Semaine 6

du 03/11/25 au 07/11/25

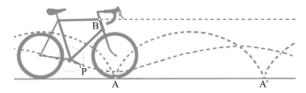


Figure 2.13. Trajectoires suivies par différents points du vélo : un point A de la bande de roulement du pneu avant, un point B du cadre et l'axe de la pédale droite

Partie 2 : Mécanique

Éléments de calcul vectoriel

- Notion de base orthonormée directe (règle des trois doigts de la main droite).
- Convention d'orientation autour d'un axe orienté pour un vecteur \vec{u} (règle main droite).
- Définition et propriétés du produit scalaire. Calcul de la norme d'un vecteur et projection d'un vecteur sur un axe.
- Définition et propriétés du produit vectoriel.

Chapitre M1 : Cinématique du point et du solide

- Notions de référentiel, de repère d'espace et d'horloge.
- Définition du repère cartésien $(O, \vec{u_x}, \vec{u_y}, \vec{u_z})$.
- Description et paramétrage du mouvement plan d'un point :
 - à l'aide des coordonnées cartésiennes (x, y) et de la base cartésienne (\vec{u}_x, \vec{u}_y) ,
 - à l'aide des coordonnées polaires (r, θ) et de la base polaire $(\vec{u}_r, \vec{u}_\theta)$.
- Vecteurs position, vitesse et accélération.
- Exemples traités en cours : mouvement à vecteur accélération constant et mouvement circulaire.
- Mouvement sur une trajectoire connue : abscisse curviligne, base de Frenet, cercle osculateur, expression du vecteur vitesse et du vecteur accélération (par analogie avec les coordonnées polaires dans la base polaire).
- Description et paramétrage du mouvement d'un point à l'aide des coordonnées cartésiennes, cylindriques et sphériques.
- Description et paramétrage du mouvement d'un solide : mouvement de translation et mouvement de rotation autour d'un axe fixe.
- Notions de degrés de liberté.

Extrait du B.O.

Notions et contenus	Capacités exigibles
Cinématique du point	Exprimer à partir d'un schéma le déplacement élé-
Description du mouvement d'un point.	mentaire dans les différents systèmes de coordon-
Vecteurs position, vitesse et accéléra-	nées, construire le trièdre local associé et en dé-
tion. Systèmes de coordonnées carté-	duire géométriquement les composantes du vecteur
siennes, cylindriques et sphériques.	vitesse en coordonnées cartésiennes et cylindriques.
	Établir les expressions des composantes des vec-
	teurs position, déplacement élémentaire, vitesse et
	accélération dans les seuls cas des coordonnées car-
	tésiennes et cylindriques.
	Identifier les degrés de liberté d'un mouvement.
	Choisir un système de coordonnées adapté au pro-
	blème.
Mouvement à vecteur accélération	Exprimer le vecteur vitesse et le vecteur position
constant.	en fonction du temps.
	Établir l'expression de la trajectoire en coordonnées
	cartésiennes.
Mouvement circulaire uniforme et non	Exprimer les composantes du vecteur position, du
uniforme.	vecteur vitesse et du vecteur accélération en coor-
	données polaires planes.
Repérage d'un point dont la trajectoire	Situer qualitativement la direction du vecteur vi-
est connue.	tesse et du vecteur accélération pour une trajectoire
Vitesse et accélération dans le repère de	plane.
Frenet pour une trajectoire plane.	Exploiter les liens entre les composantes du vecteur
	accélération, la courbure de la trajectoire, la norme
Description du mouvement d'un	du vecteur vitesse et sa variation temporelle.
Description du mouvement d'un solide dans deux cas particuliers	Différencier un solide d'un système déformable.
Définition d'un solide.	
Translation.	Reconnaître et décrire une translation rectiligne
Translavion.	ainsi qu'une translation circulaire.
Rotation autour d'un axe fixe.	Décrire la trajectoire d'un point quelconque du so-
Trovation autour q un axe nxe.	lide et exprimer sa vitesse en fonction de sa distance
	à l'axe et de la vitesse angulaire.
	a ranc co de la viocase angulane.

À venir

Chapitre M2: Lois de Newton.