
DEVOIR SURVEILLÉ NO 2 CORRECTION

Informatique - MPSI 2

Exercice no 1

1. a. Cela correspond à 53 = 125.

b. Cela correspond au quotient de la division euclidienne de 47 par 8, donc il
s’agit de 5.

c. Le premier booléen est associé à 25 = 2×5, qui est faux, le second à la négation
de 3×2 ̸= 6 qui est faux, et donc la négation est vraie. Avec le connecteur ou,
la valeur est donc True.

d. Il s’agit du reste de la division euclidienne de 47 par 8 : il s’agit donc de 7.

2. a. 13

b. [5,7]

c. [9,11,13,15]

d. [1,3,5,7]

e. 15

f. La liste contient 8 éléments, donc L[8] renverra un message d’erreur.

3. a. "Hello World !"

b. "HelloHelloHello"

Exercice no 2

1. Regardons étape par étape.

• L’élément minimal est 1, échangé avec 3, d’où la liste L=[1,4,3,5,2]

• L’élément minimal à partir du 2ème indice est 2, échangé avec 4, d’où la liste
L=[1,2,3,5,4]

• L’élément minimal à partir du 3ème indice est bien placé, on ne change rien.

• L’élément minimal à partir du 4ème indice est 4, échangé avec 5, d’où la liste
L=[1,2,3,4,5]

• La liste est désormais triée.

1

2.

def IndiceMinimum(L,i) :
n=len(L) #n est la longueur de la liste
if i>=n :

return False # On renvoie False si l’indice i est trop grand
m,ind=L[i],i # De façon temporaire, le minimum de la liste est
l’élément d’indice i, ind est l’indice i

for k in range (i,n) :
if L[k]<m :

m,ind=L[k],k #Si le terme d’indice k est plus petit que m,
c’est le nouveau min, et k est le nouvel indice du min

return ind #A la fin de la boucle, ind est l’indice du minimum.

3.

def tri_selection(L) :
n=len(L) #n est la longueur de la liste
for i in range (n) :

k=IndiceMinimum(L,i) # On détermine l’indice du minimum à
partir de i

L[i],L[k]=L[k],L[i] # On échange le minimum avec le terme
d’indice i

4. La complexité de la fonction IndiceMinimum étant O(n), en rajouant la boucle de
la fonction du tri par sélection, on en déduit que la complexité est en O(n2).

Exercice no 3

1. Proposons le tableau suivant, qui donne les valeurs de q et r , puis après chaque
itération de la boucle.

q r
0 23
1 17
2 11
3 5

On en déduit que Mystere(23,6) renvoie le tuple (3,5)

2. Utilisons le variant de boucle r : au début de la boucle, r est un entier naturel car
il est égal à a, puis à chaque itération de la boucle, il diminue de l’entier naturel b
donc r reste un entier. De plus, b est non nul, donc r décroit strictement à chaque
itération de la boucle : r finira donc par devenir strictement inférieur à b.

3. Considérons l’invariant de boucle Invn : « Après n itérations de la boucle, le terme
b ×q + r est égal à l’entier a donné en argument. »

Inv0 : Avant d’initier la boucle, q est nul et r vaut a donc on a l’égalité b ×q + r =
0+a = a.

2

Soit n ∈ N et supposons que Invn est vérifié. On a donc, après n itérations de la
boucle, b ×q + r = a.

Il y a alors deux cas à considérer.

1er cas : r ⩾ b.

Dans ce cas, q prend comme nouvelle valeur q + 1, et r prend comme nouvelle
valeur r −b.

On a alors b × (q +1)+ (r −b) = b ×q +b + r −b = b ×q + r +b −b = b ×q + r = a.

On en déduit que Invn+1 est bien vérifié.

2ème cas : r < b.

La boucle s’achève quand r < b. Dans ce cas, a = bq + r avec r strictement infé-
rieur à b. De plus, à la dernière itération de la boucle, la valeur de r était supé-
rieure ou égale à b, donc la nouvelle valeur r −b est positive, ce qui prouve que la
dernière valeur de r vérifie 0⩽ r < b.

Ainsi, b × q + r est bien un invariant de boucle, et vaut toujours a, et la boucle
s’arrête quand 0 ⩽ r < b : par unicité de la division euclidienne, on en déduit que
(q,r) est le couple quotient/reste de la division euclidienne.

4. Lorsque r est strictement négatif, il faut augmenter la valeur de r de b tout en
diminuant la valeur de q de−1 pour obtenir le couple quotient/reste de la division
euclidienne, ce qui donne la fonction suivante :

def Mystere2(a,b) :
q = 0
r = a
if r >= 0 :

while r >= b :
q += 1
r = r - b

else :
while r < 0 :

q -= 1
r = r + b

return (q,r)

5.

def MystereRec(a,b) :
if 0 <= a < b :

return 0
if a >=b :

return 1+MystereRec(a-b,b)
else :

return-1+MystereRec(a+b,b)

3

Exercice no 4

1.

def miroir(n) :
out=0 # On initialise un entier
while n!=0 :

p=n%10 # On détermine le chiffre des unités de n
out=out*10+p # On multiplie par 10 pour décaler à gauche les
décimales de out, et on ajoute p en unités

n=n//10 # On attribue à n le quotient de la DE par 10, ce qui
revient à retirer le chiffre des unités

return out

2.
def palindrome(n) :

return n==miroir(n)

3.

def ListePalindrome(n) :
L=[] #On créé la liste qui contiendra les palindromes
for i in range (10**(n-1),10**n-1) :

for j in range (10**(n-1),10**n-1) :
if palindrome(i*j) #On teste si le produit ij est un
palindrome :

L.append(i*j) #Dans ce cas, on l’ajoute à la liste

return L

Exercice no 5
Partie I

1. a. "chat" sera représenté par la liste [2,7,0,19]
b. La liste représente le mot "taupe"

2.

def liste_vers_message(L) :
n=len(L) #n est la longueur de la liste
out=’ ’ On initialise une chaine de caractères vide
for i in range (n) :

out=out+alph[L[i]] #On ajoute au bout de la chaîne out le
caractère qui correpond au nombre i

return out #A la fin de la boucle, out est la chaîne de
caractères associée à la liste.

3. a.

def lettre_vers_nombre(c) :
for i in range (25) :

if c==alph[i] :
return i #Si le caractère c coïncide avec celui d’alph
d’indice i, il faut renvoyer i

4

b.

def message_vers_liste(s) :
n=len(s) #n est la longueur de la chaîne de caractères
out=[] On initialise une liste vide
for i in range (n) :

out.append(lettre_vers_nombre(s[i])) #On ajoute à la liste
le nombre entre 0 et 25 associé au caractère s[i]

return out #A la fin de la boucle, out est la liste associée
à la chaîne de caractères.

Partie II

4. Le message devient après chiffage "eguct"

5. Le message, une fois déchiffré, est "brutus"

6.

def chiffre_cesar(message,n) :
L=message_vers_liste(message) #On transforme le message en liste
de nombres

p=len(L) #p est la longueur de la liste
for i in range (n) :

L[i]=(L[i]+n)%26 #On ajoute à chaque nombre de la liste
l’entier n, et on donne le reste de la division euclidienne
avec 26 pour avoir un entier entre 0 et 25

return liste_vers_message(L) #A la fin de la boucle, la liste
est chiffrée, et on renvoie la liste traduite en chaîne de
caractères

7.

def dechiffre_cesar(message,n) :
return chiffre_cesar(message,-n) #Déchiffrer revient à retirer
le décalage au lieu de l’ajouter : on peut réutiliser la
fonction précédente.

8. a.

def occurence(L) :
occ=[0 for i in range (26)] #on initialise une liste de 26
zéros

n=len(L) #L est la longueur de la liste
for i in range (n) :

occ[L[i]]+=1 #on ajoute 1 au nombre d’éléments L[i] déjà
comptés

return occ #Si on arrive à la fin de la boucle, occ donne le
nombre d’occurences de chaque entier entre 0 et 25.

5

b.

def decalage(message) :
L=message_vers_liste(message) #on transforme le message en
une liste L de nombres

occ=occurence(L) #on détermine les occurences des nombres
M,ind=occ[0],0 #On fixe temporairement le maximum à l’indice
0

for i in range (1,26) :
if occ[i]>M :

M,ind=occ[i],i
#Si le terme d’indice i est plus grand que le maximum,
c’est le nouveau maximum

return (ind-4)%26 #ind est l’indice qui correspond à la
lettre e, dont l’indice est 4 : le décalage est la
différence modulo 26

c.

def dechiffre_cesar_sans_clé(message) :
p=decalage(message) #On calcule la clé de chiffrage
return dechiffre_cesar(message,p) #On utilise la fonction qui
déchiffre avec la clé.

Partie III

9. On obtient après chiffrement : "jnsoeqbtvqhi"

10. Le message déchiffré est "bananes"

11.

def chiffrement_vigenere(message,cle) :
M=message_vers_liste(message) #On traduit le message en une
liste de nombres

C=message_vers_liste(cle) #Même chose pour la clé
n,p=len(M),len(C) #On note n et p les longueurs des listes M et
C

for i in range (n) :
M[i]=(M[i]+C[i%p])%26 #On change les valeurs de la liste
message en ajoutant les valeurs de la clé

messagechiffre=liste_vers_message(M) #On retraduit la liste en
message

return messagechiffre

6

12.

def dechiffrement_vigenere(message,cle) :
M=message_vers_liste(message) #On traduit le message en une
liste de nombres

C=message_vers_liste(cle) #Même chose pour la clé
n,p=len(M),len(C) #On note n et p les longueurs des listes M et
C

for i in range (n) :
M[i]=(M[i]-C[i%p])%26 #On change les valeurs de la liste
message en retirant les valeurs de la clé

messagedechiffre=liste_vers_message(M) #On retraduit la liste en
message

return messagedechiffre

13.

def pgcd(a,b) :
while b!=0 :

a,b=b,a%b #Tant que le reste est non nul, on remplace a et b
par b et le reste de la DE de a par b

return a #A la fin de la boucle, a est le dernier reste non nul,
donc le pgcd.

14.

def pgcd_distances_repetition(L,i) :
out,ind=0,i #On initialise le pgcd à 0 et l’indice de référence
n=len(L) # n est la longueur de la liste
for k in range (i,n-3) :

if L[i:i+3]==L[k:k+3] :
out,ind=pgcd(out,k-ind),k #Par associativité, le pgcd est
le pgcd de out (pgcd temporaire) et k-ind, nombre de
lettres entre les deux paquets identiques

return out

15.

def longueur_cle(L) :
n=len(L)
out=0 #On initialise la longueur de la clé à 0
for i in range (n-2) :

out=pgcd(out,pgcd_distances_repetition(L,i)) #On détermine le
pgcd des répétitions de la chaine L[i:i+2], et le nouveau
pgcd est le pgcd de ce nombre avec out(pgcd temporaire)

return out

7

16.

def recherche_cle(L,k) :
cle=’ ’ #On initialise la clé à une chaîne vide
M=[[] for i in range(k)] #On initialise k listes vides
n=len(L)
for i in range (n) :

M[i%k].append(L[i]) #On répartit les caractères du message
dans les différentes sous-listes

for j in range (k) :
p=decalage(liste_vers_message(M[j])) #On détermine le décalage
pour la sous-liste M[j]

cle=cle+alph[p] #On ajoute le caractère correspondant au
décalage pour obtenir la clé

return cle

17.

def dechiffrage_vigenere(message) :
L=message_vers_liste(message) #On traduit le message en une
liste de nombres

k=longueur_cle(L) #On détermine la longueur de la clé
cle=recherche_cle(L,k) #On détermine la clé
return dechiffrement_vigenere(message,clé)

8

