DEVOIR SURVEILLE N° 2 CORRECTION
Informatique - MPSI 2

Exercicen° 1

1. a. Celacorrespond a|5% = 125.

b. Cela correspond au quotient de la division euclidienne de 47 par 8, donc il
s'agitde

c. Le premier booléen est associé a 25 = 2x5, qui est faux, le second ala négation
de 3 x 2 # 6 qui est faux, et donc la négation est vraie. Avec le connecteur ou,

la valeur est donc

Il s’agit du reste de la division euclidienne de 47 par 8 : il s’agit donc de

[5,7]
. [19,11,13,15]|
[1)3)5} 7]

La liste contient 8 éléments, donc L[8] renverra un message d’erreur.

N
T » &

()

- 0 &

3. a.
b.

"Hello World!"
"HelloHelloHello"

Exercice n° 2

1. Regardons étape par étape.

e ['élément minimal est 1, échangé avec 3, d’ou la liste L=[1,4,3,5,2]

e L'élément minimal a partir du 2eme indice est 2, échangé avec 4, d’ou la liste
L=[1,2,3,5,4]

L'élément minimal a partir du 3eme indice est bien placé, on ne change rien.

L'élément minimal a partir du 4eme indice est 4, échangé avec 5, d’ou la liste
L=[1,2,3,4,5]

La liste est désormais triée.

def IndiceMinimum(L,i) ¢
n=len(L)

if i>=n :

| return False
m,ind=L[i],1i

for k in range (i,n) :
if L[k]<m :
Lm,ind=L (k] ,k

|_return ind

def tri selection(L) :
n=len(L)

for i in range (n) :
k=IndiceMinimum(L, i)

L[i],L[k]=L[k],L[i]

4. La complexité de la fonction IndiceMinimum étant O(n), en rajouant la boucle de

Exercice n° 3

la fonction du tri par sélection, on en déduit que la complexité est en O(n?).

1. Proposons le tableau suivant, qui donne les valeurs de g et r, puis apres chaque

itération de la boucle.

-
23
17
11
5

WIN|—=| Ol

On en déduit que Mystere (23, 6) renvoie le tuple (3,5)

. Utilisons le variant de boucle r : au début de la boucle, r est un entier naturel car
il est égal a a, puis a chaque itération de la boucle, il diminue de 'entier naturel b
donc r reste un entier. De plus, b est non nul, donc r décroit strictement a chaque
itération de la boucle : r finira donc par devenir strictement inférieur a b.

. Considérons I'invariant de boucle Inv,, : « Apres n itérations de la boucle, le terme
b x g +r est égal a 'entier a donné en argument. »

Inv, : Avant d’initier la boucle, g est nul et r vaut a donc on al'égalité bx g +r =
O+a=a.

Soit n € N et supposons que Inv,, est vérifié. On a donc, apres n itérations de la
boucle, b x g+ 71 = a.

Il y a alors deux cas a considérer.

lercas:r > b.

Dans ce cas, g prend comme nouvelle valeur g + 1, et r prend comme nouvelle
valeur r — b.

Onaalorsbx (g+1)+(r—-b)=bxq+b+r—-b=bxq+r+b—-b=bxq+r=a.
On en déduit que Inv,,,; est bien vérifié.

2émecas:r <b.

La boucle s’acheve quand r < b. Dans ce cas, a = bg + r avec r strictement infé-
rieur a b. De plus, a la derniere itération de la boucle, la valeur de r était supé-
rieure ou égale a b, donc la nouvelle valeur r — b est positive, ce qui prouve que la
derniere valeur de r vérifie 0 < r < b.

Ainsi, b x g + r est bien un invariant de boucle, et vaut toujours a, et la boucle
s’arréte quand 0 < r < b : par unicité de la division euclidienne, on en déduit que
(g, 1) estle couple quotient/reste de la division euclidienne.

. Lorsque r est strictement négatif, il faut augmenter la valeur de r de b tout en
diminuantlavaleur de g de —1 pour obtenir le couple quotient/reste de la division
euclidienne, ce qui donne la fonction suivante :

def Mystere2(a,b) :
q=20
r =a
if r >=0:
while r >= b :
q+=1
| Lr=r-b
else:
while r < 0 :
i
| Lr=r+b
|_return (q,r)

def MystereRec(a,b) :

if 0 <=a<b:

|_return O

if a >=b :

| return 1+MystereRec(a-b,b)

else:
| return-1+MystereRec(a+b,b)

Exercice n° 4

def miroir(n) :
out=0

while n!=0 :
p=n%10
1. out=out*10+p

n=n//10

L_return out

def palindrome(n) :
| return n==miroir(n)

def ListePalindrome(n) :
L=[]
for i in range (10*x(n-1),10%*n-1) :

for j in range (10**(n-1),10%*n-1) :
3. if palindrome(ixj)

| L.append(ix*j)

L rgturn L

Exercice n°5
Partiel

1. a. "chat" serareprésenté par laliste [2,7,0,19]

b. Laliste représente le mot "taupe"

def liste_vers_message(L) :
n=len(L)

out=’ ’

for i in range (n) :
L out=out+alph[L[i]]

return out

def lettre vers nombre(c) :
for i in range (25) :

3. a. if c==alphl[i] :
Lreturn i

def message vers_liste(s) :
n=len(s) #n est la longueur de la chaine de caractéres

out=[] On initialise une liste vide
b for i in range (n) :
) {_out.append(lettre_vers_nombre(s[i])) #0n ajoute a la liste

le nombre entre 0 et 25 associé au caractére s[i]
return out #A la fin de la boucle, out est la liste associée

| & la chaine de caractéres.

Partie I1

4.
S.

Le message devient apres chiffage "eguct"

Le message, une fois déchiffré, est "brutus"

def chiffre cesar(message,n) :
L=message_vers_liste(message) #Un transforme le message en liste

de nombres
p=len(L) #p est la longueur de la liste

for i in range (n) :
L[il=(L[i]+n)%26 #0n ajoute & chaque nombre de la liste

l’entier n, et on donne le reste de la division euclidienne
avec 26 pour avoir un entier entre 0 et 25
return liste vers message(L) #A la fin de la boucle, la liste
est chiffrée, et on renvoie la liste traduite en chaine de

| caractéres

def dechiffre_cesar(message,n) :
return chiffre_cesar(message,-n) #Déchiffrer revient a retirer

le décalage au lieu de 1l’ajouter : on peut réutiliser la

fonction précédente.

def occurence(L) :
occ=[0 for i in range (26)] #on initialise une liste de 26

zéros
n=len(L) #L est la longueur de la liste
a. || for i in range (n) :
occ[L[i]]+=1 #on ajoute 1 au nombre d’éléments L[i] déja
L comptés
return occ #Si on arrive a la fin de la boucle, occ donne le

nombre d’occurences de chaque entier entre 0 et 25.

def decalage(message) :
L=message_vers_liste(message)

occ=occurence (L)
M, ind=occ[0],0

b. for i in range (1,26) :
if occ[i]>M :
| M,ind=occ[i],i

return (ind-4)7%26

def dechiffre cesar_sans_clé(message) :
p=decalage (message)

return dechiffre cesar (message,p)

Partie II1

9. On obtient apres chiffrement : " jnsoeqbtvghi"

10. Le message déchiffré est "bananes"

def chiffrement vigenere(message,cle) :
M=message vers_liste(message)

C=message_vers_liste(cle)
n,p=len(M),len(C)

11. for i in range (n) :

LM [i]=M[i]+C[i%pl) %26

messagechiffre=liste_vers_message (M)

return messagechiffre

12.

13.

14.

15.

def dechiffrement_vigenere(message,cle) :
M=message vers_liste(message) #Un traduit le message en une
liste de nombres
C=message_vers_liste(cle) #Méme chose pour la clé
n,p=len(M),len(C) #0n note n et p les longueurs des listes M et
C
for i in range (n) :

M[il=M[i]-C[i%pl)%26 #0n change les valeurs de la liste
L message en retirant les valeurs de la clé
messagedechiffre=liste_vers_message(M) #0n retraduit la liste en
message
__return messagedechiffre

def pgcd(a,b) :
while b!=0 :

a,b=b,alb #Tant que le reste est non nul, on remplace a et b
L par b et le reste de la DE de a par b
return a #A la fin de la boucle, a est le dernier reste non nul,
| donc le pgcd.

def pgcd_distances_repetition(L,i) :

out,ind=0,i #0n initialise le pgcd & O et 1’indice de référence

n=len(L) # n est la longueur de la liste

for k in range (i,n-3) :

if L[i:i+3]==L[k:k+3] :
out,ind=pgcd(out,k-ind) ,k #Par associativité, le pgcd est
le pgcd de out (pgcd temporaire) et k-ind, nombre de
lettres entre les deux paquets identiques

__return out

def longueur_cle(L) :

n=len(L)

out=0 #0n initialise la longueur de la clé & O

for i in range (n-2) :
out=pgcd(out,pgcd_distances_repetition(L,i)) #0n détermine le
pgcd des répétitions de la chaine L[i:i+2], et le nouveau

pgcd est le pgcd de ce nombre avec out(pgcd temporaire)
__return out

def recherche cle(L,k) :
cle=’ "~

M=[[] for i in range(k)]

n=len(L)

for i in range (n) :

M[i%k] .append (L[i])

for j in range (k) :
p=decalage(liste_vers_message(M[j]))

cle=cle+alph[p]

L return cle

def dechiffrage vigenere(message) :
L=message_vers_liste(message)

k=longueur_cle(L)
cle=recherche cle(L,k)
return dechiffrement_vigenere(message,clé)

