— Semaine du lundi 18 décembre au vendredi 22 décembre —

Nombres réels, début des suites. Révisions sur les polynômes et le calcul intégral

Colle nº 12

La colle inclura un calcul d'intégrale par changement de variables.

Programme de la semaine de colle

Nombres réels

- Minorants, majorants, plus petit élément (minimum), plus grand élément (maximum)
- Borne inférieure, borne supérieure
- Propriété de la borne supérieure de $\mathbb R$
- Adhérence à la partie (« à la ε ») de la borne supérieure/inférieure
- Densité de A dans \mathbb{R}
- Nombres décimaux \mathbb{D} . Densité de \mathbb{D} et \mathbb{Q} dans \mathbb{R} .
- Densité de $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R}
- Partie entière d'un réel x (notée |x|), partie fractionnaire
- Les parties convexes de \mathbb{R} sont les intervalles.

Début des suites

- Suites arithmético-géométriques
- Suites récurrentes d'ordre 2

Polynômes

Révision du précédent programme de colle

Note pour les colleurs

La notion de polynôme irréductible n'a pas encore été introduite.

Calcul intégral

Révision du précédent programme de colle

Note pour les colleurs

La pratique des IPP et des changements de variable se fait sans justification invoquant les bons caractères \mathscr{C}^1 .

Questions de cours

Résultats à savoir énoncer

- Négation de $P \implies Q$
- Relation de Pascal
- Formule de Bernoulli
- Inégalités triangulaires (simple, négative, généralisée, renversée, bilatérale)
- Dérivabilité de f^{-1} et expression de la dérivée
- \bullet Définition de f convexe
- Inégalité de convexité de ln, exp et sin
- Dérivées de arcsin, arccos, arctan; graphes
- Définition de « A est dense dans \mathbb{R} »
- Adhérence à la partie (« à la ε ») de la borne supérieure/inférieure

Petites preuves à savoir refaire automatiquement

- La partie entière est croissante. Raffinement de la croissance.
- Trouver le terme général d'une suite arithmético-géométrique.

Résultats à savoir démontrer

- Relation de Pascal : démonstration combinatoire
- $tan(\theta + \theta')$ à partir des formules d'addition de $cos(\cdot)$ et $sin(\cdot)$
- $\forall z, z' \in \mathbb{C}, |z + z'| \geqslant ||z| |z'||$
- Formule donnant $(f^{-1})'$
- Inégalité de Jensen
- $P(\alpha) = 0 \iff \exists Q : P = (X \alpha)Q$
- $\bullet \quad X^n 1 = \prod_{\omega \in \mathbb{U}_n} (X \omega)$
- Présentation de la partie entière
- I convexe $\implies I$ intervalle : démonstration d'un des neuf cas.

•

Proposition

Soit $A \subset \mathbb{R}$. Alors, les assertions suivantes sont équivalentes :

- (i) A est dense dans \mathbb{R}
- (ii) $\forall x, y \in \mathbb{R}, \quad x < y \implies \exists a \in A : x \leqslant a \leqslant y$
- (iii) $\forall x, y \in \mathbb{R}, \quad x < y \implies \exists a \in A : x < a < y$