Devoir à la maison n°10

La notation tiendra particuliérement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des formules utilisées.

Problème - Croissance concave des noyaux. Décroissance convexe des images

Soit E un K espace vectoriel $(K = \mathbb{R} \text{ ou } \mathbb{C})$ et u un endomorphisme de E. On désigne par K le noyau de u et I m u l'image de u.

A. Deux exemples

1. Dans cette question, E désigne un espace vectoriel sur \mathbb{R} dont une base est $B = (e_1, e_2, e_3, e_4)$. Soit u l'endomorphisme de E tel que la matrice de u par rapport à cette base est :

$$M = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

- (a) Déterminer le rang de u et donner une base de Im u, une base de Ker u en fonction des vecteurs de la base B.
- (b) Calculer M^2 , M^3 . Montrer qu'il existe une matrice A telle que : $\forall p \ge 2$, $M^p \in \text{vect}(A)$. On note α_p le coefficient de proportionnalité, donc pour tout $p \ge 2$, $M^p = \alpha_p A$. Expliciter alors M^p .
- (c) i. Donner une base, en fonction des vecteurs de la base B, de chacun des sous-espaces vectoriels suivants :

$$\operatorname{Im} u^2$$
, $\operatorname{Ker} u^2$, $\operatorname{Im} u^3$, $\operatorname{Ker} u^3$.

- ii. Déterminer : $\forall k \geq 2$, Ker u^k , Im u^k .
- iii. Montrer que $E = \text{Ker } u^2 \oplus \text{Im } u^2$.
- 2. Soit $\mathbb{K}[X]$ l'espace vectoriel des polynômes à coefficients dans le corps \mathbb{K} et d l'endomorphisme de $\mathbb{K}[X]$ qui à un polynôme P associe son polynôme dérivé P'.
 - (a) d est-il injectif? d est-il surjectif? Comment peut-on en déduire que $\mathbb{K}[X]$ n'est pas de dimension finie?
 - (b) Déterminer : $\forall q \in \mathbb{N}^*$, Ker d^q .

B. Noyaux et images itérés

Soit u un endomorphisme de E, pour tout entier naturel p, on notera $I_p = \text{Im } u^p$ et $K_p = \text{Ker } u^p$.

- 1. Montrer que : $\forall p \in \mathbb{N}$, $K_p \subset K_{p+1}$ et $I_{p+1} \subset I_p$.
- 2. On suppose que E est de dimension finie et u injectif. Déterminer : $\forall p \in \mathbb{N}$, I_p et K_p .
- 3. On suppose que E est de dimension finie n non nulle et u non injectif.
 - (a) Montrer qu'il existe un plus petit entier naturel $r \leq n$ tel que : $K_r = K_{r+1}$.
 - (b) Montrer qu'alors : $I_r = I_{r+1}$ et que : $\forall p \in \mathbb{N}$, $K_r = K_{r+p}$ et $I_r = I_{r+p}$.
 - (c) Montrer que : $E = K_r \oplus I_r$.
- 4. Lorsque E n'est pas de dimension finie, existe-t-il un plus petit entier naturel r tel que $K_r = K_{r+1}$?

On pourra prendre un exemple vu précédemment

5. On considère à nouveau que E est de dimension finie.

Soit $p \in \mathbb{N}$. Notons ici $a_p = \dim I_p - \dim I_{p+1}$

et F_p un espace supplémentaire de I_{p+1} dans I_p (la question 1. nous permet de faire cela). On a donc pour tout $p \in \mathbb{N}$, $F_p \oplus I_{p+1} = I_p$.

- (a) Montrer que pour tout $p \in \mathbb{N}$, $a_p = \dim(F_p)$
- (b) Montrer que pour tout $p \in \mathbb{N}$, $I_{p+1} = I_{p+2} + u(F_p)$.
- (c) Montrer que dim $F_{p+1} \leq \dim(u(F_p))$.
- (d) En considérant $\tilde{u}: F_p \to E, x \mapsto u(x)$, montrer alors que $\dim(F_p) \geqslant \dim(u(F_p))$.
- (e) En déduire que pour tout $p \in \mathbb{N}$, dim I_{p+1} dim $I_{p+2} \leq \dim I_p$ dim I_{p+1} .
- (f) Retrouver à nouveau que si $I_r = I_{r+1}$, alors $\forall p \in \mathbb{N}$, $I_r = I_{r+p}$.