

Leçon 6 - Calculs et opérations avec \sum (ou \prod)

- Quelques
 problèmes
- Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
- binomiaux
- 3.2. Triangle de Pascal

- 1. Quelques problèmes
- 2. Symboles Σ et Π
- 3. Coefficients binomiaux et formule du binôme
 - 3.1. Factorielles et coefficients binomiaux
 - 3.2. Triangle de Pascal
 - 3.3. Formule du binôme

→ Manipulation autour du coefficient pinomial

- Quelques problèmes
- Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
- 3.1. Factorielles et coefficients binomiaux
- 3.2. Triangle de Pascal

- 1. Quelques problèmes
- 2. Symboles \sum et \prod
- 3. Coefficients binomiaux et formule du binôme
 - 3.1. Factorielles et coefficients binomiaux
 - 3.2. Triangle de Pasca
 - 3.3 Formule du binôme

⇒ Manipulation autour du coefficient binomial

- Quelques
 problèmes
- Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
- 3.1. Factorielles et coefficients binomiaux
- 3.2. Triangle de Pascal

Pour n et p éléments de \mathbb{N} , $p \leq n$, on pose :

0!=1 et pour $n\geqslant 1, n!=n\times (n-1)\times \cdots \times 1$ qui se lit "factorielle n" $\binom{n}{p}=\frac{n(n-1)\dots(n-p+1)}{p!}=\frac{n!}{p!(n-p)!}$ qui se lit « p parmi n »

On généralise la notation à tout $p \in \mathbb{Z}$, si on n'a pas $0 \le p \le n$, alors $\binom{n}{p} = 0$

- Quelques problèmes
- 2. Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
- 3.1. Factorielles et coefficients binomiaux
- 3.2. Triangle de Pascal

Définition - Factorielle et coefficient binomial

Pour n et p éléments de \mathbb{N} , $p \leq n$, on pose :

0! = 1 et pour $n \ge 1$, $n! = n \times (n-1) \times \cdots \times 1$ qui se lit "factorielle n" $\binom{n}{n} = \frac{n(n-1)...(n-p+1)}{n!} = \frac{n!}{n!(n-p)!}$ qui se lit « p parmi n »

On généralise la notation à tout $p \in \mathbb{Z}$, si on n'a pas $0 \le p \le n$, alors $\binom{n}{n} = 0$

Remarque Plus tard...

Python Calcul de la factorielle avec une boucle

```
def factorielle(n):
    f=1
    for k in range(1,n):
        f=f*(k+1)
    return(f)
```

Quelques problèmes

- 2. Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
 - binomiaux
 - 3.2. Triangle de Pascal

Proposition - Propriétés

Pour tout nombre $n \in \mathbb{N}$ et $p \in \mathbb{Z}$,

1. Quelques

Proposition - Propriétés

Pour tout nombre $n \in \mathbb{N}$ et $p \in \mathbb{Z}$,

Démonstration

Pour tout nombre $n \in \mathbb{N}$ et $p \in \mathbb{Z}$,

Démonstration

Exercice

Pour n,p, simplifier $\sum\limits_{n=0}^{\infty} \binom{k}{n}$. On pourra y « voir »un télescopage

1. Quelques

- 3. Coefficients
- 3.1 Factorialles et coefficients

- 1. Quelques problèmes
- 2. Symboles Σ et Π
- 3. Coefficients binomiaux et formule du binôme
 - 3.1. Factorielles et coefficients binomiaux
 - 3.2. Triangle de Pascal
 - 3.3 Formule du binôme

Leçon 6 - Calculs et opérations avec ∑ (ou ∏)

⇒ Manipulation autour du coefficient binomial

- Quelques
 problèmes
- 2. Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
 - binomiaux
- 3.2. Triangle de Pascal

Construction

De ces propriétés on déduit un moyen simple de calculer les coefficients binomiaux :

Leçon 6 - Calculs et opérations avec ∑ (ou ∏)

→ Manipulation autour du coefficient binomial

- problèmes
- 2. Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
 - binomiaux
- 3.2. Triangle de Pascal

On peut alors construire le triangle de Pascal pour pouvoir calculer facilement (addition et non multiplication) les coefficients binomiaux. On écrit ainsi dans un tableau :

$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$							1					
$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$						1	1				
$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	$\binom{2}{2}$					1	$2^{=1+1}$	1			
$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}$			→	1	<u>3</u>	$\underline{3}$	1		
$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 4 \end{pmatrix}$			1	4	$6^{=3+3}$	4	1	
$\begin{pmatrix} 5 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 5 \end{pmatrix}$		1	5	10	10	5	1
(0)	(1)	(2)	(9)	(4)	(9)			:			:	

- 1. Quelques
- 2. Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
 - 3.1. Factorielles et coefficients binomiaux
- 3.2. Triangle de Pascal

Proposition - Nombres entiers

Pour n et p éléments de \mathbb{N} , $p \le n$, n! et $\binom{n}{p}$ sont des entiers naturels.

- Quelques
 problèmes
- 2. Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
 - binomiaux
 - 3.2. Triangle de Pascal

problèmes

2. Symboles 2 et []

binomiaux et formule du binôme

binomiaux
3.2. Triangle de Pascal

3.3 Formula du binôma

Proposition - Nombres entiers

Pour n et p éléments de \mathbb{N} , $p \le n$, n! et $\binom{n}{p}$ sont des entiers naturels.

Remarque Convention

3. Coefficients binomiaux et formule du binôme

binomiaux

.2. Irlangle de Pascal

Python Triangle de Pascal

En exploitant des listes (de listes) en informatique, il est possible de créer la n^{e} ligne du triangle de Pascal.

```
def Pascal(n):
       L = [0] * (n+1)
2
       for h in range(n+1):
3
           L[h]=[1]+[0]*n
4
       print(L)
5
       for h in range(n):
6
            for k in range(h+1):
7
                L[h+1][k+1]=L[h][k]+L[h][k+1]
8
       return(L)
9
```

autour du coefficient binomial

Leçon 6 - Calculs et opérations avec ∑

problemes

1. Quelques

- 2. Symboles 2 et []
- 3. Coefficients binomiaux et formule du binôme
- binomiaux
- 3.2. Triangle de Pascal

 3.3. Formule du binôme

- Quelques problèmes
- 2. Symboles Σ et Π
- 3. Coefficients binomiaux et formule du binôme
 - 3.1. Factorielles et coefficients binomiaux
 - 3.2. Triangle de Pasca
 - 3.3. Formule du binôme

Soient $n \in \mathbb{N}$ et a,b deux réels (ou deux complexes). Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

autour du coefficient pinomial

- problemes
- 2. Symboles ∑ et ∏
- Coefficients binomiaux et formule du binôme
- binomiaux
- 3.2. Triangle de Pascal

 3.3. Formule du binôme

Soient $n \in \mathbb{N}$ et a,b deux réels (ou deux complexes). Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Avec a = b = 1:

Corollaire -

$$\sum_{n=0}^{n} \binom{n}{p} = 2^n$$

1. Quelques

2. Symboles \sum et \prod

3. Coefficients binomiaux et formule du binôme

binomiaux

3.2. Triangle de Pascal

3.3. Formule du binôme

Soient $n \in \mathbb{N}$ et a, b deux réels (ou deux complexes). Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Avec a = b = 1:

Corollaire -

$$\sum_{p=0}^{n} \binom{n}{p} = 2^n$$

Démonstration

problèmes

2. Symboles ∑ et ∏

3. Coefficients binomiaux et formule du binôme

binomiaux

3.2. Triangle de Pascal

3.3. Formule du binôme

Soient $n \in \mathbb{N}$ et a, b deux réels (ou deux complexes). Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Avec a = b = 1:

Corollaire -

$$\sum_{p=0}^{n} \binom{n}{p} = 2^n$$

Démonstration

Exercice

 $\text{Calculer } \sum_{0 \leqslant p \leqslant n; p \text{ pair }} \binom{n}{p} \text{ et } \sum_{0 \leqslant p \leqslant n; p \text{ impair }} \binom{n}{p}.$

Quelques
 problèmes

2. Symboles ∑ et ∏

3. Coefficients binomiaux et formule du binôme

binomiaux

3.2. Triangle de Pascal
3.3. Formule du binôme

Conclusion

Objectifs

⇒ Manipulation autour du coefficient binomial

Leçon 6 - Calculs et opérations avec ∑ (ou ∏)

⇒ Manipulation autour du coefficient binomial

- problèmes
- Symboles ∑ et ∏
- 3. Coefficients binomiaux et formule du binôme
 - binomiaux
 - .2. Triangle de Pascal
- 3.3. Formule du binôme

⇒ Manipulation autour du coefficient binomial

$$n! = \prod_{k=1}^{n} k, \text{ et } \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

3. Coefficients

Objectifs

⇒ Manipulation autour du coefficient binomial

$$n! = \prod_{k=1}^{n} k, \text{ et } \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Des relations fondamentales : dont la symétrie et la relation de Pascal $\binom{a+1}{b+1} = \binom{a}{b} + \binom{a}{b+1}$

- 1. Quelques
- 3. Coefficients

⇒ Manipulation autour du coefficient binomial

$$n! = \prod_{k=1}^{n} k, \text{ et } \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Des relations fondamentales : dont la symétrie et la relation de Pascal $\binom{a+1}{b+1} = \binom{a}{b} + \binom{a}{b+1}$
- Formule du binôme : $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

Quelques

problèmes

2. Symboles \(\subset \text{et } \)

- 3. Coefficients binomiaux et formule du binôme
- binomiaux
- 3.2. Triangle de Pascal

Objectifs

⇒ Manipulation autour du coefficient binomial

Pour la prochaine fois

- Lecture du cours : Chap 10 : Ensembles.
- Exercices 176 & 177