Devoir à la maison n°4

La notation tiendra particuliérement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des <u>formules utilisées</u>.

Exercice

Dans tout le problème, l'énoncé des lettres d'un triangle se fera toujours dans le sens direct. On considère une triangle (quelconque) ABC. Soient D, E et F tels que les triangles BAD, CBE et ACF sont équilatéraux (et nécessairement à l'extérieur de ABC).

On note G, H et I les centres (de gravité, par exemple) respectifs de ces trois triangles équilatéraux. On veut montrer que GHI est lui-même un triangle équilatéral.

Pour tout le problème, on notera : $j = e^{2i\pi/3}$ et en minuscule m l'affixe du point M.

- 1. Faire une figure.
- 2. Montrer qu'un triangle XYZ est équilatéral si et seulement si $e^{i\pi/3}(x-z)=(y-z)$.
- 3. En déduire que (a g) = j(b g), (b h) = j(c h) et (c i) = j(a i).
- 4. Donner alors une relation entre g, h et i, en déduire la nature du triangle GHI.
- 5. Montrer que les centres de gravité des triangles ABC et GHI coïncident. On admet que l'affixe du centre de gravité d'un triangle XYZ et $\frac{1}{3}(x+y+z)$.
- 6. A qui est attribué ce théorème?

Problème - Modèle de Verhulst

On considère une population d'individus.

On note N(t) le nombre d'individus dans la population à l'instant t $(t \in [0; +\infty[)$.

On note $N_0 = N(0)$ la taille de la population à l'instant initial t = 0. On suppose $N_0 > 0$.

Dans le modèle de Verhulst la fonction N est dérivable sur $[0; +\infty[$ et est solution de l'équation différentielle non linéaire

$$y' = ry(1 - \frac{1}{K}y) \tag{E}$$

où r>0 et K>0 sont deux paramètres dont on donnera un sens « physique » par la suite.

- 1. Une première fonction intermédiaire.
 - On suppose que N est une solution de (E). On lui associe $f:[0,+\infty[\to\mathbb{R},\,t\mapsto N(t)e^{-rt}]$.
 - (a) Justifier que f est dérivable sur $[0; +\infty[$.
 - (b) Montrer que f est solution de l'équation différentielle $(E_1): y' = -\frac{r}{K}N(t)y$.
 - (c) En déduire qu'il existe une fonction g définie sur $[0; +\infty[$ et un réel C>0 tels que :

$$\forall \ t \geqslant 0, \qquad f(t) = Ce^{g(t)}$$

on exprimera g et C en fonction (d'une primitive) de N et des paramètres N_0 , r et K.

- 2. Une seconde fonction intermédiaire. Soit $h: [0, +\infty[\to \mathbb{R}, t \mapsto \frac{1}{N(t)}]$
 - (a) Justifier que la fonction h est définie et dérivable sur $[0; +\infty[$.
 - (b) Montrer que h est solution de l'équation différentielle linéaire $(E_2): y' = -ry + \frac{r}{K}$.
 - (c) Résoudre l'équation différentielle (E_2) .
 - (d) En déduire que la fonction N est définie pour tout $t \in \mathbb{R}_+$, par

$$N(t) = \frac{N_0 e^{rt}}{1 + \frac{N_0}{K} (e^{rt} - 1)}$$

Dans la suite, on admet que la fonction N est définie sur \mathbb{R}_+ par $N(t) = \frac{N_0 e^{rt}}{1 + \frac{N_0}{K}(e^{rt} - 1)}$. On rappelle que $N_0 > 0$.

- 3. Etude de la fonction N.
 - (a) Déterminer $\lim_{t\to+\infty} N(t)$.

En déduire la raison pour laquelle Verhulst appelle la constante K: « capacité du milieu ».

- (b) Étudier les variations (strictes) de N sur $[0; +\infty[$. On distinguera plusieurs cas en fonction des paramètres du problème
- 4. On suppose que $N_0 < \frac{1}{2}K$.
 - (a) Montrer que N est de classe C^2 et que pour tout $t \ge 0$

$$N^{\prime\prime}(t) = r^2 N(t) \times \left(1 - \frac{1}{K}N\right) \left(1 - \frac{2}{K}N\right)$$

- (b) En déduire qu'il existe un unique réel t_0 dans l'intervalle $]0; +\infty[$ tel que $N''(t_0) = 0.$
- (c) On dit qu'une fonction φ , de classe \mathcal{C}^2 est

convexe sur un intervalle J, si pour tout $t \in J$, $\varphi''(t) > 0$.

concave sur un intervalle J si pour tout $t \in J$, $\varphi''(t) < 0$.

Etudier la convexité/concavité de N sur (les intervalles de) \mathbb{R} .

(d) Verhulst considérait que « la date à laquelle la croissance de la population commence à ralentir correspond au moment où la taille de la population atteint la moitié de sa valeur $limite. \gg$

En considérant t_0 et $N(t_0)$, justifier l'affirmation de VERHULST.

- (e) Tracer la courbe représentant N en fonction de t, pour $t \ge 0$. On prendra $K = 4 \times N_0$ et $t_0 = 3$ cm. On veut voir sur la courbe :
 - la tangente en t = 0.
 - la tangente en $t = t_0$.
 - l'asymptote pour $t \to +\infty$

5. On suppose toujours que $0 < N_0 < \frac{K}{2}$. VERHULST appelait deuxième âge [de la croissance de la population] la période se situant entre les instants 0 et t_0 , et troisième âge la période se situant entre les instants t_0 et $2t_0$.

- (a) Montrer que $\exp(rt_0) = \frac{K}{N_0} 1$.
- (b) Donner une primitive de N sur $[0, +\infty[$.
- (c) On appelle valeur moyenne d'une fonction φ continue sur un intervalle [a;b], le nombre

$$\frac{1}{b-a}\int_{a}^{b}\varphi(t)\mathrm{d}t$$

Montrer que la valeur moyenne de N sur la période s'étendant sur les deuxième et troisièmeâges selon VERHULST (i.e. entre t=0 et $t=2t_0$) est égale à $\frac{K}{2}$.

(d) On note $N_1 = N(t_0)$. Montrer que $r = \frac{1}{t_0} \ln \frac{\frac{1}{N_0} - \frac{1}{K}}{\frac{1}{N_c} - \frac{1}{K}}$.