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Chapitre (S2) 5
Parcours de graphes pondérés &
Applications

1 Généralités . . . . . . . . . . . . . . . . . . . . .

2 Parcours : l’algorithme de
Dijkstra . . . . . . . . . . . . . . . . . . . . . . . .

3 Algorithme A* . . . . . . . . . . . . . . . . . . .

Objectifs
• Connaitre l’algorithme de DIJKSTRA

permettant de déterminer un plus
court chemindans un graphepondéré.

• Comprendre l’intérêt d’introduire
dans certains cas un terme d’heu-
ristique dans DIJKSTRA, et sa consé-
quence; l’algorithme A⋆.

L’objet de ce chapitre est de présenter des algorithmes de recherche d’un plus court
chemin dans des graphes pondérés, orientés ou non. La notion de parcours de
graphes est étroitement liée à cette recherche. Nous avons vu dans le Chapitre (S2) 4
que le parcours en largeur répond partiellement à notre objectif. Partiellement car
il ne permet la détermination d’un plus court chemin que dans un graphe non pon-
déré.

Pour des graphes pondérés, des algorithmes plus efficaces lui sont préférés. L’algo-
rithme de DIJKSTRA est l’un d’eux, qui ne s’appliquent qu’à des graphes à poids posi-
tifs pour des raisons qui seront présentées dans une deuxième partie. Enfin, d’autres
algorithmes tirent profit de propriétés particulières des graphes pour proposer des
solutions parfois aussi efficaces mais pas toujours optimales. Elles introduisent le
concept d’heuristique dont une découverte est proposée dans la dernière partie, à
travers la présentation de l’algorithme A*.

Cadre
COGS

Dans ce chapitre, tous les graphes sont codés par un dictionnaire.

1 GÉNÉRALITÉS

Considérons à présent un graphe pondéré, c’est-à-dire dont les arêtes portent une
information numérique. Par exemple le graphe ci-dessous.

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

3

1

4

1

5

9

2

6

5

3

5

8

97

93

23

84

62

64

FIGURE 1 : Graphe G1 orienté et pondéré.

Les poids (ou pondérations) des arcs sont ici des nombres entiers positifs. Des pon-
dérations négatives et non entières sont possibles. Mais conformément au pro-
gramme, seuls les graphes pondérés avec des poids positifs sont étudiés. Un para-
graphe justifiera ce choix. Dans la suite, le poids d’une arête¹ (𝑢,𝑣) est notée𝑝(𝑢,𝑣).
Par exemple, dans le graphe précédent, on a 𝑝(𝑒,𝑑) = 9,𝑝(𝑑,𝑒) = 5.

1. Ou d’un arc dans le cas d’un graphe orienté.

/ Lycée Michel Montaigne – Bordeaux 1 ITCCreative-Commons 2025-2026



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

2
IT
C
Creative-Commons

20
25
-2
02
6

1.1 Distance (minimale) entre deux sommets

Définition 1• La longueur ou poids d’un chemin dans un graphe pondéré est désormais
définie comme la somme des poids de ses arêtes.

• La définition de la distance entre deux sommets n’est pas modifiée : c’est la
longueur d’una plus court chemin entre les deux sommets.

d𝑢[𝑣] = min
γ∈Γ𝑢(𝑣)

δ(γ).

• Un plus court chemin entre deux sommets𝑢 et 𝑣 d’un graphe est un chemin
d’extrémités 𝑢 et 𝑣 dont la longueur est égale à sa distance d𝑢[𝑣].

Exemple 1 Sur le graphe G1, le chemin γ = (𝑒,𝑑,𝑔,ℎ,𝑖) est de longueur :
δ(γ) = 𝑝(𝑒,𝑑)+𝑝(𝑑,𝑔)+𝑝(𝑔,ℎ)+𝑝(ℎ,𝑖) = 9+9+5+5 = 28.

1.2 Une adaptation de BFS?

Dans un graphe non pondéré, le parcours en largeur permet le calcul des distances
entre deux sommets. On peut toutefois interpréter ce calcul comme celui des dis-
tances dans un graphe pondéré dont tous les poids valent 1. Se pose alors la ques-
tion d’adapter le parcours pour calculer les distances dans un graphe pondéré. Mais
cette idée se heurte à la naturemêmeduparcours qui visite les sommets voisins d’un
sommet, sans se soucier de la valeur du poids de l’arête. Ce qui interdit toute mise
en oeuvre directe du parcours en largeur pour calculer les distances.

Toutefois, pour contourner la difficulté précédente, on pourrait transformer tout
graphe pondéré avec des poids entiers positifs par un graphe dont tous les poids
des arêtes seraient 1. Sur chaque arête de poids 𝑝, (𝑝 − 1) sommets seraient ajou-
tés, toutes les arêtes portant désormais un poids 1. Le parcours en largeur devien-
drait alors pertinent. Cette solution, bien que séduisante, présente plusieurs incon-
vénients.Toutd’abord, ajouterartificiellement des sommets rend lesparcoursmoins
efficaces puisque leur complexité dépenddirectement dunombrede sommets. Avec
des poids dont les valeurs seraient déraisonnablement élevées, on imagine facile-
ment la faible efficacité de la solution. De plus, le parcours passerait l’essentiel de
son temps à visiter des sommets qui, dans le graphe initial, n’existent pas et, finale-
ment, ne présente que peu d’intérêt.

a. Noter l’usage du déterminant indéfini un. Des chemins différents peuvent relier deux sommets,
certains d’entre eux étant de même distance entre les deux sommets.

2 PARCOURS : L’ALGORITHME DE DIJKSTRA

Edsger DIJKSTRA (1930 - 2002) est un informaticien néerlendais qui a reçu le prix
TURING en 1972 pour ses nombreuses contributions majeures. Adepte des beaux al-
gorithmes, il a largement contribué au développement de la science et de l’art des
langages de programmation. De nombreux aphorismes lui sont attribués, notam-
ment : La recherche d’un plus court chemin d’un graphe n’est jamais celui que l’on
croit ; il peut surgir de nulle part et la plupart du temps, il n’existe pas ; ou encore : Les
progrès ne seront possibles que si nous pouvons réfléchir sur les programmes sans les
imaginer comme des morceaux de code exécutable. En 2002, en son honneur, le prix
PoDC est renommé prix DIJKSTRA, qui récompense des travaux importants dans le
domaine des système distribués.

Nous commençons par détailler l’algorithme sur un premier exemple, avant de for-
maliser un peu plus, puis de le coder en Python. Nous reprenons le vocabulaire
adopté dans le précédent chapitre : un sommet est soit non découvert, soit décou-
vert, soit visité.

2.1 Exemple

Commençons par détailler l’algorithme sur un premier exemple, à partir par
exemple du sommet 6 ci-dessous. En fin d’algorithme, nous obtiendrons les dis-
tances (minimales) depuis 6 jusqu’à n’importe quel sommet du graphe ; elles se-
ront stockées ultérieurement dans un dictionnaire, pour le moment nous les indi-
quons dans un tableau. Voici les grandes étapes :

• on initialise un tableau des distances avec 0 (pour le sommet source), et +∞
pour les autres. On marque le sommet source (6 ici) comme visité.

• On explore les voisins non visités 𝑣 de 𝑢 = 6 : pour chaque tel sommet 𝑣, on
indique alors dans le tableau la plus petite valeur entre l’ancienne distance, et
celle ayant permis de découvrir 𝑣 (c’est-à-dire ici 0+𝑝(𝑢,𝑣) où 𝑝(𝑢,𝑣) désigne
le poids de l’arc 𝑢→𝑣).

• Onrecommence leprocédéavec𝑢qui est le sommetdedistanceminimaledans
le tableau, et tant qu’il reste des sommets découverts non visités.
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6

2 4

1

3 5

3

1

1

2

5

3 1

3

1

Sommet 1 2 3 4 5 6

6 +∞ +∞ +∞ +∞ +∞ 0

6

2 4

1

3 5

3

1

1

2

5

3 1

3

1

6

4

5

Sommet 1 2 3 4 5 6

6 +∞ +∞ +∞ 3 1
On recommence ensuite avec le sommet 5 qui est celui de distance minimale. Le
sommet 6 estmarqué comme visité : sa colonne de distances ne doit plus changer.

6

2 4

1

3 5

3

1

1

2

5

3 1

3

1

4

3

6

5

Sommet 1 2 3 4 5 6

6 +∞ +∞ +∞ 3 1 0

5 +∞ +∞ 6 2
On recommence ensuite avec le sommet 4 qui est celui de distance minimale. On le
marque comme visité.

6

2 4

1

3 5

3

1

1

2

5

3 1

3

1

2 4

3

6

5

Sommet 1 2 3 4 5 6

6 +∞ +∞ +∞ 3 1 0

5 +∞ +∞ 6 2

4 +∞ 4 5
On recommence ensuite avec le sommet 2 qui est celui de distance minimale. On le
marque comme visité.

6

2 4

1

3 5

3

1

1

2

5

3 1

3

1

2 4

1

3

6

5

Sommet 1 2 3 4 5 6

6 +∞ +∞ +∞ 3 1 0

5 +∞ +∞ 6 2

4 +∞ 4 5

2 7 5
On recommence ensuite avec le sommet 3 qui est celui de distance minimale. On le
marque comme visité.

/ Lycée Michel Montaigne – Bordeaux 3 ITCCreative-Commons 2025-2026



/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

4
IT
C
Creative-Commons

20
25
-2
02
6

6

2 4

1

3 5

3

1

1

2

5

3 1

3

1

2 4

1

3

6

5

Sommet 1 2 3 4 5 6

6 +∞ +∞ +∞ 3 1 0

5 +∞ +∞ 6 2

4 +∞ 4 5

2 7 5

2 6
On marque ensuite 1 comme visité : il n’y a plus aucun sommet découvert et non
visité. L’algorithme est terminé.

Bilan. Dans chaque colonne du tableau, la dernière valeur contient alors la dis-
tance minimale.

Sommet 1 2 3 4 5 6

Distance min (à
6)

6 4 5 2 1 0

Remarque 1 Au moment de la sélection du prochain sommet à visiter, si plu-
sieurs sont de distance minimale dans le tableau, on peut choisir l’un d’entre
eux arbitrairement.

Exercice 1 [Sol 1] Sur le graphe précédent, appliquer l’algorithme de DIJKSTRA à
partir du sommet 2.

2.2 Principe de sous-optimalité

L’algorithme de DIJKSTRA repose sur le principe de sous-optimalité adapté à la re-
cherche d’un plus court chemin. La proposition qui suit est une des étapes de la
preuve de l’algorithme de DIJKSTRA, qui est difficile.

Proposition 1 | Principe de sous-optimalité
Soit 𝑐un plus court chemin allant d’un sommet𝑢 vers un sommet 𝑣d’un graphe.
Notons 𝑢 𝑐⤳𝑣 un tel plus court chemin.
Alors si 𝑐 passe par un sommet intermédiaire 𝑠, 𝑢

𝑐1⤳ 𝑠 et 𝑠
𝑐2⤳ 𝑣 sont aussi des

plus courts chemins.

Ce résultat affirme que l’optimalité de la solution du problème du calcul d’un plus
court chemin passe par l’optimalité des solutions des sous-problèmes de calculs de
plus courts chemins.

Dit autrement, déterminer un plus court chemin entre deux sommets 𝑢 et 𝑣 fournit
des plus courts chemins entre𝑢 et tous les sommets situés sur le chemin aboutissant
en 𝑣. De tels problèmes peuvent être résolus par desméthodes dites de programma-
tion dynamique².

Bien qu’elle puisse être omise en première lecture, la démonstration de ce résultat
se fait par l’absurde.

Preuve SiG= (S,A) est un graphepondéré de valuationdéfinie par une fonction𝑝, chaque
arc (𝑣𝑖,𝑣𝑗) ∈ S a un poids 𝑝(𝑣𝑖,𝑣𝑗). Pour tout chemin γ = (𝑥0,𝑥1,…,𝑥𝑘) dans G, le poids

du chemin est : δ(γ) =
𝑘−1
∑
𝑖=0

𝑝(𝑥𝑖,𝑥𝑖+1). Considérons un plus court chemin 𝑐 du sommet 𝑢

au sommet 𝑣, il vérifie alors d𝑢[𝑣] = δ(𝑐). Soit 𝑠 un sommet intermédiaire de ce plus court
chemin, de sorte que 𝑢

𝑐1⤳𝑠
𝑐2⤳𝑣.

Supposons par l’absurde qu’il existe un chemin 𝑐′1 plus court pour aller de 𝑢 à 𝑠 : δ(𝑐′1) <

δ(𝑐1). Alors il existe un chemin 𝑢
𝑐′1⤳𝑠

𝑐2⤳𝑣 de 𝑢 à 𝑣 de poids : δ(𝑐′1)+δ(𝑐2) < δ(𝑐1)+δ(𝑐2) =
d𝑢[𝑣], ce qui est absurde car 𝑠

𝑐1⤳𝑢
𝑐2⤳𝑡 est un plus court chemin. — Contradiction

Le chemin 𝑐1 est donc un plus court chemin de 𝑢 à 𝑠 : d𝑢[𝑠] = δ(𝑐1). La même analyse vaut
pour 𝑐2.

Cette propositionpermet doncd’expliquer le choix du sommet d’étiquetteminimale
à chaque étape : en effet, celui qui est actuellement d’étiquette minimale ne pourra
jamais plus voir son étiquette améliorée par un autre choix de sommet (car les autres
sommets non encore visités sont d’étiquette supérieure).

2.3 Présentation générale

L’algorithme de DIJKSTRA calcule tous les plus courts chemins entre un sommet
donné et les autres sommets d’un graphe. Sa mise en oeuvre suit le principe de sous-
optimalité en déterminant, de proche en proche, les distances d’un sommet de dé-
part 𝑢 vers chacun des sommets du graphe. En pratique, un dictionnaire des dis-
tances d𝑢 est initialisé avec des clés égales aux étiquettes des sommets et des valeurs

2. Ce thème sera abordé en deuxième année.
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égales à l’infini, excepté pour le sommet de départ pour lequel la distance est zéro.
En Python, il est possible de définir un tel infini par float("inf"), cet objet étant
reconnu par Python comme l’équivalent de l’infini, que ce soit pour des entiers ou
des flottants !

Initialisation. SiG= (S,A) est un graphe pondéré par des poids positifs définis
par la fonction de pondération 𝑝, l’initialisation de l’algorithme consiste en :

d𝑢[𝑢] = 0, et : ∀𝑣 ∈ S∖{𝑢}, d𝑢[𝑣] = +∞.

Étape 1. L’algorithme part du sommet 𝑢 et le marque comme visité. Les 𝑛1 som-
mets voisins non visités de 𝑢, notés 𝑣1,1,…,𝑣1,𝑛1 , sont découverts et on procède au
relâchement de chaque arc (𝑢,𝑣1,𝑖), à savoir :

• si d𝑢[𝑢]+𝑝(𝑢,𝑣1,𝑖) < d𝑢[𝑣1,𝑖] alors d𝑢[𝑣1,𝑖] est redéfinie par d𝑢[𝑢]+𝑝(𝑢,𝑣1,𝑖) ;
• sinon la valeur de d𝑢[𝑣1,𝑖] reste inchangée.

À l’issue de cette première étape, toutes les distances d𝑢[𝑣1,𝑖] étant initialement in-
finies, le dictionnaire d𝑢 devient :

d𝑢[𝑢] = 0, et : { ∀𝑖 ∈ J1,𝑛1K, d𝑢[𝑣1,𝑖] = 𝑝(𝑢,𝑣1,𝑖)
∀𝑣 ∈ S∖{𝑢,𝑣1,…,𝑣1,𝑛1 }, d𝑢[𝑣] = +∞.

Étape 2. Parmi tous les sommets découverts {𝑣1,1,…,𝑣1,𝑛1 }, l’algorithme identi-
fie ensuite le sommet, noté 𝑣1, de distance minimale d𝑢[𝑣1]. Le principe de sous-
optimalité assure alors que cette distance est effectivement la plus courte distance
entre𝑢 et𝑣1. Sa valeur dans le tableaunedoit plus évoluer. Le sommet𝑣1 sert alors de
nouveau sommet de départ et estmarqué comme visité. Les𝑛2 sommets voisinsnon
visités de 𝑣1, notés 𝑣2,1,…,𝑣2,𝑛2 , sont alors découverts et on procède au relâchement
de chaque arc (𝑣1,𝑣2,𝑖)

• Si d𝑢[𝑣1]+𝑝(𝑣1,𝑣2,𝑖) < d𝑢[𝑣2,𝑖] alors d𝑢[𝑣2,𝑖] est redéfinie par d𝑢[𝑣1]+𝑝(𝑣1,𝑣2,𝑖).
• Sinon la valeur de d𝑢[𝑣2,𝑖] reste inchangée.

Ces étapes sont répétées tant que l’ensemble des sommets découverts n’est pas vide.
Quand cet ensemble est vide, tous les sommets ont été visités et les valeurs alors
contenues dans d𝑢 sont les plus courtes distances de 𝑢 à chacun des sommets du
graphe.

2.4 Implémentation informatique

File de priorité. La présentation précédente de l’algorithme de DIJKSTRA ne
précise pas dans quelle structure de données les sommets découverts sont stockés.
Il en est demême de l’identification du sommet de distanceminimale contenu dans
cette structure. Or le choix de cette structure a des conséquences sur les perfor-
mances de l’algorithme. Si l’algorithme de DIJKSTRA est vu comme une généralisa-
tion du parcours en largeur, la file est une solution possible. Mais l’extraction du bon
sommet est coûteuse sansparler des éventuellesmises à jour des distances associées
aux sommets déjà présents dans la structure.

La structure de données la plus adaptée pour répondre aux besoins de l’algorithme
est une file de priorité. Chaque information stockée dans la structure est accompa-
gnée d’une deuxième information appelée sa priorité. L’intérêt essentiel de la struc-
ture est de permettre l’extraction et l’ajout d’information en réorganisant dynami-
quement la structure pour préserver l’ordre des priorités avec, pour une file de prio-
rité de taille 𝑛, une complexité enO(log𝑛).

Les files de priorités n’étant pas au programme, nous utiliserons un module spéci-
fique qui implémente une telle structure : le module heapq³ préalablement chargé
par :
import heapq

Les fonctions de manipulation de la structure sont les suivantes :

• [Création d’une file de priorité] On déclare d’abord une liste vide hq puis
heapq.heapify(hq) transforme hq en une file de priorité. Une liste non vide
de taille 𝑛 peut également être transformée en une file de priorité de la même
façon. La complexité temporelle de l’opération estO(𝑛).

• [Ajout] L’instruction heapq.heappush(hq,x) ajoute un élément x dans une
file de priorité hq. Si hq comporte initialement𝑛 éléments, la réorganisation qui
peut en découler est de complexité enO(log𝑛).

• [Extraction] L’instruction heapq.heappop(hq) supprime et renvoie l’élé-
ment de priorité minimale de la file de priorité hq. Si la file est vide, un mes-
sage d’erreur est renvoyé. Là encore, si hq comporte initialement 𝑛 éléments,
en raison d’une possible nécessité de réorganiser les données, la complexité de
l’opération est enO(log𝑛).

3. Les files de priorité peuvent être implémentées à l’aide de tableaux ayant la propriété de tas
(autre structure de données). En anglais, un tas se dit heap et une file de priorité ainsi implémentée est
désignée par heap queue.
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voie True si la file de priorité hp est vide, False si elle n’est pas vide. L’opération
est de complexitéO(1).

Exemple : après le remplissage d’une liste avec des entiers pris au hasard dans l’in-
tervalle [25,75[ (ligne 7), puis sa transformation en file de priorité (ligne 11), une
boucle (lignes 15 à 17) vide la file de priorité et affiche les éléments dans l’ordre de
leur extraction. La colonne de droite ci-dessous présente un exemple d’exécution du
code.

Noter que dans cette implémentation, la prioritéminimale de l’élément situé en tête
de file⁴.
>>> import heapq

>>> import numpy as np

>>> a, b = 25, 75

>>> n = 10

>>> hq = [np.random.randint(a,b) for _ in range(n)] # Liste de n \

↪ entiers tirés au hasard

>>> hq

[54, 73, 40, 45, 47, 37, 57, 74, 66, 35]

>>> heapq.heapify(hq) # Définition d'une file de priorité hq

>>> hq

[35, 45, 37, 54, 47, 40, 57, 74, 66, 73]

>>> while len(hq) > 0: # # Extraction des entiers de hq

... x = heapq.heappop(hq)

... print(x)

...

35

37

40

45

47

54

57

66

73

74

4. La réorganisation des données lors de chaque ajout ou extraction n’est pas évidente à com-
prendre sauf à voir l’organisation sous forme arborescente. Ce sujet n’étant pas au programme, tout
lecteur curieux est invité à consulter un ouvrage spécilisé, comme le livre de Cormen, Leiserson, Rivest
- Introduction à l’algorithmique, à votre disposition au CDI.

L’intérêt de cette structure pour l’algorithme de DIJKSTRA est de permettre l’iden-
tification des sommets de distances minimales ; dans l’exemple précédent, chaque
sommet a la même priorité (la liste ne comporte pas de couple). Désormais, on sou-
haite que chaque fois qu’un sommet est découvert, un couple d’informations soit
stocké dans une file de priorité. Le premier élément du couple est la valeur de la dis-
tance calculée après relâchement d’une arête (𝑣𝑖,𝑣𝑗). Le second élément du couple
est l’étiquette 𝑣𝑗 du sommet découvert. C’est la première information du couple qui
permet la réorganisation des données lors d’un enfilement ou d’un défilement.

Le code ci-dessous illustre cette idée.
>>> hq = [(10, 'a'), (5, 'b'), (2, 'c'), (8, 'd')] # liste de \

↪ couples

>>> hq

[(10, 'a'), (5, 'b'), (2, 'c'), (8, 'd')]

>>>

>>> heapq.heapify(hq) # file de priorité

>>> hq

[(2, 'c'), (5, 'b'), (10, 'a'), (8, 'd')]

>>>

>>> heapq.heappush(hq, (1, 'e')) # Ajout du couple {(1,'e')} dans \

↪ hq

>>> hq

[(1, 'e'), (2, 'c'), (10, 'a'), (8, 'd'), (5, 'b')]

>>>

>>> while len(hq) > 0: # Extraction des couples de hq

... x = heapq.heappop(hq)

... print(x)

...

(1, 'e')

(2, 'c')

(5, 'b')

(8, 'd')

(10, 'a')

Les sommets sont ici défilés, en respectant la règle de priorité de poids ; les petits
poids en premier.

Remarque 2 Une implémentation par listes (comme pour les files et piles) est
aussi possible, mais rédhibitoire en terme de complexité ; plus précisément, on
pourrait considérer une liste de couples oùdans chaque couple on indiquerait le
sommet ainsi que son poids. Le soucis majeur de cette représentation consiste
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en l’étape de recherche du sommet de poidsminimal (complexité linéaire, alors
que le module présenté ci-dessous donnera une complexité logarithmique).

Mise en oeuvre Python. Il est à présent possible de mettre en oeuvre l’algo-
rithme de DIJKSTRA dans le langage Python. Le code est similaire à celui de par-
cours en largeur. La file est remplacée par une file de priorité qui contient des
couples (distance,sommet) comme indiqué ci-dessus. L’étape d’enfilement com-
porte un calcul lié au relâchement des arêtes. La fonction dijkstra ci-dessous re-
çoit un graphe g défini sous la forme d’un dictionnaire dont les clés sont les som-
mets et dont les valeurs sont les listes des arcs d’origine la clé, un arc étant un couple
(sommet de destination,poids) et un sommet v_init à partir duquel sont recher-
chés les plus courts chemins. La fonction renvoie un couple formé du dictionnaire
des distances minimales du sommet v_init aux sommets du graphe et du diction-
naire duprédécesseur de sommet𝑢dansuncheminde longueurminimal dev_init
à u.
def dijkstra(g, v_init):

visited = {x : False for x in g} dico des sommets visités
pred = {x : None for x in g} dico des predecesseurs
dist = {x : float('inf') for x in g} dico des distances
dist[v_init] = 0 vinit est à distance 0 de lui-même
hq = [(0, v_init)]

heapq.heapify(hq) création de la FP
while len(hq) > 0: visite des sommets

dv, v = heapq.heappop(hq) extraction du sommet de prio min
if not visited[v]:

visited[v] = True

for w, dvw in g[v]: parcours des voisins non visités de v
if not visited[w]:

dw = dv + dvw relâchement de l’arête (v,w)
if dw < dist[w]:

dist[w] = dw maj de la distance min
pred[w] = v maj du prédécesseur
heapq.heappush(hq, \

(dw, w)) ajout dans la FP
return dist, pred

Ci-dessous un exemple de mise en oeuvre avec le dictionnaire g1 associé au graphe
de la figure Figure 1.
>>> g1 = {

... 'a' : [('b', 3), ('d', 9)],

... 'b' : [('a', 1), ('c', 4), ('e', 2)],

... 'c' : [('b', 1), ('f', 6)],

... 'd' : [('a', 7), ('e', 5), ('g', 9)],

... 'e' : [('b', 3), ('d', 9), ('f', 2), ('h', 8)],

... 'f' : [('c', 2), ('e', 6), ('i', 6)],

... 'g' : [('d', 3), ('h', 5)],

... 'h' : [('e', 4), ('g', 3), ('i', 5)],

... 'i' : [('f', 4), ('h', 8)]}

>>>

>>> dist, pred = dijkstra(g1, 'a')

>>> dist

{'a': 0, 'b': 3, 'c': 7, 'd': 9, 'e': 5, 'f': 7, 'g': 16, 'h': \

↪ 13, 'i': 13}

>>> pred

{'a': None, 'b': 'a', 'c': 'b', 'd': 'a', 'e': 'b', 'f': 'e', \

↪ 'g': 'h', 'h': 'e', 'i': 'f'}

Complexité. PourungrapheG= (S,A), notons |S| et |A| les nombresde sommets
et d’arêtes. La complexité du codedépend largementde celle de la file depriorité. Les
opérations à l’ajout ou à l’extraction dans une telle file de priorité sont de complexité
au pire enO(log𝑛) où 𝑛 est la taille de la file.

On peut donc analyser la complexité temporelle de dijkstra de la façon suivante.

• [Coût de l’initialisation] La construction des trois premiers dictionnaires est
de coût O(|S|), à chaque fois en raison de la boucle sur les clés du graphe. La
création de la file de priorité est ici enO(1).

• [Coût du parcours] L’algorithme visite chaque arc au plus une fois et chaque
visite peut conduire à l’ajout d’un élément dans la file. La file de priorité peut
donc contenir jusqu’à |A| éléments. Les opérations d’ajout et d’extraction ayant
un coût logarithmique, chaque opération sur la file a donc un coût O(log |A|).
Or |A| ⩽ |S|2 de sorte que log |A| = O(log |S|). D’où un coût total O(|A| log |S|)
ou encore enO (|S|2 log |S|).

Pour plus de détails, le livre de Cormen, Leiserson, Rivest - Introduction à l’algorith-
mique est disponible au CDI.

Application à la recherche de plus court chemin. La
fonction dijkstra(g,v_init) peut-être transformée⁵ en une fonction

5. C’est l’objet d’un exercice du TP.
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dijkstra_path(g,v_init,v_fin) prend en entrée deux sommets v_init et
v_fin d’un graphe G codé par le dictionnaire g et qui :

• lorsque v_fin n’est pas accessible depuis v_init, affiche un message l’indi-
quant,

• lorsque v_fin est accessible depuis v_init, renvoie le triplet (N,d,C) où N est
le nombre de sommets qui ont été visités pour détecter un plus court chemin,
d est la distance de v_init à v_fin et C est un meilleur chemin, i.e. une liste de
sommets, menant de v_init à v_fin.

Notons qu’il n’est pas ici nécessaire de parcourir tout le graphe : on peut s’arrêter
dès que l’on trouve v_fin. Ci-dessous l’illustration de la recherche d’un plus court
chemin du sommet (2,2) au sommet (4,4) :
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Initialisation Fin du parcours : 15 sommets visités, distance
obtenue : 8, 10 sommets visités inutilement.

Notons que l’algorithme visite tous les sommets par ordre de distance croissant de-
puis v_init jusqu’à rencontrer v_fin, cela conduit donc à visiter inutilement beau-
coupde sommets. Pour l’améliorer, il faudrait“forcer” l’algorithmeàprioriser l’étude
des sommets qui “sont dans la bonne direction”. Pour cela, et puisque c’est les som-
mets de priorité minimale qui sont traités en premier, il faudrait dans la file de prio-
rité diminuer la priorité des sommets qui semblent se rapprocher v_fin et augmen-
ter celle des sommets qui semblent s’en éloigner. Il faut donc pouvoir quantifier la
proximité d’un sommet à v_fin, c’est-à-dire donner une estimation de ce qu’il reste
à parcourir. Nous allons le mettre en place avec la notion d’heuristique et l’algo-
rithme A*.

3 ALGORITHME A*

3.1 Informer l’algorithme de Dijkstra

L’algorithme de DIJKSTRA peut être utilisé pour déterminer un plus court chemin
entre un sommet de départ v_init et un sommet d’arrivée v_fin. Il suffit pour cela
soit de lui faire rechercher tous les plus courts chemins issus de v_init, soit d’ar-
rêter la recherche dès que le sommet v_fin a été visité. Dans les deux cas, pour
construire la solution, l’algorithme explore un grand nombre de sommets dont cer-
tains ne semblent pas toujours pertinents au regard du résultat escompté.

Pour illustrer cette idée, considérons la carte de France (Figure 2) en vue de trouver
unplus court itinéraire routier de Bordeaux à Strasbourg.Un rapide coupd’oeil nous
permet généralement d’identifier les principaux axes routiers utiles. En particulier,
sont immédiatemment rejetés tous les itinéraires qui auraient tendance à augmen-
ter la distance à parcourir. Mais comment un algorithme peut-il faire de même? La
réponse est simple : il ne peut pas. Tout au moins, pas si on ne lui apporte pas d’in-
formation complémentaire. L’algorithme de DIJKSTRA est un exemple d’algorithme
non informé. De fait, pour trouver un itinéraire optimal, il va explorer un très grand
nombre d’itinéraires parmi lesquels certains ne présenteront aucun intérêt pour ré-
pondre à notre besoin. Alors, comment l’informer et l’orienter dans sa recherche?

Notre lecture de la carte nous mène à orienter nos recherche d’itinéraire dans la di-
rection Bordeaux-Strasbourg. Les directions Bordeaux-Nantes, Bordeaux-Toulouse,
Bordeaux-Marseille sont d’emblée éliminées du champ d’investigation. Cette atti-
tude peut être partiellement traduite sous forme algorithmique en orientant les re-
cherches : onparle d’algorithme informé. L’algorithmeA∗ ⁶ appartient à cette catégo-
rie. Dans une certaine mesure, il est une généralisation de l’algorithme de DIJKSTRA
qui peut trouver lesmêmes solutions optimales que ce dernier, sous réserve que cer-
taines conditions soient satisfaites⁷.

3.2 Principe de A*

L’idée générale de l’algorithmeA∗ est de favoriser les chemins qui mènent plus rapi-
dement vers la solution. Bien évidemment, il n’existe pas un seulmoyen de répondre
à cet impératif car sinon, cela signifierait qu’on a trouvé la solution optimale qui est
justement ce que l’on cherche. Mais on peut orienter les choix de l’algorithme en

6. Prononcer A étoile en français, A star en anglais.
7. Il n’entre pas dans le cadre de ce cours de développer ce point.
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FIGURE 2 : Carte de France et de ses principaux axes routiers.

modifiant dans le code de DIJKSTRA la priorité 𝑝𝑤 des sommets 𝑤 : elle n’est plus
simplement sa distance depuis v_initmais sa distance depuis v_init à laquelle on
ajoute une estimation ℎ(𝑤,𝑣𝑓𝑖𝑛) du coût de ce qu’il reste à parcourir de 𝑤 jusqu’à
v_fin : 𝑝𝑤 = d𝑣init

[𝑤]+h(w,vfin) .

La fonctionℎ est appelée uneheuristique, elle permet d’estimer la proximité de deux
sommets :ℎ(𝑣,𝑤) est le coût estimé du chemin le moins coûteux de 𝑣 à𝑤. Plusieurs
heuristique sont possibles, l’efficacité de l’algorithmeA* étant conditionnée au choix
d’une heuristique adaptée à la situation.

On trouvera ci-après le code de la fonction a_star_path(g, v_init,v_fin, h) où
l’heuristique est codée sous la forme d’un dictionnaire (clé : sommets, valeur : heu-
ristique du sommet à v_fin).
def a_star_path(g, v_init,v_fin, h):

visited = {x : False for x in g} dico des sommets visités
pred = {x : None for x in g} dico des prédécesseurs
dist = {x : float('inf') for x in g} dico des dist
dist[v_init] = 0

hq, N = [(h[v_init], v_init)], 0 FP, compteur des sommets vis.
heapq.heapify(hq)

while len(hq) > 0 and not visited[v_fin]:

pv, v = heapq.heappop(hq) extraction du sommet de prio min
if not visited[v]:

visited[v], N = True, N+1 maj du compteur
for w, dvw in g[v]: parcours des vois. non visités de v

if not visited[w]:

dw = dist[v]+dvw

pw = dist[v]+dvw+h[w]

if dw < dist[w]:

dist[w], pred[w] = dw, v maj de la dist et du pred
heapq.heappush(hq, (pw, w)) stockage dans la

FP
    # Calcul d'un chemin __________

if not visited[v_fin]: cas où vfin n’est pas accessible
print("Pas de chemin de "+str(v_init)+" à "+str(v_fin))

else: construction du chemin
  C = [v_fin]

  while C[0] != v_init:

  w = pred[C[0]]

  C = [w] + C

  return N, dist[v_fin], C

/ Lycée Michel Montaigne – Bordeaux 9 ITCCreative-Commons 2025-2026
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Le code étant très proche de celui de DIJKSTRA, le coût de toutes les opérations y
est le même. Seule s’ajoute la prise en compte de l’heuristique dont le coût peut,
dans notre cas, être pris comme constant. La complexité de l’algorithme A* est donc
toujours enO(|A|) log |S|) soit enO (|S|2 log |S|).

3.3 Comparaisons Dijkstra/A*

Illustrons le déroulement de DIJKSTRA et de A* sur différents graphes et différentes
heuristiques. L’étiquette d’un sommet sera ses coordonnées dans le plan et nous uti-
liserons commeheuristiques les distances suivantes deℝ2 : soient𝑢(𝑥1,𝑦1), 𝑣(𝑥2,𝑦2)

et 𝑝 ∈ [1,+∞], on pose : { d𝑝(𝑢,𝑣) = (|𝑥2−𝑥1|𝑝+|𝑦2−𝑦1|𝑝)
1
𝑝

d∞(𝑢,𝑣) =max(|𝑥2−𝑥1|, |𝑦2−𝑦1|) .

Au-dessus des sommets découverts et non-visités (en bleu) est indiqué soit la dis-
tance au sommet initial (DIJKSTRA), soit la distance au sommet initial + l’arrondi à
l’entier le plus proche de l’heuristique (A*).

Figure 3 – EXEMPLE 1 : A* CONVERGE PLUS VITE VERS UN AUSSI BON CHEMIN
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Dijkstra : 15 sommets visités, distance obtenue : 8, 10
sommets visités inutilement.

A* heuristique 𝑑1 : 8 sommets visités, distance
obtenue : 8, 3 sommets visités inutilement.

Figure 4 – EXEMPLE 2 : A* CONVERGE PLUS VITE VERS UN MOINS BON CHEMIN
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Dijkstra : 14 sommets visités, distance obtenue : 7, 6
sommets visités inutilement.

A* heuristique 𝑑1 : 8 sommets visités, distance
obtenue : 11, 3 sommets visités inutilement.

Figure 5 – EXEMPLE 3 : A* CONVERGE MOINS VITE VERS UN MOINS BON CHEMIN...

4,4

4,6

4,8
8

6,8

6,6

6,4 8,40,4

0,0 8,0

8,8

0,6 2,6

2,8

5

1

3

1

4
1

1
1

1

1
1

2

2
4

2

4,4

4,6

4,8 6,8

6,6

6,4 8,40,4

0,0
18

8,0

8,8

0,6 2,6

2,8
18

5

1

3

1

4
1

1
1

1

1
1

2

2
4

2

Dijkstra : 7 sommets visités, distance obtenue : 6, 1
sommet visité inutilement.

A* heuristique 𝑑1 : 9 sommets visités, distance
obtenue : 13, 1 sommet visité inutilement.
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6 Figure 6 – EXEMPLE 4 : ...SAUF SI ON CHANGE D’HEURISTIQUE
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A* heuristique 𝑑∞ : 7 sommets visités, distance
obtenue : 6, 1 sommet visité inutilement.

A* heuristique 𝑑1 : 9 sommets visités, distance
obtenue : 13, 1 sommet visité inutilement.

3.4 Applications

L’algorithme A* présente l’avantage sur celui de DIJKSTRA de réduire considérable-
ment l’exploration d’un graphe, avantage qui permet souvent de trouver une so-
lution plus rapidement, surtout quand les graphes ont des tailles importantes. Cet
avantage est d’autant plus important que certains graphes présentent un nombre
très élevés de sommets, intertisant parfois leur définition préalable. On doit alors
se tourner vers une exploration du graphe qui découvre, au fur et à mesure qu’il les
construit, ses sommets lors du parcours.

C’est le cas des graphes où chaque sommet peut être associé à la configuration d’un
jeu comme le taquin⁸, l’âne rouge⁹ et le Rush-Hour¹⁰. Chaque déplacement d’une
pièce dans ces jeux peut définir le sommet d’un graphe. Chaque arête entre deux
sommets n’existe que si le passage d’une configuration à une autre du jeu est auto-
risée. Résoudre le jeu revient alors simplement à trouver un plus court chemin entre
une configuration initiale et la configuration finale du jeu, généralement connue!
Mais la difficulté est clairement la définition du graphe. Le nombre de configu-
rations, parfois extrêmement élevé, ne permet pas sa construction exhaustive. Et
même si c’était le cas, le parcours de ce dernier avec l’algorithme de DIJKSTRA ne
serait pas raisonnable.

8. https://fr.wikipedia.org/wiki/Taquin

9. https://en.wikipedia.org/wiki/Klotski

10. https://en.wikipedia.org/wiki/Rush_Hour_(puzzle)

FIGURE 7 : Jeux du taquin, de l’âne rouge (ou Klotski Puzzle) et Rush Hour.

En visitant moins de configurations, l’algorithme A∗ se révèle alors beaucoup
plus efficace. Toutefois, il ne garantit pas toujours que la solution renvoyée soit la
meilleure. Elle peut parfois n’être qu’une solution optimale au sens relatif du terme
et non au sens absolu. Tout est question d’heuristique. Ajoutons que d’un point de
vue algorithmique, la résolution de ces jeux est loin d’être simple ! Ainsi, trouver la
solution, c’est-à-dire un plus court chemin, à une configuration de taquin 𝑛×𝑛 est
un problème NP-difficile. Seule la vérification d’une solution entre dans la classe
P¹¹.

Parmi les applications, on peut également citer les déplacements sur grille, comme
dans les jeux vidéos. La Figure 8 illustre lamise en oeuvre des deux algorithmes pour
déterminer un plus court chemin entre un point de départ, situé en bas à gauche de
chaque grille, et un point d’arrivée, situé en haut à droite de chaque grille. Citons en-
fin le domainede l’IntelligenceArtificielle qui fait un très largeusagedes algorithmes
d’exploration.

11. Schématiquement, un problème algorithmique entre dans la classeP s’il existe un algorithmede
complexité polynomiale qui le résout. Il entre dans la classeNP si on ne peut seulement que vérifier la
complexité polynomiale d’une solution candidate.Unproblèmeest ditNP-difficile si tout problèmede
la classeNP peut s’y ramener via une transformation appelée de réduction polynomiale. Si en outre, le
problème lui-même estNP, on le qualifie alors deNP-complet. L’une des questions fondamentales ac-
tuelles de l’informatique est de savoir siP etNP sont une seule etmême classe de complexité. Plus d’in-
formations sont disponibles à ce sujet sur https://fr.wikipedia.org/wiki/Problème_NP-complet.
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https://fr.wikipedia.org/wiki/Taquin
https://en.wikipedia.org/wiki/Klotski
https://en.wikipedia.org/wiki/Rush_Hour_(puzzle)
https://fr.wikipedia.org/wiki/Problème_NP-complet
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FIGURE 8 : Ensembles des sommets explorés lors du parcours d’une grille avec Dik-
jstra (à gauche) et A* (à droite).
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SOLUTIONS DES EXERCICES
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