Semaine 9 du 24/11/25 au 28/11/25

James Prescott Joule 1818-1889

Partie 2 : Mécanique

Chapitre M2 : Lois de Newton

- Notions de système fermé et de centre de masse G.
- Quantité de mouvement d'un point, d'un système discret de points et d'un solide.
- Les trois lois de Newton :
 - Principe d'inertie.
 - Principe des actions réciproques.
 - Loi de la quantité de mouvement pour un point. Théorème de la quantité de mouvement pour un solide (démonstration à connaître).
 - Cas particulier d'un système à l'équilibre : principe fondamental de la statique.
- Inventaire des forces usuelles : interaction gravitationnelle, poids, interaction électrostatique, force de Lorentz, force de rappel du ressort, tension d'un fil, poussée d'Archimède, réaction normale du support, réaction tangentielle du support (frottements solides), force de frottements fluides (modèle linéaire et modèle quadratique).
- Étude de quelques mouvements :
 - Les oscillateurs : le pendule simple et le système masse-ressort. Équation de l'oscillateur harmonique, forme canonique, pulsation propre, résolution.
 - Mouvement de chute verticale : étude théorique sans frottement, avec frottement en v puis en v^2 (La résolution de cette équation du mouvement est hors-programme). Résolution d'une équation différentielle linéaire du $1^{\rm er}$ ordre à cœfficients constants et second membre constant : forme canonique, constante de temps, régimes transitoire et permanent.
 - Lancer de projectile : étude théorique sans frottement, avec frottement en v puis en v^2 (résolution numérique). Comparaison avec l'expérience d'un lancer de ballon de basket.

Capacité numérique

— Résolution numérique d'une équation différentielle d'ordre deux ou plus par la méthode d'Euler explicite ou à l'aide de la fonction odeint de la bibliothèque scipy.integrate après avoir vectorialisé le problème en n équations couplées d'ordre un $(n \ge 2)$.

Extrait du B.O.

Notions et contenus	Capacités exigibles
Quantité de mouvement	Exploiter la conservation de la masse pour un sys-
Masse d'un système. Conservation de la	tème fermé.
masse pour système fermé.	Établir l'expression de la quantité de mouvement
Quantité de mouvement d'un point et	pour un système de deux points sous la forme :
d'un système de points. Lien avec la vi-	$ \vec{p} = m\vec{v}(G).$
tesse du centre de masse d'un système	
fermé.	
Première loi de Newton : principe	Décrire le mouvement relatif de deux référentiels
d'inertie.	galiléens.
Référentiels galiléens.	
Notion de force. Troisième loi de New-	Établir un bilan des forces sur un système ou
ton.	sur plusieurs systèmes en interaction et en rendre
	compte sur un schéma.
Deuxième loi de Newton.	Déterminer les équations du mouvement d'un point
	matériel ou du centre de masse d'un système fermé
	dans un référentiel galiléen.
Force de gravitation.	Étudier le mouvement d'un système modélisé par
Modèle du champ de pesanteur uni-	un point matériel dans un champ de pesanteur uni-
forme au voisinage de la surface d'une	forme en l'absence de frottement.
planète.	
Mouvement dans le champ de pesan-	
teur uniforme.	
Modèles d'une force de frottement	Exploiter, sans la résoudre analytiquement, une
fluide.	équation différentielle : analyse en ordres de gran-
Influence de la résistance de l'air sur un	deur, détermination de la vitesse limite, utilisation
mouvement de chute.	des résultats obtenus par simulation numérique.
TD : 11 C1	Écrire une équation adimensionnée.
Tension d'un fil.	Établir l'équation du mouvement du pendule
Pendule simple.	simple.
	Justifier l'analogie avec l'oscillateur harmonique
	dans le cadre de l'approximation linéaire.

Chapitre M3: Approche énergétique du mouvement d'un point

Dans ce chapitre, le système d'étude est un point ou un solide en translation assimilable à un point confondu avec G son centre de masse.

- Puissance, travail élémentaire et travail d'une force.
- Énergie cinétique : $E_c = \frac{1}{2}mv^2$ où v est la norme du vecteur vitesse du point M ou du centre de masse G d'un solide en translation (tous les points d'un solide en translation ont le même vecteur vitesse).
- Théorème de la puissance cinétique (TPC) et théorème de l'énergie cinétique (TEC).
- Énergie potentielle et force conservative. Relation force énergie potentielle. (L'expression du gradient sera fournie dans le système de coordonnées adapté au problème.)
- Énergie mécanique : $E_m = E_c + E_p$.
- Théorème de la puissance mécanique (TPM) et théorème de l'énergie mécanique (TEM).
- Intégrale première du mouvement.

Extrait du B.O.

Notions et contenus	Capacités exigibles
Puissance, travail et énergie ciné-	Reconnaître le caractère moteur ou résistant d'une
tique	force.
Puissance et travail d'une force dans un	
référentiel.	
Théorèmes de l'énergie cinétique et de	Utiliser le théorème approprié en fonction du
la puissance cinétique dans un référen-	contexte.
tiel galiléen, dans le cas d'un système	
modélisé par un point matériel.	
Champ de force conservative et	Établir et citer les expressions de l'énergie poten-
énergie potentielle	tielle de pesanteur (champ uniforme), de l'éner-
Énergie potentielle.	gie potentielle gravitationnelle (champ créé par un
Lien entre un champ de force conserva-	astre ponctuel), de l'énergie potentielle élastique.
tive et l'énergie potentielle. Gradient.	Déterminer l'expression d'une force à partir de
	l'énergie potentielle, l'expression du gradient étant
	fournie.
	Déduire qualitativement, en un point du graphe
	d'une fonction énergie potentielle, le sens et l'in-
	tensité de la force associée.
Énergie mécanique	Distinguer force conservative et force non conser-
Énergie mécanique. Théorème de	vative.
l'énergie mécanique.	Reconnaître les cas de conservation de l'énergie mé-
Mouvement conservatif.	canique.
	Utiliser les conditions initiales.

À venir

Fin chapitre M3 : Mouvement conservatif à un degré de liberté : profil d'énergie potentielle et étude qualitative du mouvement. Détermination des positions d'équilibre et étude de leurs stabilités. Mouvement dans un puits de potentiel et approximation harmonique. Analogie électromécanique.

Chapitre M4 : Mouvement de particules chargées dans des champs électrique et magnétique.