Equations polynomiales

Factorisation

N° 322

Factoriser les fonctions polynomiales $x \mapsto x^3 - 1$, $x \mapsto x^4 - 1$. N° 323

Factoriser les fonctions polynomiales

$$f_1: x \mapsto x^5 - x^4 + x^3 - x^2 + x - 1 \qquad f_2: x \mapsto x^4 - 4$$

$$f_3: x \mapsto x^9 + x^6 + x^3 + 1 \qquad \qquad f_4: x \mapsto x^6 + 1$$

$$f_5: x \mapsto x^5 - x^4 + x^3 - x^2 + x - 1 \qquad f_6: x \mapsto x^4 - 1$$

Factoriser les fonctions polynomiales $x \mapsto x^6 + 4x^5 + 4x^4 - 4x^3 - 4x^4 + 4x^4 - 4x^3 - 4x^4 - 4$ $11x^2 - 8x - 2$, sachant qu'il y a une racine évidente multiple. **N° 325**

Déterminer, selon les valeurs du paramètre réel m, le degré de la fonction polynôme f définie par $f: x \mapsto (m^2 - m)x^4 + (2m - m)x^4 +$ $2)x^3 + mx^2 + (m-3)x + 5$

Développement

Nº 326

Développer les fonctions polynomiales $x \mapsto (x+1)^3(x-1)(x+2)(x-2)^2$ et $x \mapsto (x^2+x+1)(x^2-x+1)(x^2-1)$.

Développer avec le moins de calculs possibles

$$- (a+b)^{8}
- (a+b+c)^{3}
- (a+b+c+d)^{8}
- (a+b+c)^{n}$$

N° 328

Démontrer l'égalité de LAGRANGE :

$$\forall a, b, c, d \in \mathbb{R}, (a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2$$

En déduire 2 décompositions différentes de 221 en somme de

Polynôme de plusieurs variables

Soit $f:(a, b, c, d, e, f, g, h) \mapsto (a+b)(c+d)(e+f)(g+h)$.

- 1. Montrer que f est une fonction polynomiale de 8 variables.
- 2. Quel est son degré.
- 3. Développer f, en déduire une expression développée de $(a+b)^4$ puis de $(1+x)^4$.
- 4. En déduire une définition du coefficients qui figure devant x^h dans le développement de $(1+x)^4$.

De quelles variables dépend la définition de ce coefficient?

Développer $(1 + x + x^2 + x^3 + x^4 + x^5)(1 + y^2 + y^4)(1 + z^3)$. En déduire le nombre de façon d'obtenir 5 astols avec des pièces de 1, 2 et 3 astols. **N° 331**

Combien y-a-t-il de façon de choisir une douzaine de beignets de trois saveurs différentes (fraises, pomme et chocolat) s'il doit y avoir au moins deux beignets de chaque saveur et pas plus de quatre beignets au chocolat?

Représentation graphique

Ali et Benoit jouent au jeu suivant : on écrit $x^4 + *x^3 + *x^2 + *x + 1$ au tableau.

Ali choisit une étoile et la remplace par un réel, puis c'est à Benoit, et ainsi de suite jusqu'à épuisement des étoiles. Ali gagne si le polynôme obtenu n'a pas de racine réelle. Sinon, c'est Benoit qui

gagne. Montrer que ce dernier a une stratégie gagnante.

N° 333

Soient f et g deux fonctions polynomiales de terme dominant x^{2020} et tels que pour tout $x \in \mathbb{R}$ $f(x) \neq g(x)$. Montrer qu'il existe un réel x tel que P(x-1) = Q(x+1).

Trouver tous les polynômes P à coefficients réels tels que pour tout x on ait

 $\left| P(x)P\left(\frac{1}{x}\right) \right| \ge 1$

On pourra supposer que $p(x) = x^k q(x)$ avec $q(0) \neq 0$.

Coniques

Nº 335

On considère une droite Δ d'équation x = a (directrice), un point F (foyer) de coordonnées (0, s) et un nombre e > 0 (excentricité). On note $\Gamma_e = \{M \in \mathbb{R}^2 \mid d(M, F) = e \times d(M, \Delta)\}$ où d représente la distance.

- 1. Si M(x, y), calculer $d(M, F)^2$ et $d(M, \Delta)^2$.
- 2. Donner l'équation de Γ_e . En déduire la nature de Γ en fonction de la valeur de l'exentricité e
- 3. Représenter Γ_e selon les différentes familles de valeurs possibles pour e.

N° 336

Etudier les courbes dont une équation polaire (en repère orthonormé direct) est :

$$-r_1:\theta \mapsto \frac{1}{1+2\cos\theta}$$
$$-r_2:\theta \mapsto \frac{1}{2+\cos\theta}$$
337

P est le cercle de diamètre [A,B]. (D) est la tangente en P à C. P est un point variable sur C et C est la tangente en C à C. C recoupe C en C puis la perpendiculaire à C passant par C coupe C en C quel est l'ensemble des points décrit par C C en Clorsque P décrit \mathscr{C} ?

Symétrie sur les graphes de fonctions polynomiales

N° 338

Tracer les courbes d'équations
$$y = x^2$$
, $y = x^2 - 1$ et $y = (x - 1)^2$ **N° 339**

Trouver toutes les fonctions polynomiales dont la représentation graphique présente une symétrie par rapport à l'axe x=0. Même question par rapport à l'axe x = a. **N° 340**

Trouver toutes les fonctions polynomiales dont la représentation graphique présente une symétrie de centre O(0,0). Même question par rapport au centre M(a, b).

Approximation par essais successifs

N° 341

Calculer par approximations successives une valeur approchée de $\sqrt{1,02}$. Même question pour $\sqrt{2}$.

Résoudre le système $\left\{ \begin{array}{ll} x & +y & =2 \\ x & -y & =0 \end{array} \right. .$

Donner une solution approchée du système $\begin{cases} x + y = 1,9 \\ x - y = 0,2 \end{cases}$

Vérifier. **Nº 343**

On cherche une valeur approchée de $\alpha = \sqrt{6}$. Donner une équation polynomiale dont α est racine.

En déduire une suite (u_n) de premier terme 2 et qui converge vers α (a priori). Calculer u_1 et u_2 . Comparer u_2 à α .

Problèmes

N° 344

Division euclidienne

- 1. Montrer que $x^2 x 1$ divise $x^4 + x^3 5x 3$. En déduire une factorisation de $f: x \mapsto x^4 + x^3 - 5x - 3$.
- 2. Que vaut 123×89 ? Quel rapport avec la question précédente?

N° 345

Carré

- 1. Montrer que $f_a: x \mapsto x(x+a)(x+2a)(x+3a) + a^4$ est le carré d'une fonction polynomiale
- 2. En déduire la factorisation de h: x(x+1)(x+2)(x+3) 8

Polynôme à coefficients entiers
Trouver l'équation polynomiale à coefficients entiers de plus bas degré admettant pour solution $x_1 = 1 + \sqrt{2} + \sqrt{3}$. Donner les autres solutions, sans calcul. N° 347

Critère de divisibilité Soit $f: x \mapsto x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$, une fonction polynomiale de degré $n \ge 1$ à coefficients entiers. Démontrer que si f admet une racine dans Z, alors celle-ci divise

Les équations $x^3-x^2-109x-11$ et $x^{10}+x^5+1$ ont des solutions dans $\mathbb Z$? N° 348

Système (non linéaire)

Résoudre le système
$$\left\{ \begin{array}{rcl} a+b+c & = & \frac{5}{12} \\ ab+ac+bc & = & \frac{-1}{8} \\ abc & = & \frac{-1}{24} \end{array} \right.$$

On pourra développer le polynôme (x-a)(x-b)(x-c)...

18. L'algèbre des polynômes

Ecriture polynomiale

N° 349

Déterminer les polynômes $P \in \mathbb{R}[X]$ vérifiant $P \circ P = P$

N° 350

Trouver les polynômes $P \in \mathbb{C}[X]$ tel que il existe $Q \in \mathbb{C}[X]$ tel que $P = Q \times P'$

N° 351

Résoudre les équations suivantes :

 $-Q^2 = XP^2$, d'inconnues $P, Q \in \mathbb{K}[X]$

 $-P \circ P = P \text{ d'inconnue } P \in \mathbb{K}[X]$ $-P \circ S$ $N^{\circ} 352$

On note $j = e^{i\frac{2\pi}{3}}$.

Calculer rapidement $\sum_{k=0}^{50} j^{2k}$. Quel rapport avec les polynômes?

N° 353

Soit *A* une matrice qui vérifie $A^3 = 2A^2 - I_2$.

Calculer A^{100}

N° 354

Pour $n \in \mathbb{N}$, développer le polynôme

$$(1+X)(1+X^2)(1+X^4)\dots(1+X^{2^n})$$

En déduire que tout entier p>0 s'écrit de façon unique comme somme de puissance de 2 (2,4,8,16...)

N° 355

Soit (P_n) , la suite de polynômes définie par

$$P_1 = X - 2$$
, $\forall n \in \mathbb{N}^*, P_{n+1} = P_n^2 - 2$

Calculer le coefficient de X^2 dans P_n

N° 356

Soit $P \in \mathbb{R}[X]$. On suppose que deg(P) = d.

Montrer qu'il existe une unique famille $(b_0, b_1, \dots b_d)$ tel que

$$P = b_0 + b_1 X + b_2 \frac{X(X-1)}{2} + \dots + b_d \frac{X(X-1) \cdots (X-d+1)}{d!}$$
$$= \sum_{k=0}^{d} b_k \frac{X(X-1) \cdots (X-k+1)}{k!}$$

Dérivation

N° 357

Résoudre les équations suivantes :

1.
$$(P')^2 = 4P$$
 d'inconnue $P \in \mathbb{K}[X]$

2.
$$(X^2 + 1)P'' - 6P = 0$$
 d'inconnue $P \in \mathbb{K}[X]$

N° 358

Montrer que pour tout entier n, il existe un unique polynôme $P_n \in \mathbb{R}[X]$ tel que

$$P_n - P'_n = X^n$$

Exprimer les coefficients de P à l'aide de nombres factoriels

N° 359

Soit $P \in \mathbb{K}[X]$. Montrer que

$$P(X+1) = \sum_{n=0}^{+\infty} \frac{1}{n!} P^{(n)}(X)$$

Problème

N° 360

Polynôme de Bernoulli

On considère la suite de polynôme définie par récurrence par :

$$B_0=1$$
 et pour tout $n\in\mathbb{N}^*$: $B_n=X^n-\frac{-1}{n+1}\sum_{k=0}^{n-1}\binom{n+1}{k}B_k$

- 1. Calculer B_1 , B_2 et B_3 .
- 2. Montrer que $B'_{n+1} = (n+1)B_n$
- 3. Montrer que pour tout $n \in \mathbb{N}$, B_n est de degré n et de coefficient dominant $[B_n]_n = 1$
- 4. Montrer que pour tout $d \in \mathbb{N}$, tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} k^{d} = \frac{B_{d+1}(n+1) - B_{d+1}(0)}{d+1}$$

Nº 361

Composition répétée

Soit $P \in \mathbb{K}[X]$.

- 1. Montrer que P(X) X divise P(P(X)) P(X)
- 2. En déduire que P(X) X divise P(P(X)) X
- 3. On note $P^{[n]} = P \circ P \circ \cdots P$ (composition de n polynômes). Etablir que P(X) X divise $P^{[n]}(X) X$

On dit que A divise B s'il existe Q tel que B = AQ