Le 02.12.2022

NOM & Prénom :

Calcul - 10 minutes

Exercice

- 1. On définit la suite (u_n) par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 3$. Calculer u_3 et donner une expression explicite (directement en fonction de n) de u_n .
- 2. On définit (w_n) par $w_0=2$ et $\forall n\in\mathbb{N}, w_{n+1}=\frac{1}{2}w_n^2$. Donner une expression explicite de w_n . On pourra exploiter $z_n=\ln w_n\dots$
- 3. La suite (b_n) est une suite arithmétique de raison r et vérifiant $b_{101}=\frac{2}{3}$ et $b_{103}=\frac{3}{4}$. Calculer b_{102} et r.
- 4. Soit la suite (v_n) définie par $v_0=0$ et $v_1=\sqrt{2}$ et $\forall n\in\mathbb{N},\,v_{n+2}=2v_{n+1}+v_n.$ Calculer v_n et v_2 .
- 5. Soit la suite (F_n) définie par : $\forall n \in \mathbb{N}, F_n = 2^{2^n} + 1$. Calculer $F_4, F_n \times (F_n 2)$ et $(F_{n-1} 1)^2 + 1$.

Le 02.12.2022

NOM & Prénom :

Calcul - 10 minutes

Exercice

- 1. On définit la suite (t_n) par $\forall n \in \mathbb{N}, t_n = \ln\left(\frac{n^n}{2^n}\right)$. Calculer t_{2n} et t_{4n} .
- 2. On définit (w_n) par $v_1 = \sqrt{2}$ et $\forall n \in \mathbb{N}^*$, $v_{n+1} = \sqrt{v_n}$. Donner une expression explicite (directement en fonction de n) de v_n . On pourra exploiter $z_n = \ln v_n \dots$
- 3. La suite (h_n) est une suite géométrique de raison q et vérifiant $h_{11} = \frac{5\pi}{11}$ et $h_{13} = \frac{11\pi}{25}$. Calculer h_{12} et q.
- 4. Soit la suite (u_n) définie par $u_0=2$ et $u_1=1$ et $\forall n \in \mathbb{N}, u_{n+2}=u_{n+1}+6u_n$. Calculer u_n et u_5 .
- 5. Soit la suite (F_n) définie par : $\forall n \in \mathbb{N}, F_n = 2^{2^n} + 1$. Calculer F_3, F_n^2 et $F_{n+1}^2 2(F_n 1)^2$.