Devoir à la maison $n^{\circ}5$ CORRECTION

Problème 1

A. Préliminaire

1. $h \mapsto \varphi_{x,n}$ (on insiste sur le fait que la variable est h) est polynomiale donc dérivable sur \mathbb{R} .

$$\forall \ h \in \mathbb{R}, \varphi_{x,n}'(h) = (n+1)\frac{1}{n+1}\left(1 + \frac{x+h}{n+1}\right)^n - \left(1 + \frac{x}{n}\right)^n$$

Comme $y \mapsto (1+y)^n$ est croissante :

$$\varphi'_{x,n}(h) \leqslant 0 \Leftrightarrow \frac{x+h}{n+1} \leqslant \frac{x}{n} \Leftrightarrow nx+nh \leqslant nx+x \Leftrightarrow h \leqslant \frac{x}{n}$$

Ainsi,
$$\varphi_{x,n}$$
 est décroissante sur $]-\infty, \frac{x}{n}[$ et croissante sur $]\frac{x}{n}, +\infty[$

Donc, pour tout $h \in \mathbb{R}$,

$$\varphi_{x,n}(h) \geqslant \varphi(\frac{x}{n}) = \left(1 + \frac{x + \frac{x}{n}}{n+1}\right)^{n+1} - \left(1 + \frac{x}{n}\right)\left(1 + \frac{x}{n}\right)^n = \left(1 + \frac{x}{n}\right)^{n+1} - \left(1 + \frac{x}{n}\right)^{n+1} = 0$$

Par conséquent, Ainsi pour tout $h \in \mathbb{R}$ (donc pour $h \ge -1$), $\varphi(h) \ge 0$.

2. En particulier en $h=0,\,\varphi_{x,n}(h)\geqslant 0,$ ce qui conduit à

$$\forall x \geqslant -n, \quad \left(1 + \frac{x}{n}\right)^n \leqslant \left(1 + \frac{x}{n+1}\right)^{n+1}$$

3. Soit $x \in [-n, n]$, considérons y = -x, on a donc également $y \in [-n, n]$ et en particulier $y \ge -n$. D'après la question précédente : $\left(1 + \frac{y}{n}\right)^n \le \left(1 + \frac{y}{n+1}\right)^{n+1}$. Ce qui implique (tous les termes sont positifs) :

$$\left(1 + \frac{y}{n}\right)^{-n} \geqslant \left(1 + \frac{y}{n+1}\right)^{-(n+1)} \Longrightarrow \left(1 - \frac{x}{n}\right)^{-n} \geqslant \left(1 - \frac{x}{n+1}\right)^{-(n+1)}$$

Il ne reste plus qu'à vérifier l'inégalité du centre

$$\left(1 + \frac{x}{n+1}\right)^{n+1} \leqslant \left(1 - \frac{x}{n+1}\right)^{-(n+1)} \Longleftrightarrow \left(\left(1 + \frac{x}{n+1}\right)\left(1 - \frac{x}{n+1}\right)\right)^{(n+1)} \leqslant 1$$

$$\Longleftrightarrow \left(1 - \frac{x^2}{(n+1)^2}\right)^{(n+1)} \leqslant 1$$

ce qui est vrai. On a donc démontré :

$$\forall x \in [-n, n[, \quad \left(1 + \frac{x}{n}\right)^n \leqslant \left(1 + \frac{x}{n+1}\right)^{n+1} \leqslant \left(1 - \frac{x}{n+1}\right)^{-(n+1)} \leqslant \left(1 - \frac{x}{n}\right)^{-n}$$

B. Définition de e(x)

Pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on note $u_n(x) = \left(1 + \frac{x}{n}\right)^n$.

1. $x \in \mathbb{R}$. Notons $n_0 = \lfloor |x| \rfloor + 1$. Alors $x \in [-n_0, n_0]$. Et donc pour tout $n \geqslant n_0, x \in [-n, n]$ et d'après la question précédente : $u_n(x) \leqslant u_{n+1}(x)$. et toujours avec la question précédente : $u_n(x) \leqslant M = \left(1 - \frac{x}{n_0}\right)^{-n_0}$, indépendant de n.

Donc à partir d'un certain rang, $(u_n(x))_{n \ge n_0}$ est croissante et majorée.

Donc
$$(u_n(x))_{n\geqslant n_0}$$
 est convergente, donc $(u_n(x))_{n\in\mathbb{N}^*}$ est convergente.

On notera désormais $e(x) = \lim_{n \to +\infty} u_n(x)$.

2. Pour $n \ge n_0$, $u_{n+1}(x) \ge u_n(x)$, donc

$$e(x) = \lim_{n \to \infty} u_n(x) \geqslant u_{n_0}(x) > 0$$

Et $u_n(0) = 1^n = 1$, donc

$$e(0) = \lim_{n} 1 = 1.$$

C. Dérivabilité de la fonction e

On sait que pour tout
$$h \in [-1, +\infty[\varphi_{x,n}(h) \geqslant 0,$$

donc $u_{n+1}(x+h) = \left(1 + \frac{x+h}{n+1}\right)^{n+1} \geqslant (1+h)\left(1 + \frac{x}{n}\right)^n = (1+h) \times u_n(x)$
En faisant tendre n vers l'infini :

$$\forall h \in [-1, +\infty[, (1+h)e(x) \leqslant e(x+h)]$$

— Soit h ∈] − 1, 1[,

en prenant $h' = -h \in]-1,1[$ et x' = x + h, appliqué la relation précédente :

$$(1+h')e(x') \leqslant e(x'+h') \Longrightarrow (1-h)e(x+h) \leqslant e(x+h-h) = e(x)$$

Comme $(1+h)e(x) \le e(x+h)$, on a donc $e(x+h) - e(x) - he(x) \ge 0$.

Puis, comme $(1-h)e(x+h) \le e(x)$, en additionnant $-e(x) + he(x) - he(x) + h^2e(x)$, on a:

$$(1-h)e(x+h) - (1-h)e(x) - h(1-h)e(x) \le h^2 e(x)$$

Et en divisant par 1 - h > 0: $e(x + h) - e(x) - he(x) \le \frac{h^2}{1 - h}e(x)$.

On a donc

$$\forall h \in]-1,1[, \quad 0 \leqslant e(x+h) - e(x) - he(x) \leqslant \frac{h^2}{1-h}e(x)$$

2. D'après la dernière inégalité, on a donc pour tout x

$$e(x) \leqslant \frac{e(x+h) - e(x)}{h} \leqslant \left(\frac{h}{1-h} + 1\right)e(x) = \frac{1}{1-h}e(x)$$

Donc, par encadrement : $\frac{e(x+h)-e(x)}{h}$ admet une limite pour $h \to 0$, elle vaut e(x).

Donc e est dérivable sur \mathbb{R} et e'=e, i.e. e solution de l'équation différentielle y'-y=0

3. On note (0, x), l'intervalle [0, x] ou [x, 0] selon que x > 0 ou x < 0.

Comme e vérifie e' = e, on montre par récurrence que e est de classe \mathcal{C}^{∞} et pour tout $k \in \mathbb{N}$,

Soit
$$\varphi: (0, x) \to \mathbb{R}, \ t \mapsto -e(x) + \sum_{k=0}^{n} e(x - t) \frac{t^k}{k!} + \frac{t^{n+1}}{(n+1)!} M$$

$$= -e(x) + e(x-t) + \sum_{k=1}^{n} e(x-t) \frac{t^k}{k!} + \frac{t^{n+1}}{(n+1)!} M \text{ tel que } \varphi(x) = 0 \text{ (c'est possible : } \frac{x^{n+1}}{(n+1)!} \neq 0).$$

 φ est dérivable sur (0,x), et $\varphi(0)=-e(x)+e(x-0)+0=0$ et $\varphi(x)=0$.

On peut appliquer le théorème de Rolle :

$$\exists c_x \in (0,x) \quad \varphi'(c_x) = 0$$

Or, comme la dérivée de $t \mapsto e(x-t)$ est $t \mapsto -e'(x-t) = -e(x-t)$

$$\varphi'(t) = 0 - e(x - t) + \sum_{k=1}^{n} (-e(x - t)) \frac{t^k}{k!} + \sum_{k=1}^{n} e(x - t) \frac{t^{k-1}}{(k-1)!} + \frac{t^n}{n!} M$$

$$= e(x-t) \left(-1 + \sum_{i=1}^{n} \frac{t^{k-1}}{(k-1)!} - \frac{t^k}{k!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^0}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^n}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^n}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^n}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^n}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^n}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^n}{0!} - \frac{t^n}{n!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^n}{0!} - \frac{t^n}{0!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac{t^n}{0!} - \frac{t^n}{0!} \right) + \frac{t^n}{n!} M = e(x-t) \left(-1 + \frac$$

On a donc $\varphi'(c_k) = 0 = (-e(x - c_x) + M) \frac{c_x^{-}}{n!}$

Et comme $c_x \neq 0$, on a donc $M = e(x - c_x)^n$.

Notons $d_x = x - c_x \in (0, x)$.

$$\exists d_x \in [x, 0] \text{ ou } [0, x], \quad e(x) = \sum_{k=0}^n \frac{x^k}{k!} + \frac{1}{(n+1)!} x^{n+1} e(d_x)$$

D. Propriétés algébriques de e

1. Soit $y \in \mathbb{R}$.

Notons $\psi_y: x \mapsto e(-x)e(x+y)$, alors par composition ψ_y est dérivable.

Et pour tout
$$x \in \mathbb{R}$$
, $\psi'_y(x) = -e'(-x)e(x+y) + e(-x)e'(x+y)$

$$= -e(-x)e(x+y) + e(-x)e(x+y) = 0.$$

Ainsi ψ_y est constante et $\psi_y(0) = e(0)e(y) = e(y)$.

pour tout
$$(x, y) \in \mathbb{R}^2$$
, $e(-x)e(x + y) = e(y)$.

2. Ainsi, pour tout $a, b \in \mathbb{R}$, en posant y = a + b et x = -a:

$$e(a)e(b) = e(-x)e(x + y) = e(y) = e(a + b)$$

Donc

e induit un morphisme du groupe $(\mathbb{R}, +)$ vers le groupe (\mathbb{R}_+^*, \times) .

Problème 2

On fixe dans cet exercice deux groupes (G,\cdot) et (G',\top) . On considère H un sous-groupe de G et $f:G\to G'$ un morphisme de groupes.

Pour $x \in G$, on note $xH = \{xh, h \in H\}$ et $Hx = \{hx, h \in H\}$.

A. Autour du théorème de Lagrange

Pour x et y dans G, on note $x \equiv_H y$ si et seulement si il existe $h \in H$ tel que x = yh.

1. Pour tout $x \in G$, $x \equiv_H x$ avec $h = e \in H$. Donc \equiv_H est reflexive. Pour tout $x, y \in G$, $x = yh \Leftrightarrow y = xh^{-1}$.

Comme H est un groupe, $h \in H \Leftrightarrow h^{-1} \in H$.

Et finalement $x \equiv_H y$ si et seulement si $y \equiv_H x$, donc \equiv_H est symétrique.

Pour tout $x, y, z \in G$, x = yh et $y = zh' \Leftrightarrow x = z \cdot (h'h)$.

Et comme H est groupe, $h,h'\in G \Leftrightarrow hh'\in G.$

Ainsi \equiv_H est transitive.

 \equiv_H est une relation d'équivalence sur G

Soit $x \in G$.

$$x \equiv_H y \Leftrightarrow y \equiv_H x \Leftrightarrow \exists \ h \in H, y = xh \Leftrightarrow y \in xH$$

Donc l'ensemble des classes d'équivalence est $C_H = \{xH, x \in G\}$

On suppose maintenant que G est fini et on note $|G| = \operatorname{card}(G)$, son ordre ou cardinal.

2. Pour tout $\mathcal{O} \in \mathcal{C}_H$, $\exists x \in G \text{ tel que } \mathcal{O} = xH$.

Donc $\pi_H: G \to \mathcal{C}_H, x \mapsto xH$ est surjective.

Ainsi comme G est fini, il en est de même de \mathcal{C}_H . Plus précisément : $\operatorname{card}(\mathcal{C}_H) \leqslant \operatorname{card}(G)$.

Pour tout $x \in G$, xH est un sous-ensemble de G de cardinal égal à |H|.

En effet, si xh = xh',

alors comme x est inversible, en multipliant par x^{-1} h = h'.

Donc tous les éléments xh de l'ensemble xH sont distincts,

il y en a autant que d'éléments de H.

Les ensembles xH sont disjoints (ou égaux),

En effet, si $xH \cap x'H \neq \{0\}$, il existe $y \in xH$ et $y \in x'H$.

Donc $x \equiv_H y$, $x' \equiv_H y$, donc par transitivité $x \equiv_H x'$.

Et ainsi $x'H \subset xH$ et réciproquement $xH \subset x'H$.

Par conséquent, xH = x'H.

Enfin, tout élément $y \in G$ est au moins dans yH, alors que pour tout $x \in G$, $xH \subset G$. Bilan: en notant, $k = \operatorname{card}(\mathcal{C}_H) \in \mathbb{N}$, il existe $x_1, x_2, \dots x_k \in G$ tel que

$$G = \bigcup_{i=1}^{k} x_k H \Longrightarrow |G| = \sum_{i=1}^{k} \operatorname{card}(x_i H)$$
 (réunion disjointe)

$$\Longrightarrow |G| = \sum_{i=1}^{k} |H| = |H| \sum_{i=1}^{k} 1 = |H| \times \operatorname{card}(\mathcal{C}_H)$$

 $|G| = |H| \times \operatorname{card}(\mathcal{C}_H)$. Le théorème de Lagrange s'en déduit immédiatement

3. On suppose ici que $H = \text{Ker } f = \{a \in G \mid f(a) = 0\}$. Soit $y \in G'$, supposons qu'il existe $x_0 \in G$ tel que $f(x_0) = y$. Alors

$$f(x) = y \iff f(x) = f(x_0) \iff f(x) \top' (f(x_0))^{-1} = f(x) \top' f(x_0^{-1}) = e'$$

$$\iff f(x \top x_0^{-1}) = e' \quad \text{par propriété de morphisme}$$

$$\iff x \top x_0^{-1} \in H \iff \exists \ h \in H, x = x_0 \top h \iff x \in x_0 H$$

Par conséquent, par disjonction de cas :

$$f^{-1}(\{y\})$$
 est l'ensemble vide ou un élément de \mathcal{C}_H .

D'après 2., comme H = Ker f est un sous-groupe de G, on a donc $|G| = |H| \times \text{card}(\mathcal{C}_H)$. Par ailleurs,

$$f^{-1}\{y\} \neq \emptyset \iff \exists \ x \in G, y = f(x) \iff y \in \text{Im } f$$

On a donc : $\forall y \in \text{Im } f, \exists \mathcal{O} \in \mathcal{C}_H \text{ tel que } f^{-1}(\{y\}) = \mathcal{O}.$

Enfin, pour tout élément \mathcal{O} de \mathcal{C}_H , il existe $x \in G$ tel que $\mathcal{O} = xH$,

donc en prenant y = f(x), $x \in f^{-1}(\{y\})$ et donc il existe $y \in \text{Im } f$ tel que $\mathcal{O} = f^{-1}(\{y\})$. On a donc : $\forall \mathcal{O} \in \mathcal{C}_H$, $\exists y \in \text{Im } f$, tel que $\mathcal{O} = f^{-1}(\{y\})$.

Autrement écrit, il existe une bijection entre Im f et \mathcal{C}_H , donc Im $f = \operatorname{card}(\mathcal{C}_H)$.

On peut alors affirmer

$$G| = |\mathrm{Ker}\ f| \times |\mathrm{Im}\ f|$$

B. Sous-groupes distingués

On dit que H est un sous-groupe distingués de G si, pour tout $x \in G$, et tout $h \in H$, $xhx^{-1} \in H$.

- 1. H est distingué
 - \iff pour tout $x \in G$, et tout $h \in H$, $xhx^{-1} \in H$
 - \iff pour tout $x \in G$, et tout $h \in H$, $\exists \overline{h} \in H$ tel que $xhx^{-1} = \overline{h}$
 - \iff pour tout $x \in G$, et tout $h \in H$, $\exists \overline{h} \in H$ tel que $xh = \overline{h}x$.
 - \iff pour tout $x \in G$, et tout $h \in H$, $xh \in Hx$.
 - \iff pour tout $x \in G$, $xH \subset Hx$.

En fait on a donc démontré :

H est un sous-groupe distingué de G si et seulement si : $\forall x \in G, xH \subset Hx$. Supposons que ces hypothèses sont vérifiées.

En prenant $y = x^{-1}$, on a donc $yH \subset Hy$, puis pour tout $h \in H$, $\exists \overline{h}$ tel que $yh = \overline{h}y$.

Donc pour tout $h \in H$, $\exists \overline{h}$ tel que $hx = x(yh)x = x(\overline{h}y)x = x\overline{h}$.

Et par conséquent $Hx \subset xH$.

Finalement

$$H$$
 est un sous-groupe distingué de G si et seulement si : $\forall \ x \in G, \, xH = Hx.$

2. Soit $x \in G$, par propriétés des morphismes :

$$\forall h \in \text{Ker } f, f(xhx^{-1}) = f(x) \top f(h) \top f(x^{-1}) = f(x) \top e' \top (f(x))^{-1} = e'$$

Donc $\forall x \in G, \forall h \in \text{Ker } f, xhx^{-1} \in \text{Ker } f.$ Autrement écrit :

Ker f est un sous-groupe distingué de G.

3. Il faut évidemment que G ne soit pas commutatif.

On considère par exemple $G = \mathcal{S}_4$, le groupe des permutations de $\mathbb{N}_4 = \{1, 2, 3, 4\}$.

Un sous-groupe de G est $H = \{id, \sigma, \sigma^2, \sigma^3\}$ où $\sigma: (1, 2, 3, 4) \mapsto (2, 3, 4, 1)$, permutation circulaire

Soient $\tau: (1,2,3,4) \mapsto (2,1,3,4)$. Alors $\tau^{-1} = \tau$.

Avec $h = \sigma^2 : (1, 2, 3, 4) \mapsto (3, 4, 1, 2)$, on a:

$$\tau \circ h \circ \tau^{-1}(1,2,3,4) = \tau \circ h(2,1,3,4) = \tau(3,4,2,1) = (4,3,2,1)$$

Ainsi $\tau \circ h \circ \tau^{-1} \notin H$ Donc

H n'est pas distingué

C. Groupe quotient

On suppose désormais (jusqu'à la fin du problème) que H est un sous-groupe distingué de G. Si A et B sont deux parties de G, on note $A \star B = \{ab, (a, b) \in A \times B\}$.

1. Soient $x, y \in G$.

$$\forall (a, b) \in xH \times yH, \exists h_1, h_2 \in H, a = xh_1, b = yh_2$$
 et $ab = xh_1yh_2$

Or Hy = yH, car H est distingué, donc

$$\forall (a,b) \in xH \times yH, \exists h_1, h_2, h_3 \in H, a = xh_1, b = yh_2$$
 et $ab = xh_1yh_2 = xyh_3h_2 \in (xy)H$

On a la première inclusion $(xH) \star (yH) \subset (xy)H$.

Réciproquement,

$$\forall c \in (xy)H, \exists h \in H, c = xyh = (xe)(yh) \in (xH) \star (yH)$$

car $e \in H$. On a la seconde inclusion $(xy)H \subset (xH) \star (yH)$

Donc par double inclusion

pour tout
$$(x,y) \in G^2$$
, $(xH) \star (yH) = (xy)H$.

2. L'application \star est donc une application interne bien définie.

L'élément neutre de \star est H:

$$\forall x \in G, (xH) \star H = \{xh_1h_2 \mid h_1, h_2 \in H\} = \{xh' \mid h' \in H\} = xH$$

Soit $xH \in \mathcal{C}_H$. Alors

$$x^{-1}H \star xH = \{x^{-1}h_1xh_2 \mid h_1, h_2 \in H\} = \{h_3h_2 \mid h_3, h_2 \in H\} = H$$

En effet H est distingué donc $x^{-1}h_1x \in H$.

De même, comme $xh_1x^{-1} \in H$, pour tout $h_1 \in H$, on a $xH \star x^{-1}H = H$.

Par conséquent, tout élément xH de C_H admet un inverse pour $\star : x^{-1}H$ Enfin, si $xH, yH, zH \in C_H$,

$$(xH \star yH) \star zH = \{(xh_1yh_2)zh_3 \mid h_1, h_2, h_3 \in H\} = \{xh_1yh_2zh_3 \mid h_1, h_2, h_3 \in H\}$$
$$= \{xh_1(yh_2zh_3) \mid h_1, h_2, h_3 \in H\} = xH(\star yH \star zH)$$

car G est un groupe donc associatif.

Toutes les propriétés sont vérifiées :
$$(\mathcal{C}_H, \star)$$
 est un groupe.

3. On note $\pi: G \to \mathcal{C}_H$ l'application définie par $\pi(x) = xH$. Soient $x, y \in G$,

$$\pi(x) \star \pi(y^{-1}) = xHy^{-1}H = x(Hy^{-1})H = x(y^{-1}H)H = xy^{-1}H = \pi(xy^{-1})$$

car H est distingué.

 π est bien un morphisme de groupes

Le noyau de
$$\pi$$
 est Ker $\pi = \{x \mid \pi(x) = H\} = H$

Alors que

L'image de π est Im $\pi = \mathcal{C}_H$, tout entier

D. Propriété universelle du groupe quotient

1. Supposons qu'il existe un morphisme de groupes $g: \mathcal{C}_H \to G'$ tel que $f = g \circ \pi$. Soit $h \in H$.

Alors $f(h) = g(\pi(h)) = g(H) = e_{G'}$, donc $h \in \text{Ker } f$.

Donc
$$H \subset \operatorname{Ker} f$$

2. On suppose que $H \subset \text{Ker } f$.

Si $f = g \circ \pi$, alors nécessairement, g doit vérifier :

pour tout $x \in G$, $g: xH \mapsto f(x)$.

Donc l'unicité est assurée, l'existence est plus subtile :

il faut vérifier que si xH = x'H, alors g(x) = g(x'), i.e. f(x) = f(x').

Soient donc $x, x' \in G$ tel que xH = x'H.

Donc, comme $x' \in x'H = xH$, il existe $h \in H$ tel que x' = xh.

Ainsi, $f(x') = f(x \cdot h) = f(x) \top f(h) = f(x)e_{G'}$, car f est un morphisme et $h \in H \subset \text{Ker } f$.

Et par conséquent : f(x) = f(x').

Donc g est également bien définie.

Bilan : si $H \subset \text{Ker } f$, il existe un unique morphisme de groupes $g : \mathcal{C}_H \to G'$ tel que $f = g \circ \pi$.

- 3. Avec les hypothèses précédentes, :
 - Supposons que g est surjective,

 π étant surjective (par définition de \mathcal{C}_H), alors par composition $f = g \circ \pi$ est surjective.

Réciproquement si f est surjective,

pour tout $y \in G'$, $\exists x \in G$ tel que f(x) = y et donc y = g(xH).

pour tout $y \in G'$, $\exists H' \in \mathcal{C}_H$ tel que y = g(H').

Donc g est surjective.

Bilan : g est surjective si et seulement si f est surjectif.

— Supposons que g soit injective.

Soit $x \in \text{Ker } f$, alors $f(x) = e_{G'} = g(\pi(x))$.

Donc $\pi(x) \in \text{Ker } g$. Or g injective, donc $\text{Ker } g = e_{\mathcal{C}_H}$.

Par conséquent, $x \in H$. Ainsi Ker $f \subset H$.

L'inclusion réciproque est vraie par hypothèse, donc H = Ker f.

Réciproquement, si H = Ker f,

Soient $xH, yH \in \mathcal{C}_H$, tel que g(xH) = g(yH).

Donc $g(\pi(x)) = g(\pi(y))$ et donc f(x) = f(y), ainsi $f(xy^{-1}) = f(x) \top f(y)^{-1} = e_{G'}$.

Ainsi $xy^{-1} \in \text{Ker } f = H$, donc xH = yH. Et g est injective.

Bilan : g est injective si et seulement si Ker f = H.