ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Parcours de graphes pondeérés &
Applications

Chapitre (S2)5

Objectifs
1 Genéralités......ccovveueneennnns ® Connaitre lalgorithme de DUKSTRA
2 Parcours lalgorithme de permettant de déterminer un plus
DIKSTRA . eeeernneeennnecnnnnans court chemin dans un graphe pondéré.
. ® Comprendre lintérét d’introduire
3 Algor'thme £ dans certains cas un terme d’heu-

ristique dans DIJKSTRA, et sa consé-
quence; l'algorithme A*.

Lobjet de ce chapitre est de présenter des algorithmes de recherche d’un plus court
chemin dans des graphes pondérés, orientés ou non. La notion de parcours de
graphes est étroitement liée a cette recherche. Nous avons vu dans le Chapitre (S2) 4
que le parcours en largeur répond partiellement a notre objectif. Partiellement car
il ne permet la détermination d'un plus court chemin que dans un graphe non pon-
déré.

Pour des graphes pondérés, des algorithmes plus efficaces lui sont préférés. L algo-
rithme de DUJKSTRA est 'un d’eux, qui ne s’appliquent qu’a des graphes a poids posi-
tifs pour des raisons qui seront présentées dans une deuxiéme partie. Enfin, d’autres
algorithmes tirent profit de propriétés particulieres des graphes pour proposer des
solutions parfois aussi efficaces mais pas toujours optimales. Elles introduisent le
concept d’heuristique dont une découverte est proposée dans la derniere partie, a
travers la présentation de I'algorithme A*.

Cadre
Dans ce chapitre, tous les graphes sont codés par un dictionnaire.

n GENERALITES

Considérons a présent un graphe pondéré, c’est-a-dire dont les arétes portent une
information numérique. Par exemple le graphe ci-dessous.

3 4
1 1

7 9 3 2 2 6
5 2
9 6

3 9 4 8 4 6
5 5
@ 3 8

FIGURE 1 : Graphe G, orienté et pondéré.

Les poids (ou pondérations) des arcs sont ici des nombres entiers positifs. Des pon-
dérations négatives et non entiéres sont possibles. Mais conformément au pro-
gramme, seuls les graphes pondérés avec des poids positifs sont étudiés. Un para-
graphe justifiera ce choix. Dans la suite, le poids d'une aréte ' (u, v) est notée p(u, v).
Par exemple, dans le graphe précédent, on a p(e,d) =9, p(d, e) =5.

1. Ou d’un arc dans le cas d’'un graphe orienté.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

n Distance (minimale) entre deux sommets

— Définition 1]) ,, , i

® La longueur ou poids d'un chemin dans un graphe pondéré est désormais
définie comme la somme des poids de ses arétes.

® La définition de la distance entre deux sommets n'est pas modifiée : c’est la

longueur d'un® plus court chemin entre les deux sommets.
d,[v] = min 6(y).
r,(v)

Yely

® Un plus court chemin entre deux sommets u et v d'un graphe est un chemin
d’extrémités u et v dont la longueur est égale a sa distance d,,[v].

Exemple 1 Sur le graphe G,, le chemin y = (e, d, g, h, i) est de longueur :
o(y)=ple,d)+p(d,g)+p(g,h)+p(hi)=9+9+5+5=28.

m Une adaptation de BFS?

Dans un graphe non pondéré, le parcours en largeur permet le calcul des distances
entre deux sommets. On peut toutefois interpréter ce calcul comme celui des dis-
tances dans un graphe pondéré dont tous les poids valent 1. Se pose alors la ques-
tion d’adapter le parcours pour calculer les distances dans un graphe pondéré. Mais
cette idée se heurte a la nature méme du parcours qui visite les sommets voisins d'un
sommet, sans se soucier de la valeur du poids de I'aréte. Ce qui interdit toute mise
en oeuvre directe du parcours en largeur pour calculer les distances.

Toutefois, pour contourner la difficulté précédente, on pourrait transformer tout
graphe pondéré avec des poids entiers positifs par un graphe dont tous les poids
des arétes seraient 1. Sur chaque aréte de poids p, (p — 1) sommets seraient ajou-
tés, toutes les arétes portant désormais un poids 1. Le parcours en largeur devien-
drait alors pertinent. Cette solution, bien que séduisante, présente plusieurs incon-
vénients. Tout d’abord, ajouter artificiellement des sommets rend les parcours moins
efficaces puisque leur complexité dépend directement du nombre de sommets. Avec
des poids dont les valeurs seraient déraisonnablement élevées, on imagine facile-
ment la faible efficacité de la solution. De plus, le parcours passerait 'essentiel de
son temps a visiter des sommets qui, dans le graphe initial, n’existent pas et, finale-
ment, ne présente que peu d’'intérét.

a. Noter'usage du déterminant indéfini un. Des chemins différents peuvent relier deux sommets,
certains d’entre eux étant de méme distance entre les deux sommets.

n PARCOURS : LALGORITHME DE DIJKSTRA

Edsger DksTRA (1930 - 2002) est un informaticien néerlendais qui a regu le prix
TURING en 1972 pour ses nombreuses contributions majeures. Adepte des beaux al-
gorithmes, il a largement contribué au développement de la science et de l'art des
langages de programmation. De nombreux aphorismes lui sont attribués, notam-
ment : La recherche d'un plus court chemin d’'un graphe n'est jamais celui que l'on
croit; il peut surgir de nulle part et la plupart du temps, il nexiste pas; ou encore : Les
progres ne seront possibles que si nous pouvons réfléchir sur les programmes sans les
imaginer comme des morceaux de code exécutable. En 2002, en son honneur, le prix
PoDC est renommé prix DIJKSTRA, qui récompense des travaux importants dans le
domaine des systeme distribués.

Nous commencons par détailler 'algorithme sur un premier exemple, avant de for-
maliser un peu plus, puis de le coder en Python. Nous reprenons le vocabulaire
adopté dans le précédent chapitre : un sommet est soit non découvert, soit décou-
vert, soit visité.

m Exemple

Commencons par détailler I'algorithme sur un premier exemple, a partir par
exemple du sommet 6 ci-dessous. En fin d’algorithme, nous obtiendrons les dis-
tances (minimales) depuis 6 jusqu’a n'importe quel sommet du graphe; elles se-
ront stockées ultérieurement dans un dictionnaire, pour le moment nous les indi-
quons dans un tableau. Voici les grandes étapes :

® on initialise un tableau des distances avec 0 (pour le sommet source), et +oco
pour les autres. On marque le sommet source (6 ici) comme visité.

® On explore les voisins non visités v de u = 6 : pour chaque tel sommet v, on
indique alors dans le tableau la plus petite valeur entre I'ancienne distance, et
celle ayant permis de découvrir v (c’est-a-dire ici 0+ p(u, v) ou p(u, v) désigne
le poids de l'arc u — v).

® Onrecommence le procédé avec u qui estle sommet de distance minimale dans
le tableau, et tant qu’il reste des sommets découverts non visités.

ITC © 2025-2026

W/ Lycée Michel MONTAIGNE — Bordeaux

Sommet

On recommence ensuite avec le sommet 5 qui est celui de distance minimale. Le
sommet 6 est marqué comme visité : sa colonne de distances ne doit plus changer.

Sommet

On recommence ensuite avec le sommet 4 qui est celui de distance minimale. On le
marque comme Visité.

On recommence ensuite avec le sommet 2 qui est celui de distance minimale. On le
marque comme Visité.

Sommet

On recommence ensuite avec le sommet 3 qui est celui de distance minimale. On le
marque comme Visité.

ITC © 2025-2026

W/ Lycée Michel MONTAIGNE — Bordeaux

Sommet

On marque ensuite 1 comme visité : il n'y a plus aucun sommet découvert et non
visité. Lalgorithme est terminé.

BILAN. Dans chaque colonne du tableau, la derniere valeur contient alors la dis-
tance minimale.

Distance min (a 6 4 5 2 1 0
6)

Remarque 1 Au moment de la sélection du prochain sommet a visiter, si plu-
sieurs sont de distance minimale dans le tableau, on peut choisir 'un d’entre
eux arbitrairement.

Exercice 1 [Sol1] Sur le graphe précédent, appliquer 'algorithme de DIJKSTRA a
partir du sommet 2.

m Principe de sous-optimalité

L algorithme de DIJKSTRA repose sur le principe de sous-optimalité adapté a la re-
cherche d’'un plus court chemin. La proposition qui suit est une des étapes de la
preuve de l'algorithme de DIJKSTRA, qui est difficile.

Proposition 1| Principe de sous-optimalité
Soit ¢ un plus court chemin allant d'un sommet u vers un sommet v d’'un graphe.

c .
Notons u ~ v un tel plus court chemin.
. . PR TIY C1 C2 .
Alors si ¢ passe par un sommet intermédiaire s, u ~ s et s ~ v sont aussi des
plus courts chemins.

Ce résultat affirme que 'optimalité de la solution du probleme du calcul d’'un plus
court chemin passe par 'optimalité des solutions des sous-problemes de calculs de
plus courts chemins.

Dit autrement, déterminer un plus court chemin entre deux sommets u et v fournit
des plus courts chemins entre u et tous les sommets situés sur le chemin aboutissant
en v. De tels problemes peuvent étre résolus par des méthodes dites de programma-
tion dynamique®.

Bien qu’elle puisse étre omise en premiere lecture, la démonstration de ce résultat
se fait par I'absurde.

Preuve SiG = (S,A) estun graphe pondéré de valuation définie par une fonction p, chaque

arc (v;,v;) € S a un poids p(v;, v;). Pour tout chemin y = (x,, ¥y, ..., X;) dans G, le poids
k-1
du chemin est : 8(y) = }_ p(x;,x;,,). Considérons un plus court chemin ¢ du sommet u

au sommet v, il vérifie all(;[r)s d,[v] = 8(c). Soit s un sommet intermédiaire de ce plus court
chemin, de sorte que u Ly,

Supposons par 'absurde qu'il existe un chemin ¢} plus court pour aller de u a s : 6(c}) <
8(c;). Alors il existe un chemin u A sZpdeuavde poids: 6(c})+8(c,) <8(c,)+8(c,) =
d,[v], ce qui est absurde car s A u? restun plus court chemin. — Contradiction

Le chemin ¢, est donc un plus court cheminde u a s : d,[s] = 8(¢;). La méme analyse vaut
pour c,.

Cette proposition permet donc d’expliquer le choix du sommet d’étiquette minimale
a chaque étape : en effet, celui qui est actuellement d’étiquette minimale ne pourra
jamais plus voir son étiquette améliorée par un autre choix de sommet (car les autres
sommets non encore visités sont d’étiquette supérieure).

m Présentation générale

Lalgorithme de DUKSTRA calcule tous les plus courts chemins entre un sommet
donné et les autres sommets d'un graphe. Sa mise en oeuvre suit le principe de sous-
optimalité en déterminant, de proche en proche, les distances d'un sommet de dé-
part u vers chacun des sommets du graphe. En pratique, un dictionnaire des dis-
tances d,, est initialisé avec des clés égales aux étiquettes des sommets et des valeurs

2. Ce theme sera abordé en deuxiéme année.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

égales a l'infini, excepté pour le sommet de départ pour lequel la distance est zéro.
En Python, il est possible de définir un tel infini par float("inf"), cet objet étant
reconnu par Python comme I'équivalent de I'infini, que ce soit pour des entiers ou
des flottants!

INITIALISATION. SiG = (S,A) est un graphe pondéré par des poids positifs définis
par la fonction de pondération p, I'initialisation de 'algorithme consiste en :

d,[ul]=0, et: VveS~{u}, d,[v]=+oo.

ETAPE 1. Lalgorithme part du sommet u et le marque comme visité. Les n; som-
mets voisins non visités de u, notés v, i, ..., v, ,,, sont découverts et on procede au
reldchement de chaque arc (u, v, ;), a savoir :

® sid,[u]+p(u,1 ;) <d,[v;]alorsd,[v ;] estredéfinie par d, [u] + p(u, v, ;);
® sinonlavaleur de d,[v, ;] reste inchangée.

ATissue de cette premiére étape, toutes les distances d,[v, ;] étant initialement in-
finies, le dictionnaire d,, devient :
Vie[l,n],

Lo e dylv] = plu,m,)
du[u] —O; et: { VUES\{u, Vl,-u»Vl,nl}’

d,[v] =+oo.

ETAPE 2. Parmi tous les sommets découverts {1, 0, }, I'algorithme identi-
fie ensuite le sommet, noté v}, de distance minimale d,[v,]. Le principe de sous-
optimalité assure alors que cette distance est effectivement la plus courte distance
entre u et v;. Savaleur dans le tableau ne doit plus évoluer. Le sommet v, sert alors de
nouveau sommet de départ et est marqué comme visité. Les n, sommets voisins non
visités de vy, notés vy 1, ..., 1 ,, sont alors découverts et on proceéde au reldchement
de chaque arc (v, 1 ;)

® Sid,[n]+p(n,n,;)<d,[wr;]aorsd,[w, ;] estredéfinie par d,[v,] + p(v1, 1 ;).
® Sinon lavaleur de d, [, ;] reste inchangée.

Ces étapes sont répétées tant que I'ensemble des sommets découverts n'est pas vide.
Quand cet ensemble est vide, tous les sommets ont été visités et les valeurs alors
contenues dans d,, sont les plus courtes distances de u a chacun des sommets du
graphe.

Implémentation informatique

FILE DE PRIORITE. La présentation précédente de 'algorithme de DyKSTRA ne
précise pas dans quelle structure de données les sommets découverts sont stockeés.
Il en est de méme de I'identification du sommet de distance minimale contenu dans
cette structure. Or le choix de cette structure a des conséquences sur les perfor-
mances de l'algorithme. Si 'algorithme de DIJKSTRA est vu comme une généralisa-
tion du parcours en largeur, la file est une solution possible. Mais 'extraction du bon
sommet est coliteuse sans parler des éventuelles mises a jour des distances associées
aux sommets déja présents dans la structure.

La structure de données la plus adaptée pour répondre aux besoins de I'algorithme
est une file de priorité. Chaque information stockée dans la structure est accompa-
gnée d'une deuxieme information appelée sa priorité. Lintérét essentiel de la struc-
ture est de permettre I'extraction et I'ajout d’information en réorganisant dynami-
quement la structure pour préserver l'ordre des priorités avec, pour une file de prio-
rité de taille n, une complexité en O (logn).

Les files de priorités n'étant pas au programme, nous utiliserons un module spéci-
fique qui implémente une telle structure : le module heapq® préalablement chargé
par:

import heapq

Les fonctions de manipulation de la structure sont les suivantes :

® [Création d’une file de priorité] On déclare d’abord une liste vide hq puis
heapq.heapify(hq) transforme hq en une file de priorité. Une liste non vide
de taille n peut également étre transformée en une file de priorité de la méme
facon. La complexité temporelle de 'opération est O (n).

® [Ajout] Linstruction heapq.heappush(hg,x) ajoute un élément x dans une
file de priorité hqg. Si hg comporte initialement n éléments, la réorganisation qui
peut en découler est de complexité en O (logn).

® [Extraction] Linstruction heapq.heappop(hq) supprime et renvoie 1'élé-
ment de priorité minimale de la file de priorité hq. Si la file est vide, un mes-
sage d’erreur est renvoyé. La encore, si hq comporte initialement n éléments,
en raison d'une possible nécessité de réorganiser les données, la complexité de
I'opération est en O (log).

3. Les files de priorité peuvent étre implémentées a I'aide de tableaux ayant la propriété de tas
(autre structure de données). En anglais, un tas se dit heap et une file de priorité ainsi implémentée est
désignée par heap queue.

ITC © 2025-2026

Lycée Michel MONTAIGNE — Bordeaux

/

A

® [Test file de priorité vide] Lebooléen len(hgq) == 0(len(hg) > 0)ouren-
voie True si la file de priorité hp est vide, False si elle n’est pas vide. Lopération
est de complexité O (1).

Exemple : apres le remplissage d’une liste avec des entiers pris au hasard dans I'in-
tervalle [25,75][(ligne 7), puis sa transformation en file de priorité (ligne 11), une
boucle (lignes 15 a 17) vide la file de priorité et affiche les éléments dans 'ordre de
leur extraction. La colonne de droite ci-dessous présente un exemple d’exécution du
code.

Noter que dans cette implémentation, la priorité minimale de]’élément situé en téte
de file".

>>> import heapq

>>> import numpy as np

>>> a, b = ,

>>> N =

>>> hq = [np.random.randint(a,b) for
— entiers tirés au hasard

>>> hq

__in range(n)] # Liste de n |

[54, 73, 40, 45, 47, 37, 57, 74, 66, 35]
>>> heapq.heapify(hq) # Définition d'une file de priorité hq
>>> hq
[35, 45, 37, 54, 47, 40, 57, 74, 66, 73]
>>> while len(hq) > 0: # # Extraction des entiers de hq
x = heapq.heappop(hq)
print(x)

4. La réorganisation des données lors de chaque ajout ou extraction n'est pas évidente a com-
prendre sauf a voir l'organisation sous forme arborescente. Ce sujet n’étant pas au programme, tout
lecteur curieux est invité a consulter un ouvrage spécilisé, comme le livre de Cormen, Leiserson, Rivest
- Introduction a l'algorithmique, a votre disposition au CDI.

Lintérét de cette structure pour l'algorithme de DIJKSTRA est de permettre I'iden-
tification des sommets de distances minimales; dans I'exemple précédent, chaque
sommet a la méme priorité (la liste ne comporte pas de couple). Désormais, on sou-
haite que chaque fois qu'un sommet est découvert, un couple d’informations soit
stocké dans une file de priorité. Le premier élément du couple est la valeur de la dis-
tance calculée apres relachement d’une aréte (v;, v;). Le second élément du couple
est'étiquette v; du sommet découvert. C'est la premiére information du couple qui
permet la réorganisation des données lors d'un enfilement ou d'un défilement.

Le code ci-dessous illustre cette idée.
>>> hq = [(10, 'a'), (5, 'b"), (2,
— couples
>>> hq
[(10, 'a'), (5,
>>>
>>> heapq.heapify(hq) # file de priorité
>>> hq
[(2, 'c'), (5,
>>>
>>> heapq.heappush(hqg, (1,
>>> hq
[(1, 'e"), (2, 'c'), (10, 'a'), (8,
>>>
>>> while len(hq) > 0: # Extraction des couples de hq
x = heapq.heappop(hq)
print(x)

'c'), (8, 'd')] # liste de |\

‘b"), (2, 'c"), (8, 'd')]

‘b"), (10, 'a'), (8, 'd')]

'e')) # Ajout du couple {(1,'e')} dans |\

'd'), (5, 'b")]

—_ o~ o~~~
- o T 0O M
-~ — ~— ~—

, ‘a')

Les sommets sont ici défilés, en respectant la regle de priorité de poids; les petits
poids en premier.

Remarque 2 Une implémentation par listes (comme pour les files et piles) est
aussi possible, mais rédhibitoire en terme de complexité; plus précisément, on
pourrait considérer une liste de couples ou dans chaque couple on indiqueraitle
sommet ainsi que son poids. Le soucis majeur de cette représentation consiste

ITC © 2025-2026

™~

/M/ Lycée Michel MONTAIGNE — Bordeaux

en I'étape de recherche du sommet de poids minimal (complexité linéaire, alors
que le module présenté ci-dessous donnera une complexité logarithmique).

MISE EN OEUVRE PYTHON. Il est a présent possible de mettre en oeuvre 1'algo-
rithme de DikSTRA dans le langage Python. Le code est similaire a celui de par-
cours en largeur. La file est remplacée par une file de priorité qui contient des
couples (distance,sommet) comme indiqué ci-dessus. L'étape d’enfilement com-
porte un calcul lié au relachement des arétes. La fonction dijkstra ci-dessous re-
coit un graphe g défini sous la forme d’un dictionnaire dont les clés sont les som-
mets et dont les valeurs sont les listes des arcs d’origine la clé, un arc étant un couple
(sommet de destination, poids) et un sommet v_init a partir duquel sont recher-
chés les plus courts chemins. La fonction renvoie un couple formé du dictionnaire
des distances minimales du sommet v_init aux sommets du graphe et du diction-
naire du prédécesseur de sommet v dans un chemin de longueur minimaldev_init
au.
def dijkstra(g, v_init):
visited = {x : False for x in g}
pred = {x : None for x in g}
dist = {x : float('inf') for x in g}
dist[v_init] =
hg = [(0, v_init)]
heapqg.heapify(hq)
while len(hq) >
dv, v = heapq.heappop(hq)
if not visited[v]:
visited[v] = True
for w, dvw in g[v]:
if not visited[w]:
dw = dv + dvw
if dw < dist([w]:
dist[w] = dw
pred[w] = v
heapq.heappush(hg, \
(dw, w))

dico des sommets visités
dico des predecesseurs
dico des distances

vinit est a distance 0 de lui-méme

création de la FP
visite des sommets

extraction du sommet de prio min

parcours des voisins non visités de v
reldchement de l'aréte (v,w)

maj de la distance min
maj du prédécesseur

ajout dans la FP
return dist, pred

Ci-dessous un exemple de mise en oeuvre avec le dictionnaire g1 associé au graphe
de la figure Figure 1.
>>> gl = {

‘a' + [('b', 3), ('d', 9)],

~ e~ o~~~ o~~~
SSKQ o DO o d —+Hh O

‘b [('a', 1),
‘e’ [('b", 1),
dtos [(tat, 7)),
‘e’ + [('b", 3),
£ (e, 2),
‘g' + [('d', 3),
th o [(e', 4),
it [f, 4),

), (‘e', 2)1,
)1,
Y, (*g', 9)1,
o ("5, 20
), (*i', 6)1,
)1,
), (*i', 5)1,
)1}

(*h*, 8)1,

>>>

>>> dist,

>>> dist

{'a': 0, 'b': 3, 'c¢': 7, 'd': 9, 'e': 5, 'f': 7, 'g': , 'h': \

= , '1': }

>>> pred

{'a': None,
ht,

pred = dijkstra(gl, 'a')

|b|: |a|’ |C|:
|h|:

Ibl,
|.f|}

|d|: |a|, |e|: Ibl, Ifl:

I |g|:

COMPLEXITE. Pourun graphe G = (S,A), notons |S| et |A| lesnombres de sommets
et d’arétes. La complexité du code dépend largement de celle de la file de priorité. Les
opérations a I'ajout ou a I'extraction dans une telle file de priorité sont de complexité
au pire en O (logn) ou1 n est la taille de la file.

On peut donc analyser la complexité temporelle de dijkstra de la facon suivante.

® [Coiitdelinitialisation] La construction des trois premiers dictionnaires est
de cotit O (|S]), a chaque fois en raison de la boucle sur les clés du graphe. La
création de la file de priorité esticien O (1).

® [Coiit du parcours] Lalgorithme visite chaque arc au plus une fois et chaque
visite peut conduire a I'ajout d'un élément dans la file. La file de priorité peut
donc contenir jusqu’a |A| éléments. Les opérations d’ajout et d’extraction ayant
un coft logarithmique, chaque opération sur la file a donc un cotit O (log|A|).
Or |A| < |S|? de sorte que log|A| = O (log|S|). D’ot1 un cofit total O (|A|log|S|)
ou encore en O (|S|*log|S|).

Pour plus de détails, le livre de Cormen, Leiserson, Rivest - Introduction a lalgorith-
mique est disponible au CDI.

APPLICATION A LA RECHERCHE DE
fonction dijkstra(g,v_init) peut-étre

PLUS COURT CHEMIN. La
transformée® en une fonction

5. C’estl'objet d'un exercice du TP.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

dijkstra path(g,v_init,v fin) prend en entrée deux sommets v_init et
v_fin d'un graphe G codé par le dictionnaire g et qui :

® lorsque v_fin n'est pas accessible depuis v_init, affiche un message l'indi-
quant,

® lorsque v_fin est accessible depuis v_init, renvoie le triplet (N,d,C) ou N est
le nombre de sommets qui ont été visités pour détecter un plus court chemin,
d estladistancedev_init av_fin et C est un meilleur chemin, i.e. une liste de
sommets, menantdev_initav_fin.

Notons qu’il n’est pas ici nécessaire de parcourir tout le graphe : on peut s’arréter
des que 'on trouve v_fin. Ci-dessous l'illustration de la recherche d'un plus court
chemin du sommet (2,2) au sommet (4,4) :

0.0 QP
CACESASES
D 8.8.0
LX)
TACEINTRE

Fin du parcours : 15 sommets visités, distance
obtenue : 8, 10 sommets visités inutilement.

Notons que l'algorithme visite tous les sommets par ordre de distance croissant de-
puisv_initjusqu’arencontrerv fin, cela conduit donc a visiter inutilement beau-
coup de sommets. Pour 'améliorer, il faudrait “forcer” I'algorithme a prioriser I'étude
des sommets qui “sont dans la bonne direction”. Pour cela, et puisque c’est les som-
mets de priorité minimale qui sont traités en premier, il faudrait dans la file de prio-
rité diminuer la priorité des sommets qui semblent se rapprocherv_fin et augmen-
ter celle des sommets qui semblent s’en éloigner. Il faut donc pouvoir quantifier la
proximité d'un sommetav_fin, c’est-a-dire donner une estimation de ce qu’il reste
a parcourir. Nous allons le mettre en place avec la notion d’heuristique et 1’algo-
rithme A*.

n ALGORITHME A*

m Informer l'algorithme de DiJKSTRA

Lalgorithme de DKSTRA peut étre utilisé pour déterminer un plus court chemin
entre un sommet de départv_init et un sommet d’arrivée v_fin. Il suffit pour cela
soit de lui faire rechercher tous les plus courts chemins issus de v_init, soit d’ar-
réter la recherche des que le sommet v_fin a été visité. Dans les deux cas, pour
construire la solution, I'algorithme explore un grand nombre de sommets dont cer-
tains ne semblent pas toujours pertinents au regard du résultat escompté.

Pour illustrer cette idée, considérons la carte de France (Figure 2) en vue de trouver
un plus court itinéraire routier de Bordeaux a Strasbourg. Un rapide coup d’oeil nous
permet généralement d’identifier les principaux axes routiers utiles. En particulier,
sont immédiatemment rejetés tous les itinéraires qui auraient tendance a augmen-
ter la distance a parcourir. Mais comment un algorithme peut-il faire de méme? La
réponse est simple : il ne peut pas. Tout au moins, pas si on ne lui apporte pas d’in-
formation complémentaire. L'algorithme de DIJKSTRA est un exemple d’algorithme
non informé. De fait, pour trouver un itinéraire optimal, il va explorer un tres grand
nombre d’itinéraires parmi lesquels certains ne présenteront aucun intérét pour ré-
pondre a notre besoin. Alors, comment I'informer et 'orienter dans sa recherche?

Notre lecture de la carte nous meéne a orienter nos recherche d’itinéraire dans la di-
rection Bordeaux-Strasbourg. Les directions Bordeaux-Nantes, Bordeaux-Toulouse,
Bordeaux-Marseille sont d’emblée éliminées du champ d’investigation. Cette atti-
tude peut étre partiellement traduite sous forme algorithmique en orientant les re-
cherches: on parle d’ algorithme informé. Lalgorithme A* ® appartient a cette catégo-
rie. Dans une certaine mesure, il est une généralisation de I'algorithme de DiJKSTRA
qui peut trouver les mémes solutions optimales que ce dernier, sous réserve que cer-
taines conditions soient satisfaites .

m Principe de A*

Lidée générale de I'algorithme A* est de favoriser les chemins qui meénent plus rapi-
dement vers la solution. Bien évidemment, il n’existe pas un seul moyen de répondre
a cet impératif car sinon, cela signifierait qu'on a trouvé la solution optimale qui est
justement ce que I'on cherche. Mais on peut orienter les choix de I'algorithme en

6. Prononcer A étoile en francais, A star en anglais.
7. Iln’entre pas dans le cadre de ce cours de développer ce point.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Calas
A25
.
N 26] LILLE
CHE A16
MA N A3
LA ARRAS®"
AT] jA2
A I AMIENS | s
5 29 w-Guientin | CHARLEVILLE®
-MEZIERES }
Az a16 o o2
T (ROUEN _ peatyhs v e = =
&,
LSAINTID ~ 7T s METZ
Aga] \CAEN i PONTORE AT st i »
; . R B PARIS: e P
5 g NANTERRE®: @ BOBIGHY CHAIONS-1, 0 Vi <
X Sintdo N[« SsiarrL EN-CHAMPAGNE . A oe
Brest_[Niz h VERSAILLES o @ NANCY ~ STRASBOURG 4
oy SAINT-BRIEUC CHARTRES R M Za o e 3
Nz A8 . . T As %, . %, S
RERINES, L & TROVES, | e NL B S
©QuPER g . LAVAL S A10 388 s W &
A W2 Nl s V0 fAlD ! S PSh Sauupbir ML - cotmdt
iy B ORLEANS 1 K T
rient &\ VANNES. s < '
v e] Lol / N AUYERRE it
S 0 T L ; / N R &l ik~ BELFORTIASS [Mikouse
o Nigs ANGERS 28] /A wgo (A7 A A8 KL VESOUL
-Nazgir AT ~ - Ny) r
santNguire e~V TS - o DijoN, 3
NANTES S #1 - tf = 3 =] > o7
" 0] he 17/ BOURGES_> A][A31 A8 7117 BESANCON
Cholet b & S| \NEVERS
ABT |A20 -
. Thé Dakin-sf Saine LONSYE-SAUNIER
- [pormess. CHATEAUROUX o
SURYON A3 ™ Ose MOULINS % 39 3
MORTZ, [A10 N i
ST S AT 5 Mondugon Mhcon #A EEP:R'&E
OCEAN Y Azl e W
LA ROCHELLE” cutmer® A8 7 (s
AgaT A20 oS 4
- ¥ 89 At | J*nuNECY
2, LIMOGES . LYON %5/) A0
P COULEME CLERMUNPFERHAND‘ W ass r
789 Are iz a7 GaBERY)L
L & SSanténenne (A48 [y
ATLANTIQUE FERIGUELG, ok Tuue | Ads| WICRENOBLE
ive- b
I 489 AaGaillarde LERUY- ¥ 51
. EN .
BORDEAUX /5.~ AURILLAC ENVELAL PRIVAS /| VALENCE
. [a3] koG -
Gy
Lot »
TENDE
CAHORS® Aveyron b o
S e Az0 RODEZ -
-) b AST] 4DIGNELES-BAINS
Ny 4 o Shilsu b
MAR MONTAUBAN L 25|/ AViGNON
Lo2 & A62 A /5 NIMESeS (7 £
adador K [i ABS A7 o -
; »TOULOUSE 5 8 les A NICE
+ Bayonne AUCH . . T S Aiseen-Provence Ag)f e
Aoa 61 piiors | 17517 MONTPELLIER ", 11
rers & sz
PAU S TARBES, AT CARCASSONNE = MARSEILLE® gy %7
W O g 1 ‘s
E; TOULDN .
2 M E R
PERPICNAN o, AJACCIO
.

A MEDITERRANEETE

Echelle 1 : 5 400 000
1.¢m sur la carte représente 54 km
1 54 km
IGN 2016 - Licence ouverte L s

BASTIA
.

FIGURE 2 : Carte de France et de ses principaux axes routiers.

modifiant dans le code de DiyksTRA la priorité p,, des sommets w : elle n'est plus
simplement sa distance depuis v_init mais sa distance depuis v_init alaquelle on
ajoute une estimation h(w, vy;,) du cott de ce qu'il reste a parcourir de w jusqu’a

v_fin: ‘pw =d, [w]+ h(w,vﬁn)|.

La fonction h est appelée une heuristique, elle permet d’estimer la proximité de deux

sommets:

h(v, w) estle coiit estimé du chemin le moins cotiteux de v a w. Plusieurs

heuristique sont possibles, I'efficacité de I'algorithme A* étant conditionnée au choix
d’une heuristique adaptée a la situation.

On trouvera ci-apres le code de la fonctiona_star _path(g, v_init,v_fin, h)ou
I'heuristique est codée sous la forme d’un dictionnaire (clé : sommets, valeur : heu-
ristique du sommetav fin).

def a st
visi
pred
dist
dist
hq,
heap
whil

FP
Ca
if n

else

ar path(g, v_init,v_fin, h):

ted = {x False for x in g} dico des sommets visités
= {x : None for x in g} dico des prédécesseurs
= {x : float('inf') for x in g} dico des dist
[v init] = 0

N = [(h[v_init], v _init)], ©

q.heapify(hq)

e len(hg) > 0 and not visited[v fin]:

pv, v = heapq.heappop(hq)

if not visited[v]:
visited[v], N = True, N+1
for w, dvw in g[v]:

FP, compteur des sommets vis.

extraction du sommet de prio min

maj du compteur
parcours des vois. non visités de v

if not visited[w]:
dw = dist[v]+dvw
pw = dist[v]+dvw+h[w]

if dw < dist[w]:
dist[w], pred[w] = dw, Vv majdeladistetdu pred

heapq.heappush(hqg, (pw, w)) stockage dans la
lcul d'un chemin
ot visited[v fin]: cas otw vfin nest pas accessible
print("Pas de chemin de "+str(v_init)+" a "+str(v_fin))
: construction du chemin

C = [v_fin]
while C[0] != v _init:
w = pred[C[0]]
C [w]l] + C
return N, dist[v _fin], C

ITC © 2025-2026

10

W/ Lycée Michel MONTAIGNE — Bordeaux

Le code étant trés proche de celui de DIJKSTRA, le cofit de toutes les opérations y
est le méme. Seule s'ajoute la prise en compte de I'heuristique dont le cott peut,
dans notre cas, étre pris comme constant. La complexité de I'algorithme A* est donc
toujours en O (|A|)log|S|) soit en O(|S|*log|S|).

m Comparaisons DIJKSTRA/A*

[llustrons le déroulement de DJKSTRA et de A* sur différents graphes et différentes
heuristiques. L'étiquette d'un sommet sera ses coordonnées dans le plan et nous uti-
liserons comme heuristiques les distances suivantes de R? : soient u(x;, y;), v(x5, ¥»)

1
dy(u,v) =(lx3 =211 + [y, =3 1P)?

et p €[1,+o0], on pose :
oo, V) =max(|x, —x[, 1y, = nl).

Au-dessus des sommets découverts et non-visités (en bleu) est indiqué soit la dis-
tance au sommet initial (DIJKSTRA), soit la distance au sommet initial + 'arrondi a
l'entier le plus proche de I'heuristique (A*).

Figure 3 — EXEMPLE 1 : A* CONVERGE PLUS VITE VERS UN AUSSI BON CHEMIN

Dijkstra : 15 sommets visités, distance obtenue : 8, 10 A* heuristique d, : 8 sommets visités, distance
sommets visités inutilement. obtenue : 8, 3 sommets visités inutilement.

Figure 4 — EXEMPLE 2 : A* CONVERGE PLUS VITE VERS UN MOINS BON CHEMIN

0.0 TWO 0.0 TWH
TDOWD QVOED
ﬁ@ @%# ﬁﬁ @%f
&R0 QIO

GTEBED TG

Dijkstra : 14 sommets visités, distance obtenue : 7, 6 A* heuristique d; : 8 sommets visités, distance
sommets visités inutilement. obtenue : 11, 3 sommets visités inutilement.

}: 10 g 418

Dijkstra : 7 sommets visités, distance obtenue : A* heuristique d; : 9 sommets visités, distance
sommet visité inutilement. obtenue : 13, 1 sommet visité inutilement.

ITC © 2025-2026

11

W/ Lycée Michel MONTAIGNE — Bordeaux

Figure 6 — EXEMPLE 4 : ...SAUF SI ON CHANGE D’HEURISTIQUE

qwnp
@Q#

%/@6

A* heuristique d, : 7 sommets visités, distance A* heuristique d, : 9 sommets visités, distance
obtenue : 6, 1 sommet visité inutilement. obtenue : 13, 1 sommet visité inutilement.

Applications

Lalgorithme A* présente I'avantage sur celui de DIJKSTRA de réduire considérable-
ment |'exploration d'un graphe, avantage qui permet souvent de trouver une so-
lution plus rapidement, surtout quand les graphes ont des tailles importantes. Cet
avantage est d’autant plus important que certains graphes présentent un nombre
tres élevés de sommets, intertisant parfois leur définition préalable. On doit alors
se tourner vers une exploration du graphe qui découvre, au fur et a mesure qu'’il les
construit, ses sommets lors du parcours.

C’est le cas des graphes oli chaque sommet peut étre associé a la configuration d'un
jeu comme le taquin®, I'ane rouge”’ et le Rush-Hour '°. Chaque déplacement d’'une
piéce dans ces jeux peut définir le sommet d'un graphe. Chaque aréte entre deux
sommets n'existe que si le passage d'une configuration a une autre du jeu est auto-
risée. Résoudre le jeu revient alors simplement a trouver un plus court chemin entre
une configuration initiale et la configuration finale du jeu, généralement connue!
Mais la difficulté est clairement la définition du graphe. Le nombre de configu-
rations, parfois extrémement élevé, ne permet pas sa construction exhaustive. Et
méme si c’était le cas, le parcours de ce dernier avec l'algorithme de DiJKSTRA ne
serait pas raisonnable.

8. https://fr.wikipedia.org/wiki/Taquin
9. https://en.wikipedia.org/wiki/Klotski
10. https://en.wikipedia.org/wiki/Rush Hour (puzzle)

En visitant moins de configurations, l'algorithme Ax* se révele alors beaucoup
plus efficace. Toutefois, il ne garantit pas toujours que la solution renvoyée soit la
meilleure. Elle peut parfois n’étre qu'une solution optimale au sens relatif du terme
et non au sens absolu. Tout est question d’heuristique. Ajoutons que d'un point de
vue algorithmique, la résolution de ces jeux est loin d’étre simple! Ainsi, trouver la
solution, c’est-a-dire un plus court chemin, a une configuration de taquin n x n est
un probleme NP-difficile. Seule la vérification d'une solution entre dans la classe
P

Parmi les applications, on peut également citer les déplacements sur grille, comme
dans les jeux vidéos. La Figure 8 illustre la mise en oeuvre des deux algorithmes pour
déterminer un plus court chemin entre un point de départ, situé en bas a gauche de
chaque grille, et un point d’arrivée, situé en haut a droite de chaque grille. Citons en-
finle domaine de I'Intelligence Artificielle qui fait un trés large usage des algorithmes
d’exploration.

11. Schématiquement, un probleme algorithmique entre dans la classeP s’il existe un algorithme de
complexité polynomiale qui le résout. Il entre dans la classe NP si on ne peut seulement que vérifier la
complexité polynomiale d'une solution candidate. Un probleme est dit NP-difficile si tout probleme de
la classe NP peut s’y ramener via une transformation appelée de réduction polynomiale. Si en outre, le
probléme lui-méme est NP, on le qualifie alors de NP-complet. Lune des questions fondamentales ac-
tuelles de I'informatique est de savoir si P et NP sont une seule et méme classe de complexité. Plus d’'in-
formations sont disponibles a ce sujetsur https://fr.wikipedia.org/wiki/Probléme NP-complet.

https://fr.wikipedia.org/wiki/Taquin
https://en.wikipedia.org/wiki/Klotski
https://en.wikipedia.org/wiki/Rush_Hour_(puzzle)
https://fr.wikipedia.org/wiki/Problème_NP-complet

ITC © 2025-2026

12

/M/ Lycée Michel MONTAIGNE — Bordeaux

A Ak L L R A LR L LR Ll L

FRR RN R R RN R RN RN D

FRF R R R R R RN R E R RN COD
FRRERRERR RN E RN RN 00
ALty Tt
B
R RS 2 22 22 E 2L A]
i ey
ran s SRS REE 0000
FRRRRR R AR R RS EE NN
AAEEEES S S S I SN E TS
R S B]
AL i LT T T B T Y]
AR E T Y L I
Ry s
BN e
FRRRERRERT D aa e sy
R R L Ty S e]
B e
ERD O LA RRE SRR R R R R R
R 2]
s e s s s s e s s s s e e e sl e s e e de A

G0 *
O w w R
CHUMBERBRRE
bR+ R R R SRS EE L]
PE SRR LR LY]
JRARERERERN
IRERERERY

-

"

ERERE G
GO

FIGURE 8 : Ensembles des sommets explorés lors du parcours d'une grille avec Dik-
jstra (a gauche) et A* (a droite).

SOLUTIONS DES EXERCICES

9202-5207 @ DLl €l XNeapJiog — INDIVINOW 13YdIW 89947 \Q\

	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:
	pbs@ARFix@43:
	pbs@ARFix@44:
	pbs@ARFix@45:
	pbs@ARFix@46:
	pbs@ARFix@47:
	pbs@ARFix@48:

