
DEVOIR SURVEILLÉ NO 2 VENDREDI 19 DÉCEMBRE

Informatique - MPSI 2 Durée : 2 h

• La calculatrice est interdite.

• Seules sont autorisées l’utilisation des types de bases (entiers, flottants, chaînes
de caractères, booléens), la structure de données liste (avec méthodes append et
pop), les structures algorithmiques alternatives et itératives, et l’utilisation d’algo-
rithmes récursifs.

• Si vous introduisez de nouvelles fonctions ou de nouvelles variables, on s’effor-
cera de leur donner un nom explicite et d’indiquer en commentaire leur rôle.

• Enfin, dans un exercice, il est possible (et même recommandé) d’utiliser les fonc-
tions des questions précédentes, que ces questions aient été traitées ou non.

Exercice no 1 Quelques questions indépendantes

1. Donner la valeur des expressions suivantes, en justifiant la réponse :

a. 5**3

b. 47//8

c. 25==5*2 or (not(3*2!=6))

d. 47%8

2. L’instruction suivante a été validée dans la console : L=[1,3,5,7,9,11,13,15]
Déterminer la valeur des expressions suivantes :

a. L[6] b. L[2:4] c. L[4:] d. L[:4]

On effectue ensuite les instructions suivantes dans la console : x=L.pop() puis
L.append(25)
Déterminer la valeur des expressions suivantes, en justifiant la réponse :

e. x f. L[8]

3. On a désormais validé dans la console : s1="Hello" et s2="World"
Donner la valeur des expressions suivantes :

a. s1+" "+s2+"!" b. s1*3

Exercice no 2 Une fonction de tri par sélection
On considère une liste L contenant n éléments. Le tri par sélection consiste à faire la
démarche suivante :

• on cherche l’élément le plus petit de la liste, puis on échange cet élément avec le
premier élément de la liste.

1

• on cherche le deuxième élément le plus petit de la liste, c’est-à-dire l’élément le
plus petit de la liste privée du premier élément, puis on échange cet élément avec
le deuxième élément de la liste.

• on poursuit jusqu’à arriver au dernier élément.

1. On considère la liste L=[3,4,1,5,2]. Donner les états successifs de cette liste lors
du tri par sélection, en partant de la liste initiale et en arrivant à la liste totalement
triée.

2. Écrire une fonction IndiceMinimum(L,i) prenant en argument une liste L et un
entier i et qui renvoie False si l’entier i est supérieur ou égal à la longueur de la
liste, ou qui renvoie l’indice du plus petit élément de la liste à partir de l’élément
d’indice i.

Par exemple, si L=[1,3,0,6,4], IndiceMinimum(L,1) renverra l’entier 2.

3. Écrire une fonction tri_selection(L) prenant en argument une liste L et qui
trie la liste en place en utilisant la méthode du tri par sélection.

4. Quelle est la complexité de cette fonction? On l’exprimera à l’aide de la longueur
n de la liste L.

Exercice no 3 Une fonction à déterminer
On considère la fonction suivante, qui implémente un algorithme dont on cherche à
déterminer le résultat. Les arguments a et b sont des entiers naturels, avec b non nul.

def Mystere(a,b) :
q = 0
r = a
while r >= b :

q += 1
r = r - b

return (q,r)

1. Que renvoie Mystere(23,6)? On détaillera dans un tableau donnant les valeurs
successives de q et r lors de l’exécution de cette instruction.

2. Montrer que la fonction Mystere termine toujours.

3. Que semble faire cette fonction? En s’appuyant sur un invariant de boucle, justi-
fier la réponse.

4. Écrire une nouvelle fonction Mystere2(a,b) qui fait la même chose que la fonc-
tion Mystere, mais adaptée à un argument a qui est un entier relatif, l’argument
b restant un entier naturel non nul.

5. Écrire une fonction récursive MystereRec(a,b) ayant le même rôle que la fonc-
tion Mystere2 précédente, mais en ne renvoyant que la valeur de q.

2

Exercice no 4 Palindromes
Un nombre entier naturel est un palindrome s’il se lit de la même façon dans les deux
sens. Par exemple, 12321 et 245542 sont des palindromes, mais pas 12345.

1. Écrire une fonction miroir(n) qui prend en argument un entier naturel n et qui
renvoie l’entier écrit dans l’autre sens. Par exemple, miroir(1234) doit renvoyer
le nombre 4321.

2. En déduire une fonction palindrome(n) qui prend en argument un entier naturel
n et qui renvoie un booléen qui indique si n est un palindrome ou non. Ainsi,
palindrome(12321) doit renvoyer True.

3. Écrire une fonction ListePalindrome(n) qui prend en argument un entier natu-
rel n et qui renvoie la liste de tous les palindromes obtenus en faisant un produit
de deux nombres à exactement n chiffres.

Exercice no 5 Un peu de cryptographie
Le but de l’exercice est de s’intéresser à des algorithmes de cryptage et de décryptage
de textes. Pour simplifier les différents problèmes posés, on supposera que les mes-
sages ne sont constitués que de lettres en minuscules, avec aucun espace ni aucune
ponctuation.

Partie I - Traduction d’une chaîne en liste, et vice-versa
Pour effectuer les cryptages, les messages sont transformés en liste de nombres entre 0
et 25 selon la logique suivante : chaque lettre devient une entrée numérique de la liste
dans l’ordre d’apparition dans le message, où "a" est transformé en 0, "b" en 1, etc.
jusqu’à "z" qui est transformé en 25. Voici un tableau qui pourra servir de référence
pour certaines questions :

a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25

Ainsi, "mot" est traduit par la liste [12,14,19] et la liste [2,14,3,4] est la traduction
de "code".
On suppose que l’on a validé dans la console la chaîne alphabétique

alph="abcdefghijklmnopqrstuvwxyz"

1. a. Par quelle liste sera représenté le mot "chat"?

b. Quel est le mot représenté par la liste [19,0,20,15,4]?

2. Écrire une fonction liste_vers_message(L) qui prend comme argument une
liste L d’entiers compris entre 0 et 25, et qui renvoie la chaîne de caractères qui
correspond au message qui est représenté par cette liste.

Par exemple, si L=[2,14,3,4], liste_vers_message(L) renvoie la chaîne de ca-
ractères "code"

3

3. a. Écrire une fonction lettre_vers_nombre(c) qui prend en argument un ca-
ractère constitué d’une lettre minuscule et qui renvoie le nombre entre 0 et
25 qui lui correspond dans le tableau précédent.

b. En déduire une fonction message_vers_liste(s) qui prend comme argu-
ment une chaîne de caractères s, et qui renvoie la liste qui correspond à cette
chaîne de caractères.

Par exemple, si s="mot", message_vers_liste(s) renvoie la liste [12,14,19]

Partie II - Code de César : chiffrement et déchiffrement
Le principe du code de César est le suivant : chaque lettre du message est chiffrée par
une lettre à distance fixe. Par exemple, si on choisit une distance de 3, chaque lettre
sera remplacée par la lettre située 3 places plus loin : "a" devient "d", "b" devient "e",
etc. Lorsqu’on arrive au bout de l’alphabet, on repart du début, ce qui signifie que "z"
est chiffré en "c" ou encore "x" en "a"

4. Chiffrer le message "cesar" avec une distance de 2.

5. On a reçu le message "fvyxyw" en sachant qu’il a été chiffré avec une distance de
4. Quel est le message qui a été chiffré?

6. Écrire une fonction chiffre_cesar(message,n) qui prend comme arguments
une chaîne de caractères message qui correspond au message à coder et un entier
n qui correspond à la distance de décalage et qui renvoie le message chiffré en
remplaçant chaque lettre par la lettre située à une distance n
Par exemple, chiffre_cesar("abzx",3) doit renvoyer "deca".

7. Écrire une fonction dechiffre_cesar(message,n) qui prend comme arguments
une chaîne de caractères message qui correspond au message codé et un entier n
qui correspond à la distance de décalage et qui renvoie le message déchiffré.

8. On suppose désormais que l’on dispose d’un message chiffré, mais que l’on ne
connaît pas le décalage qui a permis de coder le message. Pour tenter de décoder
ce message, on adopte une stratégie assez simple : comme on sait que la lettre
la plus fréquente en français est la lettre ’e’, on va d’abord rechercher la lettre
qui apparaît le plus dans le message, et on va supposer qu’elle chiffre la lettre ’e’
pour déterminer le décalage.

a. Écrire une fonction occurence(L) qui prend en argument une liste L d’en-
tiers compris entre 0 et 25, et qui renvoie une liste occ de taille 26 telle que
pour tout entier i compris entre 0 et 25, occ[i] donne le nombre d’occu-
rences du nombre i dans la liste L

b. Écrire une fonction decalage(message) qui prend en argument une chaîne
de caractères message qui correspond au message codé, et qui renvoie un
entier qui correspond au décalage du chiffrement de César pour ce message,
en utilisant la fonction précédente pour déterminer la lettre qui permet de
chiffrer "e".

4

c. En déduire une fonction dechiffre_cesar_sans_cle(message) qui prend
en argument une chaîne de caractères message qui correspond au message
chiffré, et qui renvoie une chaîne de caractère qui correspond au message
déchiffré.

Partie III - Code de Vigenère
Blaise de Vigenère proposa plus tard une version plus élaborée du chiffrement de Cé-
sar. Le principe est le suivant : les messages sont chiffrés à l’aide d’une clé de plusieurs
lettres. La première lettre est décalée par le nombre associé à la première lettre (cf ta-
bleau de la partie I), la deuxième lettre est décalée par le nombre associé à la deuxième
lettre, etc. Une fois arrivé au bout de la clé, on recommence depuis la première lettre
de la clé.
Par exemple, si on choisit comme clé ’mot’, la première lettre sera décalée de 12 lettres
à droite, la deuxième de 14 lettres, la troisième de 19 lettres, puis on recommence avec
la 4ème lettre qui sera décalée de 12 lettres à droite, etc.
Voici un autre exemple : on chiffre ’classepreparatoire’ avec la clé ’code’
c l a s s e p r e p a r a t o i r e
c o d e c o d e c o d e c o d e c o
e z d w u s s v g d d v c h r m t s

La première ligne indique le message à chiffrer, la deuxième ligne indique la lettre de
la clé qui est utilisée, et la troisième ligne donne le message chiffré. On voit ainsi que
toutes les lettres associées à la lettre c ont été décalées de 2 lettres vers la droite, celles
associées à la lettre o ont été décalées de 14 lettres vers la droite, etc.

9. Chiffrer le mot ’informatique’ avec la clé ’banane’

10. Avec la même clé, déchiffrer le message codé ’caaaait’

11. Écrire une fonction chiffrement_vigenere(message,cle) qui prend en argu-
ment un message message à chiffrer et une clé cle, et qui renvoie le message
chiffré à l’aide de la méthode de Vigenère en utilisant la clé cle

12. Inversement, écrire une fonction dechiffrement_vigenere(message,cle) qui
prend en argument un message chiffré message et la clé cle qui a servi à le chiffrer
avec la méthode de Vigenère, et qui renvoie le message déchiffré.

On va supposer désormais que l’on cherche à déchiffrer un message sans connaître
la clé. Il faut donc trouver la clé, ce qui se fait en deux temps : on cherche d’abord la
longueur de la clé, puis on détermine la clé en utilisant, comme en partie II, le fait que
la lettre qui apparaît le plus fréquemment est la lettre ’e’.
Commençons par déterminer la longueur de la clé. Le principe est le suivant : on re-
garde dans le message les séquences de 3 lettres successives, et leurs répétitions. L’hy-
pothèse est qu’à chaque fois que la même séquence apparaît, cela correspond aux
mêmes lettres codées de la même façon, ce qui veut dire que l’écart entre les deux
séquences est un multiple du nombre de lettres de la clé.

5

Par exemple, si la séquence ’abc’ apparait à l’indice 3 et à l’indice 45, cela veut dire 42
est un multiple du nombre k de lettres de la clé.
En s’intéressant au PGCD de ces différents écarts, on peut alors récupérer le nombre
de lettres de la clé.

13. Écrire une fonction pgcd(a,b) qui prend en argument deux entiers naturels a
et b, et qui renvoie leur PGCD. Il est fortement conseillé de s’appuyer sur l’algo-
rithme d’Euclide.

14. Écrire une fonction pgcd_distances_repetitions(L,i) qui prend en argument
une liste L de longueur n d’entiers entre 0 et 25 qui correspond à un message
transformé en liste avec la fonction de la question 3., et un indice i compris entre
0 et n-3, et qui renvoie le PGCD de toutes les distances entre les répétitions de la
séquence [L[i],L[i+1],L[i+2]] dans la suite du texte [L[i+3],...,L[n-1]]
ou 0 en cas d’absence de répétition.

15. Écrire enfin une fonction longueur_cle(L) prenant en argument une liste L d’en-
tiers compris entre 0 et 25 correspondant au message chiffré, et qui renvoie la
longueur de la clé en s’appuyant sur la question précédente.

Une fois la longueur k de la clé connue, l’idée est simple : les caractères d’indices 0, k,
2k, etc. sont codés par la même lettre, ensuite, les caractères d’indices 1, k +1, 2k +1,
etc. sont codés par la même lettre, etc. En considérant dans chaque cas que la lettre
’e’ sera la plus fréquente, on peut trouver la lettre qui sert à chiffrer ’e’, puis la lettre
qui correspond dans la clé.

16. Écrire une fonction recherche_cle(L,k) qui prend en argument une liste L de
nombres compris entre 0 et 25 qui correspond au message chiffré, et un entier k
qui donne la longueur de la clé, et qui renvoie la clé de chiffrage.

17. En déduire une fonction dechiffrage_vigenere(message) qui prend en argu-
ment un message chiffré et qui renvoie le message déchiffré.

6

