Devoir surveillé n°2

Durée de l'épreuve : 3 heures La calculatrice est interdite

La notation tiendra particulièrement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des <u>formules utilisées</u>. Les réponses aux questions seront numérotées et séparées par un trait horizontal. Les résultats essentiels devront être encadrés ou soulignés.

BON TRAVAIL

ÉTUDE D'UNE SUITE RÉCURRENTE EN FONCTION DE SA VALEUR INITIALE

Dans ce problème, on considère l'ensemble noté S des suites $(u_n)_{n\in\mathbb{N}}$ à valeurs réelles vérifiant la relation

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{\exp(u_n)}{n+1}$$

Pour tout nombre réel x, on note $(u_n(x))_{n\in\mathbb{N}}$ ou $(u_n(x))$ la suite appartenant à \mathcal{S} et dont le premier terme vaut x. La notation $u_n(x)$ désigne le terme d'indice n de cette suite. Ainsi $u_0(x) = x$, $u_1(x) = \exp(x)$ et $u_2 = \frac{1}{2} \exp(\exp(x))$. Si x est fixé et sans ambiguïté, on pourra écrire plus rapidement u_n au lieu de $u_n(x)$.

On rappelle (théorème de convergence/divergence par encadrement) que :

- s'il existe $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $0 \leqslant x_n \leqslant y_n$ et $(y_n)_{n \in \mathbb{N}}$ converge vers 0, alors (x_n) converge et $\lim_{n \to +\infty} x_n = 0$,
- s'il existe $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $y_n \leqslant x_n$ et $(y_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$, alors (x_n) diverge et $\lim_{n \to +\infty} x_n = +\infty$.

I Étude de la convergence de $(u_n(x)) \in S$

- I.1. Démontrer que toute suite appartenant à $\mathcal S$ est strictement positive à partir du rang 1.
- I.2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite appartenant à \mathcal{S} .
 - (a) On suppose qu'il existe un rang $N \ge 2$ pour lequel $u_N \le 1$. Montrer que pour tout $n \ge N+1$, $u_n \le \frac{e}{n}$. En déduire que $(u_n)_{n \in \mathbb{N}}$ converge vers 0.
 - (b) Réciproquement, montrer que si $(u_n)_{n\in\mathbb{N}}$ converge vers 0, alors il existe un entier $N\geqslant 2$ tel que $u_N\leqslant 1$. On pourra utiliser la définition : (u_n) converge vers 0 si $\forall \varepsilon\in\mathbb{R}_+^*$, $\exists N\in\mathbb{N}: \forall n\in\mathbb{N}, n\geqslant N\Rightarrow |u_n|\leqslant \varepsilon$.
- I.3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite appartenant à S. On suppose que $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0.
 - (a) Montrer que, pour tout $n \in \mathbb{N}^*$, $u_n \ge \ln n$.
 - (b) En déduire la nature de $(u_n)_{n\in\mathbb{N}}$ et sa limite.
- I.4. On note E_0 , l'ensemble des réels x pour lesquels la suite $(u_n(x))$ converge vers 0 et E_∞ l'ensemble des réels x pour lesquels $(u_n(x))$ diverge vers $+\infty$.

Déduire des deux questions précédentes des propriétés ensemblistes reliant E_0 , E_{∞} et \mathbb{R} .

II Étude des ensembles E_0 et E_{∞} .

On note, pour tout entier $n \in \mathbb{N}$, $\varphi_n : \mathbb{R} \to \mathbb{R}_+^*$, $x \mapsto \frac{\exp(x)}{n+1}$.

On donne les valeurs numériques : $\ln(6 \ln 2) \in [1, 42; 1, 43], \ln 3 \in [1, 09; 1, 10], \frac{e}{2} \in [1, 35; 1, 36]$ et $e^2 \in [7, 38; 7, 39]$

- II.1. Démontrer que $0 \in E_0$.
- II.2. (a) Montrer par récurrence sur $n \in \mathbb{N}^*$ que la composée de n fonctions strictement croissantes de \mathbb{R} dans \mathbb{R} est une fonction strictement croissante.
 - (b) Exprimer, pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, $u_n(x)$ comme la valeur en x de la composée de n fonctions strictement croissantes.
 - (c) En déduire que si $x \in E_0$, alors l'intervalle $]-\infty,x]$ est inclus dans E_0 .

- II.3. On note $f: x \mapsto \exp(x) x(x+1)$.
 - (a) Montrer, en étudiant les variations de f, que pour tout $x \ge 2$, $f(x) \ge 0$.
 - (b) Soit $(u_n)_{n\in\mathbb{N}}$ une suite appartenant à \mathcal{S} . On suppose qu'il existe un rang $N \geq 1$ tel que $u_N \geq N+1$. Montrer que pour tout $n \geq N$, $u_n \geq n+1$. En déduire que u_0 appartient à E_{∞} .
 - (c) Montrer que $1 \in E_{\infty}$.
- II.4. On suppose que $x \in E_{\infty}$. Montrer que $[x, +\infty[\subset E_{\infty}]$.
- II.5. Compte tenu des résultats établis dans les deux premières parties, quelles formes conjecturez-vous pour les ensembles E_0 et E_{∞} ?

III Frontière entre E_0 et E_{∞}

- III.1. Montrer que, pour tout $n \in \mathbb{N}$, φ_n établit une bijection de \mathbb{R} sur \mathbb{R}_+^* . On note ψ_n sa bijection réciproque.
- III.2. Expliciter ψ_n en fonction de $n \in \mathbb{N}$.
- III.3. Soit n > 2 un entier fixé. On pose $c_n = \psi_0 \circ \psi_1 \circ \cdots \circ \psi_{n-1}(1)$ et on admet que la suite $(c_n)_{n \in \mathbb{N}^*}$ est bien définie.
 - (a) Que vaut $u_n(c_n)$? que peut-on en déduire concernant l'appartenance de c_n à E_0 ou E_∞ ?
 - (b) En exploitant les résultats de la partie II, montrer que $c_n \leq 1$.
 - (c) Montrer l'équivalence : $c_n < c_{n+1} \iff 1 < \ln(n+1)$.
- III.4. En déduire que $(c_n)_{n\in\mathbb{N}^*}$ est une suite convergente. On pose $c=\lim_{n\to+\infty}c_n$.
- III.5. Montrer que si $x \in E_0$, alors nécessairement $x \leq c$.
- III.6. Montrer que $c \notin E_0$ puis expliciter E_0 et E_{∞} en fonction de c.

Valeurs infiniment répétées de certaines suites d'entiers

On considère une suite $(u_n)_{n\in\mathbb{N}}$ à valeurs dans $\{-1,1\}$ et on définit la suite $(S_n)_{n\in\mathbb{N}}$ par

$$\forall n \in \mathbb{N}, \quad S_n = \sum_{k=0}^n u_k$$

On dira qu'un entier k est une valeur infiniment répétée de la suite (S_n) si et seulement si l'ensemble $\{n \in \mathbb{N} \mid S_n = k\}$ est infini.

- .1. Montrer que (S_n) est à valeurs dans \mathbb{Z} .
- .2. On suppose dans cette question que les 11 premiers termes de (u_n) sont 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1. Calculer les 11 premiers termes de (S_n) .
- .3. On suppose dans cette question que $\forall n \in \mathbb{N}$, $u_n = (-1)^n$. Calculer la suite (S_n) . Quelles sont ses valeurs infiniment répétées?
- .4. Montrer que l'application $\phi \in \mathcal{F}(\{-1,1\}^{\mathbb{N}},\mathbb{Z}^{\mathbb{N}})$ définie par $\phi((u_n)_{n\in\mathbb{N}})=(S_n)_{n\in\mathbb{N}}$ est injective. Est-elle surjective?
- .5. Soient $p \leqslant q$ deux entiers naturels. Posons $a = S_p$ et $b = S_q$ et supposons a < b. Soit $c \in [a, b]$.
 - (a) Soit $n_1 = \min\{n \in [p, +\infty[\mid \forall i \in [n, q], S_i \ge c \}$. Justifier l'existence de n_1 .
 - (b) Montrer que $S_{n_1} = c$.
 - (c) Justifier que $n_1 \in [p, q]$. Formuler avec des mots le résultat que l'on vient de prouver. Quel théorème d'analyse ce résultat vous rappelle-t-il?
 - (d) Si l'on retire l'hypothèse a < b, le résultat établi ci-dessus est-il encore vrai?
- .6. Soit a et b deux entiers relatifs tels que a < b et $c \in [a, b]$.
 - (a) Montrer l'équivalence

c n'est pas une valeur infiniment répétée de $(S_n) \iff \exists K \in \mathbb{N} : \forall n \geqslant K, S_n \neq c$

- (b) Montrer par l'absurde que si a et b sont deux valeurs infiniment répétées de (S_n) , c en est aussi une.
- .7. On dit qu'une suite (α_n) tend vers $+\infty$ si et seulement si $\forall M \in \mathbb{R}^+, \exists N \in \mathbb{N} : \forall n \geqslant N, \ \alpha_n \geqslant M$.
 - (a) Que dire sur les valeurs infiniment répétée de (S_n) si (S_n) tend vers $+\infty$? Justifier votre réponse.
 - (b) Traduire avec des quantificateurs que ($|S_n|$) ne tend pas vers $+\infty$.
 - (c) On suppose que $(|S_n|)$ ne tend pas vers $+\infty$. Montrer qu'il existe $A \in \mathbb{R}^+$ tel que l'ensemble $\{n \in \mathbb{N} \mid S_n \in [-A, A]\}$ est infini. En déduire que (S_n) a une valeur infiniment répétée.

Correction

Valeurs infiniment répétées de certaines suites d'entiers

On considère une suite $(u_n)_{n\in\mathbb{N}}$ à valeurs dans $\{-1,1\}$ et on définit la suite $(S_n)_{n\in\mathbb{N}}$ par

$$\forall n \in \mathbb{N}, \quad S_n = \sum_{k=0}^n u_k$$

On dira qu'un entier k est une valeur infiniment répétée de la suite (S_n) si et seulement si l'ensemble $\{n \in \mathbb{N} \mid S_n = k\}$ est infini.

- .1. Montrer que (S_n) est à valeurs dans \mathbb{Z} .
 - Méthode 1. La suite u étant à valeurs entières relatives, les termes de la suite (S_n) sont des sommes d'entiers relatifs, or $(\mathbb{Z}, +, \times)$ est un anneau

donc
$$(S_n)$$
 est à valeurs dans \mathbb{Z} .

• Méthode 2. Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $n \in \mathbb{N}$ par

$$\mathcal{P}(n)$$
: « $S_n \in \mathbb{Z}$ ».

- * Par définition, $S_0 = u_0$ et $u_0 \in \{-1, 1\} \subset \mathbb{Z}$ donc $S_0 \in \mathbb{Z}$. Par conséquent, $\mathcal{P}(0)$ est vraie.
- * Soit $n \in \mathbb{N}$ fixé quelconque tel que $\mathcal{P}(n)$ est vraie.

$$S_{n+1} = \sum_{k=0}^{n+1} u_k = \sum_{k=0}^{n} u_k + u_{n+1} = \underbrace{S_n}_{\text{car } \mathcal{P}(n) \text{ est vraie}} + \underbrace{u_{n+1}}_{\in \mathbb{Z}} \in \mathbb{Z}$$

Par conséquent, $\mathcal{P}(n+1)$ est vraie.

Ainsi, (S_n) est à valeurs dans \mathbb{Z} .

.2. On suppose dans cette question que les 11 premiers termes de (u_n) sont 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, 1. Calculer les 11 premiers termes de (S_n) .

Les 11 premiers termes de
$$(S_n)$$
 sont $1, 2, 3, 2, 3, 2, 1, 0, -1, -2, -1$.

.3. On suppose dans cette question que $\forall n \in \mathbb{N}, u_n = (-1)^n$. Calculer la suite (S_n) . Quelles sont ses valeurs infiniment répétées?

- Soit $n \in \mathbb{N}$ fixé. $\star S_{2n} = \sum_{\substack{0 \leqslant k \leqslant 2n \\ k \equiv 0[2]}} (-1)^k = \sum_{\substack{0 \leqslant k \leqslant 2n \\ k \equiv 1[2]}} 1 + \sum_{\substack{0 \leqslant k \leqslant 2n \\ k \equiv 1[2]}} (-1) = (n+1) n = 1 \text{ (car il y a } n+1 \text{ termes pairs et } n \text{ impairs entre } 0 \text{ et } 2n).$
- $\star S_{2n+1} = \sum_{0 \leqslant k \leqslant 2n+1} (-1)^k = \sum_{\substack{0 \leqslant k \leqslant 2n+1 \\ k \equiv 0[2]}} 1 + \sum_{\substack{0 \leqslant k \leqslant 2n+1 \\ k \equiv 1[2]}} (-1) = (n+1) (n+1) = 0 \text{ (car il y a } n+1 \text{ termes pairs et } n+1)$

Ainsi, (S_n) est la suite dont les termes d'indices impairs sont nuls et dont les termes d'indices pairs valent 1.

Par conséquent,

- $\{n \in \mathbb{N} \mid S_n = 0\} = \{2k+1 \mid k \in \mathbb{N}\}\$ donc 0 est une valeur infiniment répétée de (S_n) ,
- $\{n \in \mathbb{N} \mid S_n = 1\} = \{2k \mid k \in \mathbb{N}\}\ donc\ 1$ est une valeur infiniment répétée de (S_n) ,
- $\forall k \in \mathbb{Z} \setminus \{0,1\}, \{n \in \mathbb{N} \mid S_n = k\} = \emptyset \text{ donc } k \text{ n'est pas une valeur infiniment répétée de } (S_n).$

Ainsi, les valeurs infiniment répétées de (S_n) sont 0 et 1.

- .4. Montrer que l'application $\phi \in \mathcal{F}(\{-1,1\}^{\mathbb{N}},\mathbb{Z}^{\mathbb{N}})$ définie par $\phi((u_n)_{n\in\mathbb{N}})=(S_n)_{n\in\mathbb{N}}$ est injective. Est-elle surjective?
 - Soient $(u, v) \in \{-1, 1\}^{\mathbb{N}}$ fixées quelconques telles que $\phi(u) = \phi(v)$. Alors,

$$\forall n \in \mathbb{N} , \sum_{k=0}^{n} u_k = (\phi(u))_n = (\phi(v))_n = \sum_{k=0}^{n} v_k \quad (*)$$

Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $n \in \mathbb{N}$ par

$$\mathcal{P}(n)$$
: « $\forall k \in [0, n]$, $u_k = v_k$ ».

* Appliquons l'égalité (*) pour $n \leftarrow 0$:

$$u_0 = (\phi(u))_0 = (\phi(v))_0 = v_0$$

donc $\mathcal{P}(0)$ est vraie

* Soit $n \in \mathbb{N}$ fixé quelconque tel que $\mathcal{P}(n)$ est vraie.

Soit $k \in [0, n+1]$ fixé.

- Si $k \in [0, n]$, la véracité de $\mathcal{P}(n)$ donne $u_k = v_k$.
- Sinon, k = n + 1. Appliquons l'égalité (*) pour $n \leftarrow n + 1$:

$$\sum_{k=0}^{n+1} u_k = (\phi(u))_{n+1} = (\phi(v))_{n+1} = \sum_{k=0}^{n+1} v_k$$

donc

$$u_{n+1} + \sum_{k=0}^{n} u_k = v_{n+1} + \sum_{k=0}^{n} v_k$$

$$= \sum_{k=0}^{n} v_k$$

$$\operatorname{cor} \mathcal{D}(n) \text{ ost wrain}$$

 $donc u_{n+1} = v_{n+1}.$

Par conséquent, $\mathcal{P}(n+1)$ est vraie.

Par consequent, $v_n = v_n$ si bien que u = v.

Ainsi, ϕ est injective.

• Après quelques instants de réflexion, on remarque que la différence de deux termes consécutifs de la suite (S_n) vaut nécessairement 1 ou -1 si bien que toute suite dont au moins deux termes consécutifs ont une différence ne valant ni 1ni-1 ne peut pas appartenir à l'image de ϕ .

Considérons la suite constante de valeur 1 notée 1.

Montrons par l'absurde que $1 \notin \text{Im}\phi$.

Supposons que $\tilde{1} \in \text{Im}\phi$.

Il existe $u \in \{-1, 1\}^{\mathbb{N}} : \phi(u) = \widetilde{1}$.

Alors,
$$\forall n \in \mathbb{N} , \ \widetilde{1}_n = \sum_{k=0}^n u_k.$$

En particulier pour n=0 et n=1,

$$1 = u_0$$
 et $1 = u_0 + u_1$

donc $u_0 = u_0 + u_1$ donc $0 = u_1$ ce qui <u>contredit</u> $u_1 \in \{-1, 1\}$ (car $u \in \{-1, 1\}^{\mathbb{N}}$).

Ainsi, ϕ n'est pas surjective.

- .5. Soient $p \leqslant q$ deux entiers naturels. Posons $a = S_p$ et $b = S_q$ et supposons a < b. Soit $c \in [a, b]$.
 - (a) Soit $n_1 = \min\{n \in [p, +\infty[\mid \forall i \in [n, q], S_i \ge c]\}$. Justifier l'existence de n_1 .

Par définition, $\{n \in [p, +\infty[\mid \forall i \in [n, q]], S_i \ge c\}$ est une partie de \mathbb{N} , il suffit donc de justifier qu'elle est non vide pour pouvoir affirmer qu'elle admet un plus petit élément.

D'une part,

$$q \in [p, +\infty[$$
 car $p \leqslant q$ par hypothèse,

et d'autre part,

$$\forall i \in [q, q], \quad i = q \quad \text{donc} \quad S_i = S_q = b \geqslant c$$

si bien que $q \in \{n \in [p, +\infty[\mid \forall i \in [n, q], S_i \geqslant c\}.$

Ainsi, n_1 est bien défini car $\{n \in [p, +\infty[\mid \forall i \in [n, q]], S_i \geqslant c\}$ admet un plus petit élément.

- (b) Montrer que $S_{n_1} = c$.
 - \star Le plus petit élément d'un ensemble appartient à cet ensemble donc

$$n_1 \in \{n \in [p, +\infty[\mid \forall i \in [n, q], S_i \geqslant c\}$$

donc $\forall i \in [n_1, q], S_i \geqslant c$ d'où, pour $i \leftarrow n_1$,

$$S_{n,} \geqslant c$$

* Par construction, $n_1 \geqslant p$.

— Si
$$n_1 = p$$
, puisque $S_{n_1} \ge c$, $a = S_p = S_{n_1} \ge c \ge a$ donc $a = c$ donc $S_{n_1} = S_p = c$.

— Sinon, $n_1 > p$ donc $n_1 - 1 \in [p, +\infty[$ et $n_1 - 1$ étant strictement plus petit que le plus petit élément de $\{n \in [p, +\infty[] \mid \forall i \in [n, q], S_i \ge c\}$, il n'appartient pas à cet ensemble donc on peut affirmer que

$$non (\forall i \in [n_1 - 1, q], S_i \ge c) \iff \exists i \in [n_1 - 1, q] : S_i < c$$

Or n_1 appartient à l'ensemble donc

$$\forall i \in [n_1, q], S_i \geqslant c$$

donc il existe au moins un indice i dans $[n_1 - 1, q]$ tel que $S_i < c$ et aucun des indices de $[n_1, q]$ ne convient, donc il n'y en a qu'un seul (l'unicité n'a aucune importance ici) et c'est $n_1 - 1$:

$$S_{n_1 - 1} < c$$

donc

$$S_{n_1} = S_{n_1-1} + u_{n_1} < c + \underbrace{u_{n_1}}_{\in \{-1, 1\}} < c + 1$$

or (S_n) est à valeurs entières donc

$$S_{n_1} \leqslant c$$
 Ainsi, $S_{n_1} = c$.

(c) Justifier que $n_1 \in [p, q]$. Formuler avec des mots le résultat que l'on vient de prouver. Quel théorème d'analyse ce résultat vous rappelle-t-il?

Par définition, $n_1 \in [p, +\infty[$ donc $n_1 \ge p$.

 n_1 est le plus petit élément d'un ensemble qui contient q (voir la question 5(a) pour la preuve du caractère non vide de cet ensemble) donc $n_1 \leq q$.

Ainsi,
$$n_1 \in [p, q]$$
.

Nous venons de prouver que

$$\forall c \in [S_p, S_q], \exists n_1 \in [p, q] : S_{n_1} = c$$

c'est-à-dire

« entre les rangs p et q, la suite (S_n) prend au moins une fois toutes les valeurs entre S_p et S_q »

ce qui est une version « discrète » du théorème des valeurs intermédiaires.

- (d) Si l'on retire l'hypothèse a < b, le résultat établi ci-dessus est-il encore vrai?
 - Si a = b, alors $S_p = a = b = S_q$ donc il n'y a qu'une seule valeur entre S_p et S_q qui est atteinte en $p \in [\![p,q]\!]$ (et également en q!).
 - Si a > b, on peut adapter la preuve ci-dessus en montrant que

$$n_1 = \min\{n \in \llbracket p, +\infty \llbracket \mid \forall i \in \llbracket n, q \rrbracket, S_i \leqslant c\}$$

est bien défini (partie de \mathbb{N} non vide car contenant q), qu'il appartient à [p,q] et que $S_{n_1}=c$. Ainsi, le résultat précédent reste vrai sans l'hypothèse a < b.

- .6. Soit a et b deux entiers relatifs tels que a < b et $c \in [a, b]$.
 - (a) Montrer l'équivalence

cn'est pas une valeur infiniment répétée de $(S_n) \Longleftrightarrow \exists \, K \in \mathbb{N} \, : \, \forall n \geqslant K, \, S_n \neq c$

• Supposons que c n'est pas une valeur infiniment répétée de (S_n) .

Alors « non($\{n \in \mathbb{N} \mid S_n = c\}$ est infini) $\iff \{n \in \mathbb{N} \mid S_n = c\}$ » est fini est vraie.

— Si $\{n \in \mathbb{N} \mid S_n = c\}$ est vide, posons K = 0, on peut affirmer que

$$\forall n \geqslant K, \ S_n \neq c$$

— Sinon, puisque $\{n \in \mathbb{N} \mid S_n = c\}$ est non vide et fini, il admet un plus grand élément $n_M = \max\{n \in \mathbb{N} \mid S_n = c\}$. Posons $K = n_M + 1$, on peut affirmer que

$$\forall n \geqslant K, \ S_n \neq c$$

car la condition $n \ge K$ implique $n > n_M = \max\{n \in \mathbb{N} \mid S_n = c\}$ donc $n \notin \{n \in \mathbb{N} \mid S_n = c\}$.

Ainsi, $\exists K \in \mathbb{N} : \forall n \geqslant K, S_n \neq c.$

• Supposons qu'il existe $K \in \mathbb{N}$: $\forall n \geq K, S_n \neq c$.

Alors $\{n \in \mathbb{N} \mid S_n = c\} \subset \llbracket 0, K \rrbracket$ donc $\{n \in \mathbb{N} \mid S_n = c\}$ est fini donc c n'est pas une valeur infiniment répétée de (S_n) .

Ainsi, c n'est pas une valeur infiniment répétée de $(S_n) \iff \exists K \in \mathbb{N} : \forall n \geqslant K, S_n \neq c$.

(b) Montrer par l'absurde que si a et b sont deux valeurs infiniment répétées de (S_n) , c en est aussi une.

Supposons que a et b sont deux valeurs infiniment répétées de (S_n) .

Par l'absurde, supposons que c n'est pas une valeur infiniment répétée de (S_n) .

D'après le sens direct de l'équivalence établie dans la question précédente,

$$\exists k \in \mathbb{N} : \forall n \geqslant k, S_n \neq c$$

Fixons un tel k de sorte que

$$\forall n \geqslant k , S_n \neq c \quad (**)$$

Posons $p = \min\{n \in [k, +\infty[\mid S_n = a]\}.$

p est bien défini car $\{n \in [k, +\infty[\mid S_n = a]\}$

- est une partie de \mathbb{N} ,
- non vide car si elle l'est, alors $\{n \in \mathbb{N} \mid S_n = a\} \subset [0, k]$ donc $\{n \in \mathbb{N} \mid S_n = a\}$ est fini ce qui contredit le fait que a est une valeur infiniment répétée de (S_n) .

Cette construction donne $k \leq p$ et $S_p = a$.

De la même manière on justifie l'existence de $q=\min\{n\in [p,+\infty[\ |\ S_n=b\}\ \text{qui vérifie}\ p\leqslant q\ \text{et}\ S_q=b.$

Puisque $c \in [a, b]$, le résultat établi dans la question 6 permet d'affirmer qu'il existe $n_1 \in [p, q]$ tel que $S_{n_1} = c$, or $p \ge k$ donc

$$n_1 \geqslant k$$
 et $S_{n_1} = c$

ce qui contredit (**).

Ainsi, si a et b sont deux valeurs infiniment répétées de (S_n) , c en est aussi une.

- .7. On dit qu'une suite (α_n) tend vers $+\infty$ si et seulement si $\forall M \in \mathbb{R}^+, \exists N \in \mathbb{N} : \forall n \geq N, \alpha_n \geq M$.
 - (a) Que dire sur les valeurs infiniment répétée de (S_n) si (S_n) tend vers $+\infty$? Justifier votre réponse.

Par l'absurde, supposons que (S_n) admet au moins une valeur infiniment répétée que l'on note k.

On sait par conséquent que l'ensemble $\{n \in \mathbb{N} \mid S_n = k\}$ est infini.

Appliquons la définition de la divergence de (S_n) vers $+\infty$ pour $M \leftarrow |k| + 1$ (autorisé car $|k| + 1 \ge 0$):

$$\exists N \in \mathbb{N} : \forall n \geqslant N , S_n \geqslant |k| + 1$$

Fixons un tel N.

On a donc, pour tout $n \ge N$, $S_n \ge |k| + 1 \ge k + 1 > k$ donc

$$\forall n \in [N, +\infty], S_n > k$$

si bien que $\{n \in \mathbb{N} \mid S_n = k\} \subset [\![0,N]\!]$ ce qui contredit le caractère infini de cet ensemble.

Ainsi, si (S_n) tend vers $+\infty$, l'ensemble des valeurs infiniment répétées de (S_n) est vide.

(b) Traduire avec des quantificateurs que ($|S_n|$) ne tend pas vers $+\infty$.

$$(|S_n|)$$
 ne tend pas vers $+\infty \iff \exists M \in \mathbb{R}_+ : \forall N \in \mathbb{N}, \exists n \geqslant N : |S_n| < M$.

(c) On suppose que $(|S_n|)$ ne tend pas vers $+\infty$.

Montrer qu'il existe $A \in \mathbb{R}^+$ tel que l'ensemble $\{n \in \mathbb{N} \mid S_n \in [-A, A]\}$ est infini. En déduire que (S_n) a une valeur infiniment répétée.

• Appliquons la définition de la non divergence de $(|S_n|)$ vers $+\infty$ formulée dans la question précédente :

$$\exists M \in \mathbb{R}_+ : \forall N \in \mathbb{N}, \exists n \geqslant N : |S_n| < M \quad (***)$$

Fixons un tel M.

Raisonnons par l'absurde en supposant que

$$\forall A \in \mathbb{R}_+$$
, $\{n \in \mathbb{N} \mid S_n \in [-A, A]\}$ est fini.

Appliquons cette hypothèse pour $A \leftarrow M$:

$$\{n \in \mathbb{N} \mid S_n \in [-M, M]\}$$
 est fini.

L'ensemble $\{n \in \mathbb{N} \mid S_n \in [-M, M]\}$

- est une partie de N par définition,
- non vide : appliquons la propriété (* * *) pour $N \leftarrow 0$:

$$\exists n_0 \geqslant 0 : |S_{n_0}| < M$$

si bien qu'en fixant un tel n_0 , $|S_{n_0}| < M$ donc $n_0 \in \{n \in \mathbb{N} \mid S_n \in [-M, M]\}$,

— fini.

donc il admet un plus grand élément que l'on note $n_M = \max\{n \in \mathbb{N} \mid S_n \in [-M, M]\}$ ce qui implique

$${n \in \mathbb{N} \mid S_n \in [-M, M]} \subset [0, n_M]$$

Appliquons la propriété (***) pour $n \leftarrow n_M + 1$:

$$\exists n_2 \geqslant n_M + 1 : |S_{n_2}| < M$$

Fixons un tel n_2 . La propriété $|S_{n_2}| < M$ garantit que $n_2 \in \{n \in \mathbb{N} \mid S_n \in [-M, M]\}$ si bien que

$$n_2 \leqslant n_M$$

ce qui contredit l'inégalité $n_2 > n_M$ issue du choix de n_2 .

Ainsi, il existe $A \in \mathbb{R}^+$ tel que l'ensemble $\{n \in \mathbb{N} \mid S_n \in [-A, A]\}$ est infini.

Fixons une valeur A telle que l'ensemble $\{n \in \mathbb{N} \mid S_n \in [-A, A]\}$ est infini (son existence vient du point précédent). Par l'absurde, supposons que (S_n) n'a aucune valeur infiniment répétée.

Alors, pour tout $k \in \mathbb{Z}$ tel que $k \in [-A, A]$, $\{n \in \mathbb{N} \mid S_n = k\}$ est fini.

Or on dispose de l'égalité ensembliste

$$\{n\in\mathbb{N}\mid S_n\in[-A,A]\}=\bigcup_{\substack{k\in\mathbb{Z}\\|k|\leqslant A}\\\text{nb fini d'indices }k}\underbrace{\{n\in\mathbb{N}\mid S_n=k\}}_{\text{ensemble fini}}$$

donc $\{n \in \mathbb{N} \mid S_n \in [-A, A]\}$ est un ensemble fini (en tant que réunion d'un nombre fini d'ensembles finis) ce qui contredit le fait que $\{n \in \mathbb{N} \mid S_n \in [-A, A]\}$ est infini d'après le choix de A.

Ainsi, si $(|S_n|)$ ne tend pas vers $+\infty$, (S_n) a au moins une valeur infiniment répétée.

ÉTUDE D'UNE SUITE RÉCURRENTE EN FONCTION DE SA VALEUR INITIALE

I Étude de la convergence de $(u_n(x)) \in \mathcal{S}$

I.1. Démontrer que toute suite appartenant à \mathcal{S} est strictement positive à partir du rang 1.

Soit (u_n) une suite de S.

Soit $n \in \mathbb{N}^*$. Alors $n-1 \in \mathbb{N}$ et par définition de (u_n) (avec $n \leftarrow n-1$):

$$u_n = \frac{\exp(u_{n-1})}{n} > 0$$

Ainsi, pour toute suite (u_n) de S, on a dès que $n \ge 1$, $u_n > 0$.

- I.2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite appartenant à \mathcal{S} .
 - (a) On suppose qu'il existe un rang $N \ge 2$ pour lequel $u_N \le 1$.

Montrer que pour tout $n \ge N+1$, $u_n \le \frac{e}{n}$. En déduire que $(u_n)_{n \in \mathbb{N}}$ converge vers 0.

Posons, pour tout entier $n \ge N+1$, $\mathcal{P}_n : \langle u_n \le \frac{e}{n} \rangle$.

$$- u_{N+1} = \frac{e^{u_N}}{N+1} \leqslant \frac{e}{N+1} \text{ car } u_N \leqslant 1 \text{ et que exp est croissante.}$$
Donc \mathcal{P}_{N+1} est vraie.

— Soit $n \ge N + 1$. Supposons que \mathcal{P}_n est vraie.

Alors
$$u_n \geqslant \frac{e}{n}$$
, or $\lfloor e \rfloor = 2$ donc $e \leqslant 3$.

Puis
$$n \ge N + 1 \ge 3$$
, donc $\frac{e}{n} \le \frac{3}{3} = 1$.
Par transitivité de l'inégalité : $u_n \le 1$.

Puis, par croissance de la fonction exponentielle :
$$u_{n+1} = \frac{e^{u_n}}{n+1} \leqslant \frac{e}{n+1}$$
. Ainsi \mathcal{P}_{n+1} est vraie.

On a donc démontré par récurrence : $\forall n \in \mathbb{N}, n \ge N+1, u_n \le \frac{e}{n}$.

On peut ensuite affirmer, compte tenu de la question I.1, qu'on a l'encadrement :

$$\forall n \geqslant N+1, \quad 0 < u_n \leqslant \frac{e}{n}$$

Alors, par théorème d'encadrement (puisque $\left(\frac{e}{n}\right) \to 0$)

$$u_n$$
 converge et $\lim_{n \to +\infty} u_n = 0$.

(b) Réciproquement, montrer que si $(u_n)_{n\in\mathbb{N}}$ converge vers 0, alors il existe un entier $N\geqslant 2$ tel que $u_N\leqslant 1$. On pourra utiliser la définition : (u_n) converge vers 0 si $\forall \varepsilon \in \mathbb{R}_+^*$, $\exists N \in \mathbb{N}$: $\forall n \in \mathbb{N}$, $n \geqslant N \Rightarrow |u_n| \leqslant \varepsilon$.

Réciproquement, supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers 0.

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow |u_{n}| \leqslant \varepsilon$$

Ceci étant valable pour tout $\varepsilon>0,$ on peut l'appliquer pour $\varepsilon=1$ $(\varepsilon\leftarrow1)$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N \Rightarrow |u_n| \leqslant 1$$

Enfin, comme $u_n \leq |u_n|$, on en déduit

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \leqslant 1$$

et en prenant $N' = \max(N, 2)$ alors $N' \ge 2$ et $N' \ge N$ donc $u_{N'} \le 1$.

On peut alors affirmer:

Il existe un entier $N' \ge 2$ tel que $u_{N'} \le 1$.

- I.3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite appartenant à S. On suppose que $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0.
 - (a) Montrer que, pour tout $n \in \mathbb{N}^*$, $u_n \ge \ln n$.
 - Preuve par l'absurde. Supposons qu'il existe $n_0 \in \mathbb{N}^*$ tel que $u_{n_0} < \ln n_0$.

Alors
$$u_{n_0+1} = \frac{e^{u_{n_0}}}{n_0+1} < \frac{e^{\ln n_0}}{n_0+1} = \frac{n_0}{n_0+1} \le 1 \text{ donc } u_{n_0+1} \le 1.$$

Alors $u_{n_0+1}=\frac{e^{u_{n_0}}}{n_0+1}<\frac{e^{\ln n_0}}{n_0+1}=\frac{n_0}{n_0+1}\leqslant 1$ donc $u_{n_0+1}\leqslant 1$. Or $n_0\in\mathbb{N}^*$ donc $n_0+1\geqslant 2$ si bien que nous venons de prouver l'existence d'un rang $n_0+1\geqslant 2$ tel que $u_{n_0+1}\leqslant 1$ ce qui implique, d'après la question I.2(a), la convergence de (u_n) vers 0, d'où une contradiction avec l'hypothèse faite dans cette question.

Autre preuve. Ici, on utilise plutôt un raisonnement fondé sur la contraposée. On a vu l'implication : $\exists N \in \mathbb{N}^*$ tel que $u_N \leq 1 \Longrightarrow (u_n) \to 0$.

Donc, la contraposée, donne :

$$(u_n) \not\to 0 \Longrightarrow \forall N \in \mathbb{N}^*, u_N > 1$$

On a donc pour tout $n \in \mathbb{N}^*$: $u_n = \frac{e^{u_{n-1}}}{n} > 1$, donc $e^{u_{n-1}} > n$.

Puis par croissance de la fonction $\ln définie \operatorname{sur} \mathbb{R}_+^* : u_{n-1} > \ln n$.

Ainsi, pour tout $n \in \mathbb{N}^*$ (en faisant un changement de variable : $n \leftarrow n+1$) : $u_n > \ln(n+1) > \ln n$.

Donc pour tout
$$n \in \mathbb{N}^*$$
, $u_n \geqslant \ln n$.

(b) En déduire la nature de $(u_n)_{n\in\mathbb{N}}$ et sa limite.

Cette fois-ci, on exploite le théorème de divergence par minoration, puisque $(\ln n)_{n\in\mathbb{N}}$ diverge vers $+\infty$:

La suite $(u_n)_{n\in\mathbb{N}}$ diverge et sa limite est $+\infty$.

I.4. On note E_0 , l'ensemble des réels x pour lesquels la suite $(u_n(x))$ converge vers 0 et E_∞ l'ensemble des réels x pour lesquels $(u_n(x))$ diverge vers $+\infty$.

Déduire des deux questions précédentes des propriétés ensemblistes reliant E_0 , E_{∞} et \mathbb{R} .

Par définition, $E_0 = \{x \mid (u_n(x)) \to 0\}$

D'après la question I.2,

$$\exists N \geqslant 2 \text{ tel que } u_N(x) \leqslant 1 \iff (u_n(x)) \to 0$$

donc

$$E_0 = \{x \mid \exists N \geqslant 2 \text{ tel que } u_N(x) \leqslant 1\}$$

Par définition, $E_0 = \{x \mid (u_n(x)) \to +\infty\}.$

D'après la question I.3,

$$(u_n(x)) \not\to 0$$
 \Longrightarrow $(u_n(x)) \to +\infty$ récipr. immédiate

donc

$$E_{\infty} = \{x \mid (u_n(x)) \not\to 0\} = \{x \mid non((u_n(x)) \to 0)\} = \{x \mid \forall \ N \geqslant 2, u_N(x) > 1\}$$

On a les égalités ensemblistes :

$$E_0 = \{x \mid \exists \ N \geqslant 2 \text{ tel que } u_N(x) \leqslant 1\}$$
$$E_{\infty} = \{x \mid \forall \ N \geqslant 2, u_N(x) > 1\}$$

Comme la proposition « $\exists N \ge 2$ tel que $u_N(x) \le 1$ » est la proposition contraire de « $\forall N \ge 2, u_N(x) > 1$ » les deux ensembles E_0 et E_{∞} sont complémentaires dans \mathbb{R} .

$$E_0 \cup E_\infty = \mathbb{R} \text{ et } E_0 \cap E_\infty = \emptyset$$

II Étude des ensembles E_0 et E_{∞} .

On note, pour tout entier $n \in \mathbb{N}$, $\varphi_n : \mathbb{R} \to \mathbb{R}_+^*$, $x \mapsto \frac{\exp(x)}{n+1}$.

On donne les valeurs numériques : $\ln(6\ln 2) \in [1,42;1,43], \ln 3 \in [1,09;1,10], \frac{e}{2} \in [1,35;1,36]$ et $e^2 \in [7,38;7,39]$

II.1. Démontrer que $0 \in E_0$.

On fait quelques calculs pour espérer rapidement exploiter le critère de la question I.2.
$$u_0(0)=0,\ u_1(0)=\frac{e^0}{1}=1,\ u_2=\frac{e^1}{2}=\frac{e}{2}(>1)\ (\text{d'après les données numériques}),\ \text{puis }u_3=\frac{\exp(\frac{e}{2})}{3}.$$

On a alors les équivalences (par croissance de ln) :

$$u_3 \leqslant 1 \Longleftrightarrow \exp{\frac{e}{2}} \leqslant 3 \Longleftrightarrow \frac{e}{2} \leqslant \ln 3$$

Ce qui est faux (d'après les données numériques fournies), donc ce n'est pas suffisant.

Calculons u_4 . On a $u_4 = \frac{\exp(u_3)}{4}$

$$u_4 \leqslant 1 \Longleftrightarrow u_3 \leqslant \ln 4 = 2 \ln 2 \Longleftrightarrow \exp\left(\frac{e}{2}\right) \leqslant 6 \ln 2 \Longleftrightarrow \frac{e}{2} \leqslant \ln(6 \ln 2)$$

Or d'après les donnés numériques : $\ln(6 \ln 2) \ge 1, 42 \ge 1, 36 \ge \frac{e}{2}$, donc $\ln(6 \ln 2) \ge \frac{e}{2}$.

Donc $u_4 \leq 1$. D'après le critère de la question I.2(a), on en déduit $(u_n(0)) \to 0$.

Ainsi,
$$0 \in E_0$$
.

II.2. (a) Montrer par récurrence sur $n \in \mathbb{N}^*$ que la composée de n fonctions strictement croissantes de \mathbb{R} dans \mathbb{R} est une fonction strictement croissante.

Notons, pour tout entier $n \in \mathbb{N}^*$, \mathcal{Q}_n : « la composée de n fonctions strictement croissantes de \mathbb{R} dans \mathbb{R} est une fonction

- La composée d'une fonction strictement croissante est la fonction strictement croissante, donc Q_1 est vraie.
- Soient f_1 et f_2 deux fonctions strictement croissantes de \mathbb{R} dans \mathbb{R} . Soient $(x,y) \in \mathbb{R}^2$ tels que x < y.

$$x < y \qquad \Longrightarrow \qquad f_2 \text{ strict. croissante} \qquad f_2(x) < f_2(y) \qquad \Longrightarrow \qquad f_1(f_2(x)) < f_1(f_2(y)) \Rightarrow (f_1 \circ f_2)(x) \leqslant (f_1 \circ f_2)(y)$$

Par conséquent, $f_1 \circ f_2$ est strictement croissante donc Q_2 est vraie.

— Soit $n \in \mathbb{N}^*$ tel que $n \geqslant 2$. Supposons que \mathcal{Q}_n est vraie.

Soient $f_1, f_2, \dots f_n, f_{n+1}, n+1$ fonctions strictement croissantes de \mathbb{R} dans \mathbb{R} .

Alors $f_1 \circ f_2 \cdots \circ f_n$ est la composée de n fonctions strictement croissantes de \mathbb{R} dans \mathbb{R} , elle est donc strictement croissante de \mathbb{R} dans \mathbb{R} d'après \mathcal{Q}_n .

Puis, la composée de deux fonctions strictement croissantes est strictement croissante (Q_2 vraie), donc par associativité de \circ :

$$f_1 \circ f_2 \cdots \circ f_n \circ f_{n+1} = (f_1 \circ f_2 \cdot \circ f_n) \circ f_n$$

est strictement croissante.

Ainsi Q_{n+1} est vraie.

La récurrence est démontrée :

Pour tout $n \ge 1$, la composée de n fonctions strict. croissantes de $\mathbb R$ dans $\mathbb R$ est une fonction strict. croissante.

(b) Exprimer, pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, $u_n(x)$ comme la valeur en x de la composée de n fonctions strictement croissantes.

On note que, par définition, pour tout $n \in \mathbb{N}$, $u_{n+1} = \varphi_n(u_n)$.

Par récurrence immédiate : pour tout $n \in \mathbb{N}^*$, $u_n = \varphi_{n-1} \circ \varphi_{n-2} \cdots \circ \varphi_0(x)$.

En effet : $u_1 = \varphi_0(x)$

et si $u_n = \varphi_{n-1} \circ \varphi_{n-2} \cdots \circ \varphi_0(x)$, alors $u_{n+1} = \varphi_n(u_n) = \varphi_n \circ \varphi_{n-2} \cdots \circ \varphi_0(x)$.

Donc pour tout
$$n \in \mathbb{N}^*$$
, $u_n(x) = \varphi_{n-1} \circ \varphi_{n-2} \cdots \circ \varphi_0(x)$

où les fonctions φ_k pour $k=0\ldots n-1$ sont n fonctions strictement croissantes car ce sont les produits d'une constante strictement positive et de la fonction exponentielle qui est strictement croissante.

(c) En déduire que si $x \in E_0$, alors l'intervalle $]-\infty,x]$ est inclus dans E_0 .

Soit $x \in E_0$. Donc $(u_n(x)) \to 0$.

Ainsi, il existe $N \ge 2$, tel que $u_N(x) \le 1$ (critère de la question I.2(b)).

Soit $t \in]-\infty, x]$, donc $t \leq x$.

On a alors u_N , qui la composée de N fonctions croissantes $(\varphi_k, \text{ pour } k \text{ de } N-1 \text{ à } 0)$,

donc u_N est une fonction croissante et donc $u_N(t) \leq u_N(x) \leq 1$.

Ainsi d'après le critère de la question I.2(a) $(u_n(t))_{n\in\mathbb{N}}$ converge vers 0 donc $t\in E_0$.

On a donc montré : $t \in]-\infty, x] \Longrightarrow t \in E_0$.

$$]-\infty,x]\subset E_0.$$

II.3. On note $f: x \mapsto \exp(x) - x(x+1)$.

(a) Montrer, en étudiant les variations de f, que pour tout $x \ge 2$, $f(x) \ge 0$.

f est dérivable deux fois sur \mathbb{R} et pour tout $x \in \mathbb{R}$:

$$f'(x) = e^x - 2x - 1$$
 $f''(x) = e^x - 2$

Pour tout $x \ge 2$, par croissance de exp, $e^x - 2 \ge e^2 - 2 \ge 0$ (données numériques).

Ainsi f' est croissante sur $[2, +\infty[$.

Or $f'(2) = e^2 - 5 \ge 2, 3$ (données numériques).

Ainsi, pour tout $x \ge 2$, par croissance de f', $f'(x) \ge f'(2) \ge 0$.

Donc f est croissante sur $[2, +\infty[$.

Et pour tout $x \ge 2$, $f(x) \ge f(2) = e^2 - 6 \ge 1$, $3 \ge 0$.

Pour tout
$$x \ge 2$$
, $\exp(x) \ge x(x+1)$.

(b) Soit $(u_n)_{n\in\mathbb{N}}$ une suite appartenant à \mathcal{S} .

On suppose qu'il existe un rang $N \ge 1$ tel que $u_N \ge N + 1$.

Montrer que pour tout $n \ge N$, $u_n \ge n+1$. En déduire que u_0 appartient à E_{∞} .

On démontre ce résultat par récurrence, pour $n \ge N$.

Notons, pour tout $n \ge N$, $\mathcal{H}_n : \langle u_n \ge n+1 \rangle$.

— Par hypothèse de l'énoncé, \mathcal{H}_N est vraie.

— Soit $n \ge N$. Supposons que \mathcal{H}_n est vraie.

Par croissance de exp : $\exp(u_n) \ge \exp(n+1)$

$$\geqslant$$
 $(n+1)(n+2).$

quest II.3(a) pour $x \leftarrow n+1$ autorisé car $n+1 \geqslant 2$

Ainsi : $u_{n+1} = \frac{e^{u_n}}{n+1} \ge n+2$. Donc \mathcal{H}_{n+1} est vraie.

Pour tout $n \ge N$, $u_n \ge n+1$.

On applique alors le critère de divergence par minoration, rappelé dans l'énoncé, puisque $(n+1)_n \to +\infty$:

$$(u_n) \to +\infty \text{ donc } u_0 \in E_{\infty}.$$

(c) Montrer que $1 \in E_{\infty}$.

Comme pour la première question de cette partie, on évalue successivement plusieurs valeurs de la suite.

$$u_0(1) = 1, \ u_1(1) = \frac{e^1}{1} = e \geqslant 2.$$

Ainsi le critère de la question, précédente est vérifé : il existe un rang $N=1\geqslant 1$ tel que $u_N\geqslant N+1$, donc $(u_n(1))_{n\in\mathbb{N}}$ diverge vers $+\infty$.

 $1 \in E_{\infty}$.

II.4. On suppose que $x \in E_{\infty}$. Montrer que $[x, +\infty[\subset E_{\infty}]$.

Soit $t \in [x, +\infty[$.

Soit $n \in \mathbb{N}^*$. Par croissance de u_n , on a donc $u_n(x) \leq u_n(t)$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $u_n(t) \geqslant u_n(x)$.

Et par divergence par minoration (puisque $(u_n(x))_{n\in\mathbb{N}} \to +\infty$) : $t \in E_{\infty}$. Ainsi tout élément de $[x, +\infty[$ est un élément de E_{∞} .

 $[x,\infty[\subset E_{\infty}]$

AUTRE METHODE

On peut faire également un raisonnement par l'absurde :

Si $t \in E_0$, alors d'après la question II.2.(c), $]-\infty,t] \subset E_0$ et donc, comme $x \in]-\infty,t]$, $x \in E_0$.

Ceci est absurde, car $E_0 \cap E_\infty = \emptyset$.

Donc $t \notin E_0$ et ainsi, par complémentarité : $t \in E_{\infty}$.

II.5. Compte tenu des résultats établis dans les deux premières parties, quelles formes conjecturez-vous pour les ensembles E_0 et E_{∞} ?

Nécessairement, tout élément de E_0 est plus petit que tout élément de E_{∞} (sinon une contradiction d'après II.2.(c) et II.4). Puis, comme $E_0 \cup E_{\infty} = \mathbb{R}$, une conjecture est

> il existe $\alpha \in \mathbb{R}$ tel que $]-\infty, \alpha[\subset E_0,]\alpha, +\infty[\subset E_\infty.$ Reste à savoir si α est dans E_0 ou E_∞ .

III Frontière entre E_0 et E_{∞}

III.1. Montrer que, pour tout $n \in \mathbb{N}$, φ_n établit une bijection de \mathbb{R} sur \mathbb{R}_+^* .

Soit $n \in \mathbb{N}$.

 φ_n , comme la fonction exp, est continue et strictement croissante de \mathbb{R} , à valeurs dans \mathbb{R}_+^*

Car $\lim_{x \to -\infty} \varphi_n = 0$ et $\lim_{x \to +\infty} \varphi_n = +\infty$.

D'après le théorème de la bijection, appelé parfois corollaire du théorème des valeurs intermédiaires :

Pour tout $n \in \mathbb{N}$, φ_n établit une bijection de \mathbb{R} sur \mathbb{R}_+^* .

Une autre stratégie peut consister à trouver la bijection réciproque. On fusionnerait alors les réponses de cette question et de la suivante.

On note ψ_n sa bijection réciproque.

Soit $n \in \mathbb{N}$. Posons, $\widehat{\psi}_n : x \mapsto \ln((n+1) \times x)$, définie de \mathbb{R}_+^* dans \mathbb{R} . Pour tout $x \in \mathbb{R}$,

$$\widehat{\psi}_n(\varphi_n(x)) = \ln((n+1) \times \frac{e^x}{n+1} = \ln(e^x) = x$$

Et pour tout $x \in \mathbb{R}_+^*$,

$$\varphi_n(\widehat{\psi}_n(x)) = \frac{\exp(\ln((n+1)x))}{n+1} = \frac{(n+1)x}{n+1} = x$$

Donc on peut affirmer que $\widehat{\psi}_n = \varphi_n^{-1} = \psi_n$

pour tout $n \in \mathbb{N}$, $\psi_n : \mathbb{R}_+^* \to \mathbb{R}$, $x \mapsto \ln((n+1)x)$ est la fonction réciproque de φ_n .

- III.3. Soit n > 2 un entier fixé. On pose $c_n = \psi_0 \circ \psi_1 \circ \cdots \circ \psi_{n-1}(1)$ et on admet que la suite $(c_n)_{n \in \mathbb{N}^*}$ est bien définie.
 - (a) Que vaut $u_n(c_n)$? que peut-on en déduire concernant l'appartenance de c_n à E_0 ou E_∞ ?

Débutons par un petit lemme.

Considérons E, F deux ensembles et une suite de fonctions (f_n) bijectives de $E \to F$; notons pour tout $n \in \mathbb{N}$, f_n^{-1} , la bijection réciproque de f_n .

Observons alors que pour tout entier $n \in \mathbb{N}^*$, par associativité de \circ ,

$$F_n := (f_0 \circ f_1 \circ \cdots \circ f_n) \circ (f_n^{-1} \circ \cdots \circ f_0^{-1}) = (f_0 \circ f_1 \circ \cdots \circ f_{n-1}) \circ \underbrace{(f_n \circ f_n^{-1})}_{=\mathrm{id}_F} \circ (f_{n-1}^{-1} \circ \cdots \circ f_0^{-1})$$

Donc

$$F_n = (f_0 \circ f_1 \circ \dots \circ f_n) \circ (f_n^{-1} \circ \dots \circ f_0) = (f_0 \circ f_1 \circ \dots \circ f_{n-1}) \circ (f_{n-1}^{-1} \circ \dots \circ f_0) = F_{n-1}$$

Et ainsi, cette suite (F_n) de fonctions est invariante, donc égale également à $F_0 = f_0 \circ f_0^{-1} = \mathrm{id}_F$. Revenons à la question posée : on a alors, pour $n \in \mathbb{N}^*$:

$$u_n(c_n) = (\varphi_{n-1} \circ \cdots \circ \varphi_0)(\psi_0 \circ \psi_1 \circ \cdots \circ \psi_{n-1}(1)) = (\varphi_{n-1} \circ \cdots \circ \varphi_0) \circ (\psi_0 \circ \psi_1 \circ \cdots \circ \psi_{n-1})(1) = 1$$

selon le lemme précédent.

Pour tout entier
$$n \in \mathbb{N}^*$$
, $u_n(c_n) = 1$.

Puisque $u_n(c_n) = 1 \le 1$, le terme d'indice n de la suite $(u_m(c_n))_{m \in \mathbb{N}}$ est inférieur ou égal à 1 donc, d'après le critère de la question I.2(a), la suite $(u_m(c_n))_{m \in \mathbb{N}}$ converge vers 0.

Donc
$$c_n \in E_0$$
.

(b) En exploitant les résultats de la partie II, montrer que $c_n \leq 1$.

Par l'absurde, si $c_n > 1$, alors d'après la question II.4 avec $x \leftarrow 1$, puisque $1 \in E_{\infty}$ d'après II.3(c), on aurait $c_n \in E_{\infty}$, ce qui est faux. $c_n \leq 1$

(c) Montrer l'équivalence : $c_n < c_{n+1} \iff 1 < \ln(n+1)$.

Par définition à partir des fonctions ψ_k , on a (par associativité):

$$c_{n+1} = \psi_0 \circ \psi_1 \circ \cdots \circ \psi_n(1) = (\psi_0 \circ \psi_1 \circ \cdots \circ \psi_{n-1}) (\psi_n(1))$$

On a donc les équivalences :

$$c_n < c_{n+1} \iff \psi_0 \circ \psi_1 \circ \cdots \circ \psi_{n-1}(1) < (\psi_0 \circ \psi_1 \circ \cdots \circ \psi_{n-1}) (\psi_n(1)) \iff 1 < \psi_n(1)$$

car chaque fonction ψ_k est **strictement** croissante (comme réciproque d'une fonction strictement croissante) et leur composition est **strictement** croissante.

La définition de $\psi_n: x \mapsto \ln((n+1)x)$ donne

$$c_n < c_{n+1} \Longleftrightarrow 1 < \ln(n+1)$$

III.4. En déduire que $(c_n)_{n\in\mathbb{N}^*}$ est une suite convergente. On pose $c=\lim_{n\to+\infty}c_n$.

Or, on a, pour tout entier n > 1, $n + 1 \ge 3 > e$, donc $\ln(n + 1) > \ln e = 1$ (stricte croissance de \ln).

Donc, d'après la condition nécessaire est suffisante établie dans la question précédente, pour tout entier n > 1, $c_n < c_{n+1}$, ainsi $(c_n)_{n \in \mathbb{N}^*}$ est croissante à partir du rang 2.

On a vu également que $(c_n)_{n\in\mathbb{N}^*}$ est une suite majorée par 1.

 (c_n) est une suite croissante à partir d'un certain rang et majorée donc (c_n) converge.

III.5. Montrer que si $x \in E_0$, alors nécessairement $x \leqslant c$.

Soit $x \in E_0$.

D'après la question I.2(b), il existe un entier $N \ge 2$ tel que $u_N(x) \le 1 = u_N(c_N)$.

Puis par **stricte croissance** de u_N (question II.2(b)) : $x \le c_N$ (en effet, pour f fonction croissante de \mathbb{R} dans \mathbb{R} , $f(a) \le f(b)$ n'implique pas $a \le b$! à méditer!).

Enfin la suite $(c_n)_{n\in\mathbb{N}}$ est croissante donc pour tout $n\in\mathbb{N}$, $c_n\leqslant c$, donc pour $n\leftarrow N$ on a $c_N\leqslant c$.

Donc $x \leq c$.

III.6. Montrer que $c \notin E_0$ puis expliciter E_0 et E_{∞} en fonction de c.

On a montré à la question précédente que $E_0 \subset]-\infty,c]$.

Montrons que $c \notin E_0$, mais d'abord que tout élément strictement plus petit que c est dans E_0 .

Si x < c, alors il existe $\epsilon > 0$ tel que $x = c - \epsilon$.

comme $\lim(c_n) = c$, nécessairement, il existe $N \in \mathbb{N}$ tel que $|c - c_N| < \epsilon$.

Donc $c - c_N < |c - c_N| < \epsilon = c - x \text{ donc } x < c_N$.

Or $c_N \in E_0$ et donc d'après la première partie : $x \in E_0$ également.

Par conséquent :] $-\infty$, $c[\subset E_0$. Bilan, on a les inclusions :] $-\infty$, $c[\subset E_0\subset]-\infty$, c].

Il reste donc à déterminer si $c \in E_0$ ou $c \notin E_0$.

Raisonnons par l'absurde : si $c \in E_0$.

alors d'après I.2(b), il existe un entier $N \ge 2$ tel que $u_N(c) \le 1 = u_N(c_N)$.

Par stricte croissance de u_N , on a $c \le c_N < c_{N+1} \le c$.

Or, on ne peut avoir c < c. Donc nécessairement $c \notin E_0$.

Bilan : $c \notin E_0$ puis $E_0 =]-\infty, c[$ et $E_\infty = [c, +\infty[$.