27. Groupe S_n

Opérations sur S_n

N° 539

Soient $n \in \mathbb{N}$, $n \geqslant 2$, $(i,j) \in \mathbb{N}_n^2$ tel que $i \neq j$ et $\sigma \in S_n$. Montrer que σ et $\tau = (i\ j)$ commutent si et seulement si $\{i,j\}$ est stable par σ .

Soit $n \ge 2$ et c la permutation circulaire : $c = (1 \ 2 \dots n-1 \ n)$. Déterminer les permutations σ de S_n qui commutent avec c.

Décomposition

N° 541

Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 3 & 1 & 8 & 2 & 9 & 7 & 4 & 6 \end{pmatrix}$$

Ecrire σ comme produit de cycles de supports disjoints. Peut on déduire de ce résultat p tel que $\sigma^p = Id$?

N° 542

Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 9 & 1 & 2 & 4 & 6 & 7 & 5 & 8 & 3 \end{pmatrix}$$
.

Ecrire σ comme produit de cycles de supports disjoints. Calculer $\sigma^{2019}.$

N° 543

Soit f et g deux transpositions, montrer que soit fg = Id, soit $(fg)^2 = Id$ soit $(fg)^3 = Id$

N° 544

Exprimer le produit $(1\,2\,3)(4\,5\,6)$ comme puissance d'un seul cycle de S_6

N° 545

Soit $c=(c_1\,c_2\,\ldots\,c_p)$ un cycle de longueur p et soit σ une permutation quelconque de S_n .

- 1. Déterminer $\sigma c \sigma^{-1}$.
- 2. Montrer que $\mathcal R$ relation définie sur l'ensemble des cycles de S_n par $c\mathcal Rd$ si et seulement si il existe $\sigma\in S_n$ tel que $d=\sigma c\sigma^{-1}$ est une relation d'équivalence. (on dit que c et d sont conjugués).
- 3. Montrer que c et d sont deux cycles conjugués ssi c et d ont même longueur.

N° 546

On dit qu'une famille de permutations engendre S_n si toute permutation σ peut s'écrire comme composée de permutations (éventuellement utilisées plusieurs fois) de cette famille, ou de leurs inverses. On a donc montré en cours que les cycles (ainsi que les transpositions) engendraient S_n .

- 1. Montrer que (12), (23) engendrent S_3 .
- 2. Montrer que (12), (23), ..., (n-1 n) engendrent S_n .
- 3. Montrer que (12) et le cycle (12...n) engendrent S_n .
- 4. Montrer que les cycles d'ordre 3 engendrent le groupe des permutations de signature +1 (groupe alterné A_n).

Signature

N° 547

Soit $n \ge 2$ et τ une transposition de S_n .

- 1. Montrer que l'application $\sigma \mapsto \tau \circ \sigma$ est une bijection de S_n vers S_n
- 2. En déduire le cardinal de $A_n = \{ \sigma \in S_n \mid \varepsilon(\sigma) = 1 \}$

N° 548

Quelle est la signature de $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 1 & 3 & 2 & 4 & 9 & 7 & 8 & 6 \end{pmatrix}$?

N° 549

Quelle est la signature de $\sigma \in \mathscr{S}_{10}$ définit par ses cycles : (1,4,6,8)(2,3,5)(7,10) ?

Problème

N° 550

Calcul de signature à partir d'une matrice de permutation++

On considère $\sigma \in \mathcal{S}_n$ une permutation de \mathbb{N}_n .

On lui associe la matrice $A_{\sigma} \in \mathcal{M}_n(\mathbb{K})$ telle que

$$\forall i, j \in \mathbb{N}_n$$
, Coeff_{i, j}(A) = $\delta_{i,\sigma(i)}$

- 1. Ecrire A_{σ} si $\sigma = (1,4)(2,3,5)$ (n = 5).
- 2. A partir de chaque 1 de la matrice A_{σ} , on barre tous les termes de A situés à gauche de ces nombres 1 (et dans la même ligne) et ceux situés sous ces ombres 1 (et dans la même colonne).

On note N_{σ} , le nombre de 0 de A_{σ} non barrés. Montrer que $\epsilon(\sigma)=(-1)^{N_{\sigma}}$

N° 551

« Imitation Game ».

Enigma est une machine utilisée par les Allemands durant la seconde guerre mondiale pour coder les messages militaires. Le principe du codage était le suivant :

- 1. lorsque l'utilisateur tape une lettre A_0
- 2. celle ci est transformée par un rotor A (permutation des lettres) en une lettre A_1
- 3. celle ci est transformée par un rotor B en une lettre A_2 ,
- 4. qui est elle même transformée en une lettre A_3 par un troisième rotor C.
- 5. Cette lettre A_3 est transformée par un réflecteur (un réflecteur opère une permutation particulière puisque s'il change X en Y alors Y est changé en X) en une lettre A_4
- 6. qui est renvoyée dans le rotor C qui la transforme en A_5 .
- Cette lettre A₅ est transformée en une lettre A₆ par le rotor B,
- 8. la lettre A_6 étant finalement transformé en une lettre A_7
- 9. qui est la lettre qui doit remplacer A_0 dans le message.

Ensuite les rotors se décalent d'un cran (en fait le rotor A se décale d'un cran et lorsqu'il a fait un tour complet le rotor B se décale d'un cran etc ..).

L'utilisateur tape alors la deuxième lettre. etc.

L'émetteur et le récepteur ont des machines enigma similaires et ils se sont mis d'accord pour que les positions de départ des rotors soient identiques.

Pourquoi pour le décodage, suffit il à celui qui reçoit le message de taper le texte codé pour récuperer le message initial?