé.

/ Lycée Michel Montaigne – Bordeaux 8 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

9
IT
C
Creative-Commons

20
25
-2
02
6

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','e','g','f','d']

𝑐 𝑒

𝑔

𝑓𝑑

𝑎

𝑏 ét
at

de
s

𝑎
𝑏

Le sommet 𝑏 est dépilé et marqué comme visité. Le sommet 𝑎 est empilé, seul som-
met voisin de 𝑏 non encore visité.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','e','g','f','d','b']

𝑐 𝑒

𝑔

𝑓𝑑𝑏

𝑎

ét
at

de
s

𝑎
𝑎

Le sommet 𝑎 est dépilé. Comme il ne comporte aucun sommet voisin non encore
visité, aucun autre sommet n’est empilé.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','e','g','f','d','b','a']

𝑐 𝑒

𝑔

𝑓𝑑𝑏

𝑎

ét
at

de
s

𝑎

Le sommet 𝑎 est de nouveau dépilé. Étant déjà marqué somme visité, rien n’est fait.
La pile est alors vide. Il n’y a plus aucun sommet à découvrir. Le parcours du graphe
est terminé.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','e','g','f','d','b','a']

𝑐 𝑒

𝑔

𝑓𝑑𝑏

𝑎

ét
at

de
s

Exercice 1 Exemple de parcours DFS [Sol 1] Sur le même principe, appliquer
un parcours DFS au graphe orienté présenté en figure 4, en partant du sommet 0 et
en précisant l’état de la pile et la liste des sommets visités à chaque itération.

3.2 Parcours en largeur « BFS »

Pour le parcours en largeur, on applique la même méthode en remplaçant la pile
servant à stocker les sommets découverts par une file. On peut à nouveau illustrer
le fonctionnement du parcours en largeur sur le graphe ci-dessous, et en précisant
l’état de la file à chaque itération.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

grph = {

 'a' : ['b', 'c'], 'b' : ['a', 'd'],

 'c' : ['a', 'd', 'e'], 'd' : ['b', 'c'],

 'e' : ['c', 'f', 'g'], 'f' : ['e', 'g'],

 'g' : ['e', 'f']}

FIGURE 10 : Graphe non orienté et son dictionnaire d’adjacence.

Commeprécédemment, on crée un dictionnaire des sommets visités, et on initialise
une file vide, nécessaire pour ce parcours en largeur.
dictionnaire de booléens des sommets visités

visited = {x : False for x in grph}

création d'une file vide

q = deque()

ITCCreative-Commons 2025-2026 9 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

10
IT
C
Creative-Commons

20
25
-2
02
6

Onpart du sommet 𝑐, ce sommet est découvert et son étiquette est enfilée dans q. Le
schéma suivant montre l’état de la file et du graphe à ce moment du parcours.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : []

𝑐

𝑐

L’étape suivante défile 𝑐 de q et lemarque comme visité. Puis ses sommets adjacents
sont découverts et enfilés dans l’ordre de lecture séquentielle de la liste : 𝑎 d’abord,
𝑑 ensuite, 𝑒 enfin. On obtient donc le résultat suivant

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c']

𝑐𝑎

𝑑

𝑒

𝑎 𝑑 𝑒

On défile le sommet 𝑎 et on le marque comme visité. On enfile les voisins de 𝑎 qui
n’ont pas encore été visités : seul 𝑏 est enfilé.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','a']

𝑐𝑎

𝑑

𝑒

𝑏

𝑑 𝑒 𝑏

Le sommet 𝑑 est défilé et marqué comme visité. Le sommet 𝑏, voisin de 𝑑 et non
encore visité, est à nouveau enfilé.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','a','d']

𝑐𝑎

𝑑

𝑒

𝑏

𝑒 𝑏 𝑏

Le sommet 𝑒 est défilé et marqué comme visité. Les sommets 𝑓 et 𝑔 sont enfilés.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','a','d','e']

𝑐𝑎

𝑑

𝑒

𝑏 𝑓

𝑔

𝑏 𝑏 𝑓 𝑔

Le sommet 𝑏 est défilé et marqué comme visité. Il n’a plus de sommets voisins non
visités, aucun sommet n’est rajouté dans la file.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','a','d','e','b']

𝑐𝑎

𝑑

𝑒

𝑏 𝑓

𝑔

𝑏 𝑓 𝑔

Le sommet 𝑏 est à nouveau défilé, mais comme il est déjà marqué comme visité, on
ne fait rien de plus à cette étape.

/ Lycée Michel Montaigne – Bordeaux 10 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

11
IT
C
Creative-Commons

20
25
-2
02
6

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','a','d','e','b']

𝑐𝑎

𝑑

𝑒

𝑏 𝑓

𝑔

𝑓 𝑔

Le sommet𝑓 est défilé, on lemarque comme visité, et on enfile à nouveau le sommet
𝑔.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','a','d','e','b','f']

𝑐𝑎

𝑑

𝑒

𝑏 𝑓

𝑔

𝑔 𝑔

Le sommet 𝑔 est défilé, on le marque comme visité. Aucun autre sommet n’est en-
filé.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','a','d','e','b','f','g']

𝑐𝑎

𝑑

𝑒

𝑏 𝑓

𝑔

𝑔

Le sommet 𝑔 est à nouveau défilé, comme il est déjà visité, on ne fait rien d’autre. La
file est vide, le parcours est terminé.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','a','d','e','b','f','g']

𝑐𝑎

𝑑

𝑒

𝑏 𝑓

𝑔

Exercice 2 Exemple de parcours BFS [Sol 2] Sur le même principe, appliquer
un parcours BFS au graphe orienté présenté en 6, en partant du sommet 0 et en pré-
cisant l’état de la file et la liste des sommets visités à chaque itération.

3.3 Exemples de codes

Enutilisant une représentationd’ungrapheparundictionnaired’adjacence, onpeut
proposer les codes ci-dessous pour les fonctions dfs et bfs qui mettent en oeuvre
les algorithmesprésentés ci-dessus.Une listelst_visited initialement vide est pro-
gressivement remplie avec les sommets visités. Elle permet de mémoriser l’ordre de
visite des sommets. Un dictionnaire visited est défini comme indiqué plus haut.
Dans la fonction dfs, une pile s sert à stocker les sommets au fur et mesure de leur
découverte, alors que dans la fonction bfs, c’est une file q qui joue ce rôle. On peut
remarquer la similarité dans la structure des codes.
def dfs(grph, v):

s = deque() création d’une pile vide
visited = {x : False \

for x in grph} dictionnaire de booléens des sommets visités
lst_visited = [] liste des sommets visités
s.append(v) empilement du sommet de départ
while len(s) > 0: parcours des sommets non visités

w = s.pop() dépilement du sommet de s
if not visited[w]: si w non déjà visité

visited[w] = True wmarqué comme visité
lst_visited.append(w) ajout de w à la liste des sommets visités
for u in grph[w]: parcours des voisins u de w

if not visited[u]: si u non déjà visité
s.append(u) empilement de u

return lst_visited

ITCCreative-Commons 2025-2026 11 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

12
IT
C
Creative-Commons

20
25
-2
02
6

def bfs(grph, v):

q = deque() création d’une file vide
visited = {x : False \

for x in grph} dictionnaire de booléens des sommets visités
lst_visited = [] liste des sommets visités
q.append(v) enfilement du sommet de départ
while len(q) > 0: parcours des sommets non visités

w = q.popleft() défilement du sommet de q
if not visited[w]: si w non déjà visité

visited[w] = True wmarqué comme visité
lst_visited.append(w) ajout de w à la liste des sommets visités
for u in grph[w]: parcours des voisins u de w

if not visited[u]: si u non déjà visité
q.append(u) enfilement de u

return lst_visited

Visionunifiée des deux parcours Onpeut regrouper les deuxparcours d’un
graphe G = (S,A) à partir d’un sommet 𝑠 en les considérant comme deux variantes
d’un même algorithme, ce dernier utilisant une structure de donnée générale pour
stocker les sommets découverts, notée ici Z.

Parcours de graphe

Données : Le graphe G= (S,A) et un sommet de départ 𝑠

Résultat : La liste des sommets visités
Z← 𝑠,
tant que Z ≠∅

• retirer un sommet𝑤 de Z
• si𝑤 n’est pas visité, le marquer comme visité
• pour chaque voisin 𝑢 de𝑤 non visité, ajouter 𝑢 à Z

renvoyer la liste des sommets visités.

Pour un parcours en profondeur, Z aura une structure de pile, alors que pour un
parcours en largeur, Z aura une structure de file.

Variantes des algorithmes précédents Les parcours de graphe présen-
tés renvoient ici uniquement la liste lst_visited des sommets visités dans l’ordre
de leur visite. Dans cette liste, tous les sommets de départ sont accessibles depuis le
point de départ.Mais cette liste ne permet pas de retrouver le chemin qui conduit du

sommet de départ à l’un des sommets de la liste. Si cette dernière information nous
intéresse, on pourra chercher à créer, lors du parcours, un dictionnaire des prédéces-
seurs pred associé au parcours donné d’un graphe, tel que pred[u] corresponde au
sommet w par lequel on arrive sur le sommet u lors du parcours.

Tel qu’il a été présenté ci-dessus, l’algorithme DSF (resp. BFS) peut empiler (resp.
enfiler) plusieurs fois un même sommet. Cela peut constituer une difficulté si la pile
(resp. file) devient de grande taille. On peut chercher à construire un algorithme qui
évite cet empilement multiple.

On peut aussi choisir de représenter le graphe par un tableau contenant la matrice
d’adjacence du graphe. Dans ce cas, il faut légèrement modifier le code de chaque
parcours pour tenir compte de ce choix.

De manière plus générale, les deux parcours présentés doivent être considérés
comme deux façons de parcourir les sommets d’un graphe donné, et constituent
en quelque sorte l’équivalent d’une boucle for pour une liste, un tableau ou toute
structure séquentielle. On peut ensuite, à partir de ces parcours, effectuer tout type
d’opérations sur les graphes.

3.4 Implémentation du graphe et complexité

Il peut être intéressant de déterminer la complexité temporelle de ces deux algo-
rithmes, ou du moins sa complexité asymptotique (suffisante pour déterminer l’ef-
ficacité des algorithmes). Pour un grapheG= (S,A), on note ici𝑛 = |S| le nombre de
sommets et 𝑚 = |A| le nombre d’arêtes (ou d’arcs). La complexité des parcours va
dépendre de la façon dont le graphe étudié est implémenté en mémoire.

Graphe représenté par liste d’adjacence. C’est le cas des exemples déve-
loppés précédemment. D’après les algorithmes décrits, pour chaque sommet𝑤par-
couru, on a un petit nombre d’opérations, puis, pour chaque arête (ou arc) issue de
ce sommet, on réalise encore un petit nombre d’opérations. À la fin de l’algorithme,
on aura parcouru une fois chaque sommet et parcouru une fois chaque arête. On a
donc dans ce cas : C=O(𝑛+𝑚) .

Graphe représenté parmatrice d’adjacence Ici la situation est différente,
car lors de l’exploration des voisins de𝑤, on réalise 𝑛 tests, l’information «𝑢 est un
voisinde𝑤» étant stockéedansune lignede taille𝑛.Onadoncà lafinde l’algorithme
réalisé𝑛 parcours de sommets et𝑛2 tests sur les arêtes. On a donc : C=O (𝑛2).

/ Lycée Michel Montaigne – Bordeaux 12 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

13
IT
C
Creative-Commons

20
25
-2
02
6

Bilan Pour tout grapheorienté, on a𝑚max =𝑛(𝑛−1). Pour ungraphenonorienté,
𝑚max =𝑛(𝑛−1)/2.

• Le cas des graphes peu denses correspond à la situation 𝑚 ll 𝑚max de sorte
queO(𝑛+𝑚) =O(𝑛). L’implémentationpar liste d’adjacence est doncd’autant
plus efficace en terme de complexité pour ces parcours que le nombre d’arêtes
par sommet est faible.

• Pour les graphes denses, on a 𝑚 = O (𝑛2) de sorte que O(𝑛+𝑚) = O (𝑛2) ; les
deux complexités sont équivalentes.

4 APPLICATIONS

Les parcours de graphe font l’objet de nombreuses applications. On en présente ra-
pidement trois ci-dessous qui seront étudiées en TP.

4.1 Existence de chemins

Partant d’un sommet d’un graphe, les parcours en profondeur ou en largeur visitent
tous les sommets accessibles depuis ce sommet. Il est alors simple de vérifier l’exis-
tence ou non d’un chemin de ce sommet de départ à tout autre sommet du graphe.
Dans le graphe de la Figure 11, il existe au moins un chemin de 𝑎 vers 𝑖. Le chemin
𝑎 → 𝑏 → 𝑒 → 𝑔 → 𝑗 → 𝑖 en est un; le chemin 𝑎 → 𝑏 → 𝑐→ 𝑓 →ℎ→𝑘→ ℓ→ 𝑗 → 𝑖
en est un autre. En revanche, il n’existe aucun chemin de 𝑘 vers 𝑒.

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ

𝑖 𝑗 𝑘

ℓ

FIGURE 11 : Graphe orienté et chemins.

4.2 Calcul de la distance entre deux sommets

Les parcours de graphes visitent tous leurs sommets une seule fois. Seul l’ordre de
leur visite diffère selon la nature du parcours, en largeur et en profondeur, mais éga-
lement selon l’ordre dans lequel les sommets sont découverts. D’un point de vue
informatique, ce dernier point est directement lié à la façon dont les voisins d’un
sommet sont stockés dans la liste des voisins. On peut s’interroger sur la possibi-
lité d’utiliser ces parcours pour déterminer des longueurs de chemin, voire des dis-
tances entre sommets. Considérons à nouveau le graphe G1 introduit dans le Cha-
pitre (S2) 3.

𝑎 𝑏

𝑐𝑑𝑒

𝑓
𝑔

ℎ
𝑖

𝑗

𝑘
ℓ

𝑚

𝑛

𝑜
𝑝

𝑞

𝑟

𝑠

𝑡

𝑢

𝑣

𝑤

𝑥

𝑦

FIGURE 12 : Graphe G1

Si on considère un parcours en largeur du grapheG1 définie, on sait que les sommets
sont visités par distance croissante depuis un sommet de départ donné. Si l’ordre de
leur découverte importe pourpréciser l’ordrede visite des sommets, il est totalement
inutile pour calculer la longueur d’un chemin liant un sommet de départ à chaque
sommet visité. La topologie en cercles concentriques du graphe G1 est particulière-
ment adaptée pour illustrer les sommets visités lors d’un parcours en largeur issu du
sommet 𝑎.

ITCCreative-Commons 2025-2026 13 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

14
IT
C
Creative-Commons

20
25
-2
02
6

𝑎 𝑏

𝑐𝑑𝑒
𝑓
𝑔

ℎ 𝑖

𝑗

𝑘
ℓ

𝑚

𝑛

𝑜
𝑝

𝑞

𝑟

𝑠

𝑡

𝑢

𝑣

𝑤

𝑥

𝑦

𝑎 𝑏

𝑐𝑑𝑒
𝑓
𝑔

ℎ 𝑖

𝑗

𝑘
ℓ

𝑚

𝑛

𝑜
𝑝

𝑞

𝑟

𝑠

𝑡

𝑢

𝑣

𝑤

𝑥

𝑦

𝑏

𝑐𝑑𝑒
𝑓
𝑔

ℎ 𝑖

𝑎 𝑏

𝑐𝑑𝑒
𝑓
𝑔

ℎ 𝑖

𝑗

𝑘
ℓ

𝑚

𝑛

𝑜
𝑝

𝑞

𝑟

𝑠

𝑡

𝑢

𝑣

𝑤

𝑥

𝑦

𝑏

𝑐𝑑𝑒
𝑓
𝑔

ℎ 𝑖

𝑗

𝑘
ℓ

𝑚

𝑛

𝑜
𝑝

𝑞

𝑎 𝑏

𝑐𝑑𝑒
𝑓
𝑔

ℎ 𝑖

𝑗

𝑘
ℓ

𝑚

𝑛

𝑜
𝑝

𝑞

𝑟

𝑠

𝑡

𝑢

𝑣

𝑤

𝑥

𝑦

𝑏

𝑐𝑑𝑒
𝑓
𝑔

ℎ 𝑖

𝑗

𝑘
ℓ

𝑚

𝑛

𝑜
𝑝

𝑞

𝑟

𝑠

𝑡

𝑢

𝑣

𝑤

𝑥

𝑦

Une simple adaptation du parcours en largeur doit donc permettre de calculer les
longueurs des chemins liant un sommet de départ à tout autre sommet du graphe.
Et qui plus est, en raison de la nature même du parcours en largeur, ces longueurs
sont aussi les distances du sommet de départ aux autres sommets.

Le code suivantmet enoeuvre le parcours en largeur et calcule, dansundictionnaire,
les distances d’un sommet de départ v à tous les autres sommets d’un graphe g.
def bfs_dist_essai(grph, v):

 q = deque() déclaration d’une file vide
 visited = {x: False for x in grph} dictionnaire des sommets visités
 dist = {x : 0 for x in grph} dictionnaire des distances
 q.append(v) le sommet de départ est enfilé
 while len(q) > 0: visite de tous les sommets
 w = q.popleft() défilement du sommet w
 if not visited[w]: si w non déjà visité
 visited[w] = True w est marqué comme visité
 for u in grph[w]: parcours des voisins de w

 if not visited[u]:

 q.append(u) et enfilé
 if dist[u] == 0: dans le cas d’une première découverte
 dist[u] = 1 + dist[w] sa distance à v est mise à
jour
 return dist

Voici par exemple un essai sur le graphe grph défini en début de section.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

grph = {

 'a' : ['b', 'c'], 'b' : ['a', 'd'],

 'c' : ['a', 'd', 'e'], 'd' : ['b', 'c'],

 'e' : ['c', 'f', 'g'], 'f' : ['e', 'g'],

 'g' : ['e', 'f']}

>>> bfs_dist_essai(grph, "a")

{'a': 0, 'b': 1, 'c': 1, 'd': 2, 'e': 2, 'f': 3, 'g': 3}

Amélioration possible. On peut améliorer la version précédente, et s’écono-
miser les tests sur les distances. En effet, on peut marquer les sommets comme visi-
tés dès leur enfilement, puisqu’une fois qu’on les a découvert une première fois, on
a leur distance depuis le sommet d’origine; il ne faut pas y retoucher ensuite.

Note
On pourrait améliorer ainsi de la même façon le code de bfs, mais la
présentation faite en cours a le mérite de l’unification avec dfs.

def bfs_dist(grph, v):

 q = deque() déclaration d’une file vide
 visited = {x : False for x in grph} dictionnaire des sommets visités
 dist = {x : 0 for x in grph} dictionnaire des distances
 q.append(v) le sommet de départ est enfilé
 visited[v] = True et marqué comme visité
 while len(q) > 0: visite de tous les sommets
 w = q.popleft() défilement du sommet w
 for u in grph[w]: parcours des voisins de w
 if not visited[u]: si un sommet n’a pas été visité
 visited[u] = True il est marqué comme visité

/ Lycée Michel Montaigne – Bordeaux 14 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

15
IT
C
Creative-Commons

20
25
-2
02
6

 q.append(u) et enfilé
 dist[u] = 1 + dist[w] sa distance à v est mise à jour
 return dist

Voici par exemple un essai sur le graphe grph défini en début de section. C’est bien
cohérent avec la première version, mais est plus économique en calculs.
>>> bfs_dist(grph, "a")

{'a': 0, 'b': 1, 'c': 1, 'd': 2, 'e': 2, 'f': 3, 'g': 3}

Exercice 3 [Sol 3] Adapter le codeprécédent au casd’ungraphe codéparmatrice
d’adjacence.

Remarque 2 Ladistance entre deux sommets, fournie par le parcours en largeur,
ne donne en revanche pas un chemin de longueur minimale. Nous verrons en
TP comment en obtenir un.

4.3 Composantes connexes

À la fin d’un parcours d’un graphe non orienté, tous les sommets rencontrés depuis
un sommetdonnéappartiennent àunemêmecomposante connexedugraphe. Pour
déterminer les éventuelles autres composantes connexes, on peut effectuer un nou-
veau parcours à partir d’un des sommets non encore visités, et ce jusqu’à ce qu’il n’y
ait plus aucun sommet non visités.

Le graphe représenté ci-contre est non connexe et
comporte deux composantes connexes qu’onpeut
définir par les ensembles de sommets {1,2,4} et
{3,5,6}.

1 2

4 5 6

3

Remarque 3 Une notion de connexité peut également être définie pour les
graphes orientés mais elle s’écarte un peu de la notion de connexité simple. En
effet, un grapheorienté peut être d’un seul tenantmais il n’existe pas toujours de
chemin entre deux sommets du graphe en raison des orientations. Les sommets
qui sont liés par des chemins forment des composantes fortement connexes. Ce
sujet étant hors-programme, il ne sera pas développé.

• • •

• • •

• •

• • •

•

• • •

• • •

• •

• • •

•

FIGURE 13 : Composantes fortement connexes d’un graphe orienté.

4.4 Détection de cycle

Graphes non orientés. Pour un graphe non orienté, si lors d’un parcours
on découvre deux fois le même sommet v, alors il existe un cycle contenant v. Par
exemple, lors d’un des parcours en profondeur étudiés précédemment, on a :

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

sommets visités : ['c','e','g']

𝑐 𝑒

𝑔

𝑎

𝑑 𝑓 ét
at

de
s

𝑎
𝑑
𝑓
𝑓

Le sommet𝑓 est présent deux fois dans la pile, car il a été découvert unepremière fois
à partir de 𝑒, puis une deuxième fois à partir de 𝑔. Ceci est bien associé à l’existence
du cycle 𝑒,𝑓,𝑔.

Graphes orientés L’algorithme de parcours en profondeur permet également
la détection de cycles dans un graphe orienté, c’est-à-dire l’existence de chemins qui
se referment. Le graphe représenté en figure 14 présente de nombreux cycles parmi
lesquels 𝑏 → 𝑒→𝑏, 𝑔 → 𝑗 → 𝑖→𝑔.

ITCCreative-Commons 2025-2026 15 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

16
IT
C
Creative-Commons

20
25
-2
02
6

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ

𝑖 𝑗 𝑘

ℓ

FIGURE 14 : Deux cycles dans un graphe orienté.

L’algorithme de parcours en profondeur marque comme visités les sommets décou-
verts. Rencontrer deux fois lemême sommetne suffit cependant pas à affirmer l’exis-
tence d’un cycle. Sur la figure 14, au moins deux chemins relient 𝑒 à ℎ : le chemin
𝑒 → 𝑓 → ℎ et le chemin 𝑒 → 𝑔 → ℎ. Un algorithme de parcours qui visite les som-
mets depuis le sommet 𝑒 trouvera donc le premier de ces chemins et marquera le
sommet ℎ comme visité. Par le second de ces chemins, le sommet ℎ est de nouveau
rencontré et marqué comme visité. Mais la suite des sommets 𝑒,𝑓,ℎ,𝑔 ne forme pas
un cycle. Il conviendra donc de trouver un moyen de distinguer les sommets visités
selon qu’aucun autre parcours ne les visitera de nouveau ou selon qu’ils sont sus-
ceptibles d’être encore visités.

/ Lycée Michel Montaigne – Bordeaux 16 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

17
IT
C
Creative-Commons

20
25
-2
02
6

SOLUTIONS DES EXERCICES

Solution 3
def bfs_dist(A, v):

n = len(A) nombre de sommets
q = deque() déclaration d’une file vide

 visited = {i : False for i in range(n)} dictionnaire des sommets
visités
 dist = {i : 0 for i in range(n)} dictionnaire des distances
 q.append(v) le sommet de départ est
enfilé
 visited[v] = True et marqué comme visité

while len(q) > 0: visite de tous les sommets
i = q.popleft() défilement du sommet i
for j in range(n): parcours des voisins de i
if not visited[j] and A[i,j]: si un sommet n’a pas été

visité
visited[j] = True il est marqué comme

visité
q.append(j) et enfilé
dist[j] = 1 + dist[i] sa distance à v est mise à

jour
return dist

ITCCreative-Commons 2025-2026 17 / Lycée Michel Montaigne – Bordeaux

	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:

