Devoir à la maison n°7

Exercice

On note $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel réel des matrices carrées d'ordre trois, I la matrice identité de $\mathcal{M}_3(\mathbb{R})$, et 0 la matrice nulle de $\mathcal{M}_3(\mathbb{R})$.

On considère, pour tout matrice A de $\mathcal{M}_3(\mathbb{R})$, les ensembles $E_1(A)$ et $E_2(A)$ suivants :

$$E_1(A) = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid A \times M = M \}$$

$$E_2(A) = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid A^2 \times M = AM \}$$

Partie I: Structure

- 1. Quelle est la dimension de l'espace vectoriel $\mathcal{M}_3(\mathbb{R})$?
- 2. Montrer que $E_1(A)$ est un sous espace vectoriel de $M_3(\mathbb{R})$. On admettra que $E_2(A)$ est également un sous espace vectoriel de $M_3(\mathbb{R})$
- 3. (a) Établir : $E_1(A) \subset E_2(A)$.
 - (b) Montrer que si A est inversible alors $E_1(A) = E_2(A)$.
- 4. (a) Établir que si A I est inversible alors $E_1(A) = \{0\}$
 - (b) Un exemple : $B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Déterminer $E_1(B)$ et $E_2(B)$.

Partie II : Étude d'un cas particulier

On considère les matrices $C = \begin{pmatrix} 3 & -2 & -1 \\ 1 & 0 & -1 \\ 2 & -2 & 0 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

- 1. Montrer que P est inversible et calculer P^{-1} .
- 2. Montrer que la matrice $D = P^{-1}CP$ est une matrice diagonale.
- 3. Soit $M \in \mathcal{M}_3(\mathbb{R})$. On note $N = P^{-1}M$. Montrer l'équivalence suivante : $M \in E_1(C) \iff N \in E_1(D)$.
- 4. Montrer que $N \in E_1(D)$ si et seulement s'il existe trois réels a, b et c tels que $N = \begin{pmatrix} 0 & 0 & 0 \\ a & b & c \\ 0 & 0 & 0 \end{pmatrix}$.
- 5. En déduire l'expression générale des matrices de $E_1(C)$ et déterminer une base et la dimension de $E_1(C)$.
- 6. Donner l'expression générale des matrices de $E_2(C)$ et déterminer une base et la dimension de $E_2(C)$.

Est-ce que $E_1(C) = E_2(C)$?

Problème

On rappelle que \mathbb{Z} est l'ensemble des nombres entiers relatifs.

Dans tout l'exercice, on notera $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ On note alors $\det(A) = ad - bc$ (lu déterminant de A).

Partie A

1. Calculer
$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \times \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$
.

En déduire que si $ad - bc \neq 0$ alors A est inversible. Exprimer alors A^{-1} .

Réciproquement, montrer que si ad - bc = 0, alors A n'est pas inversible.

2. Déterminer les inverses des matrices suivantes :
$$A_1 = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \quad ; \quad A_2 = \begin{pmatrix} 4 & 7 \\ 3 & 5 \end{pmatrix} \quad ; \quad A_3 = \begin{pmatrix} 4 & 6 \\ 3 & 5 \end{pmatrix}$$

- 3. Supposons que $\det(A) \neq 0$. Exprimer $\det(A^{-1})$ en fonction de $\det(A)$.
- 4. Soit $A \in \mathcal{M}_2(\mathbb{Z})$, i.e. $a, b, c, d \in \mathbb{Z}^4$.

Montrer que A admet une matrice inverse A^{-1} et que A^{-1} est, elle aussi, un élément de $\mathcal{M}_2(\mathbb{Z})$ si et seulement si $det(A) \in \{-1, 1\}$.

Donner alors l'expression de A^{-1} en fonction de a, b, c, d.

On notera désormais $SL_2(\mathbb{Z}) = \{ M \in \mathcal{M}_2(\mathbb{Z}) \mid \det(M) = 1 \}.$

- 5. Montrer que si A et $B \in SL_2(\mathbb{Z})$, alors $A \times B \in SL_2(\mathbb{Z})$.
- 6. Déterminer les couples $(b,c) \in \mathbb{Z}^4$ tels que $A_4 = \begin{pmatrix} 5 & c \\ b & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$

Partie B

On désigne par $C_2(\mathbb{Z})$ l'ensemble des matrices A de $\mathcal{M}_2(\mathbb{Z})$ telles qu'il existe un entier naturel p, non nul, vérifiant $A^p = I_2$. Pour chaque matrice A de $\mathcal{C}_2(\mathbb{Z})$, on admet qu'il existe un plus petit entier naturel q non nul tel que $A^q = I_2$, on le note h(A); il est appelé ordre de la matrice A. Soit A, une matrice de $C_2(\mathbb{Z})$, d'ordre h(A) = p.

- 1. Inverse de A.
 - (a) Montrer que A admet une matrice inverse A^{-1} appartenant à $\mathcal{M}_2(\mathbb{Z})$. En déduire les valeurs possibles de det(A).
 - (b) Vérifier que $A^{-1} \in \mathcal{C}_2(\mathbb{C})$. Comparer h(A) et $h(A^{-1})$.
- 2. Pour tout $z \in \mathbb{C}$, on note $P: z \mapsto \det(A zI_2)$.
 - (a) Montrer que $T(z) = z^2 \operatorname{tr}(A)z + \operatorname{det}(A)$.
 - (b) Montrer que $(T(A) =)A^2 \operatorname{tr}(A)A + \operatorname{det}(A)I_2$ est la matrice nulle.
 - (c) On note λ_1 et λ_2 les deux racines complexes, éventuellement confondues, de T. Exprimer en fonction de λ_1 et λ_2 , la trace tr(A), de la matrice A.
 - (d) On admet que λ_1 et λ_2 sont de module 1. (Ce sera démontré en question 5). En déduire que $\operatorname{tr}(A) \in \{-2, -1, 0, 1, 2\}.$
- 3. Montrer que les matrices $C=\begin{pmatrix}2&-3\\1&-2\end{pmatrix}$ et $D=\begin{pmatrix}0&-1\\1&1\end{pmatrix}$ appartiennent à $\mathcal{C}_2(\mathbb{Z})$ et déterminer leurs ordres. La matrice produit CD appartient-elles à $\mathcal{C}_2(\mathbb{Z})$?
- 4. Retour sur le polynôme T.

Connaissant tr(A) et det(A), vérifier qu'il n'y a que 10 polynômes T possibles.

Calculer les racines de ces polynômes. Montrer en particulier que quatre d'entre eux ont des racines de module différent de 1.

5. Diagonalisation de A.

On note, pour tout $z \in \mathbb{C}$, $A_z = A - zI_2$

- (a) Montrer que A_z n'est pas inversible ssi $z \in \{\lambda_1, \lambda_2\}$.
- (b) En déduire que Ker A_{λ_1} et Ker A_{λ_2} ne sont pas réduit à $\{0\}.$
- (c) Soient $X_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \in \text{Ker } A_{\lambda_1} \text{ et } X_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \in \text{Ker } A_{\lambda_1} \text{ et } P = (X_1 | X_2)$ Montrer que $\lambda_1^p = 1$ et $\lambda_2^p = 1$, en déduire que λ_1 et λ_2 sont de module 1.

Quelle conséquence pour les polynômes T à considérer?

- (d) Montrer également que $A \times P = P \times D$ où D est une matrice diagonale à préciser.
- (e) Montrer que si $\lambda_1 \neq \lambda_2$, alors P est inversible.
- 6. Ordre de $\mathcal{C}_2(\mathbb{Z})$.
 - (a) Déduire des questions précédentes, que si $A \in \mathcal{C}_2(\mathbb{Z})$, alors il existe P inversible et D diagonale telle que $A = P \times D \times P^{-1}$.
 - (b) Exprimer alors simplement A^n , avec P et P^{-1} .
 - (c) En déduire l'existence et la valeur du plus petit entier naturel non nul p_2 tel que :

$$\forall A \in C_2(\mathbb{Z}) \qquad A^{p_2} = I_2$$