

Problèmes

2. EULER :

Manipulateur des nombres du diable

- 2.1. Racine de polynô
- 2.3. Représentation graph
- 2.4. Inégalités

. Gauss

GAUSS

3.2. Formules d'Euler et de de

3. Argument, forme

25 septembre 2024

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication

- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

≻ Corps (ℂ,

le plan

⇒ Interpréta centré

1. Problèmes

2. EULER :

Manipulateur des

I. Racine de polynôm

. Calcul algébrique

l. Représentation graph

2.4. Inégalités

. Gauss

1.0

3.2. Formules d'Euler et de d

3.3. Argument, forme trigonométrique

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication
- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

 \Rightarrow Corps ($\mathbb{C}, +, \times$) \Rightarrow Interprétation dan

⇒ Interprétation

1. Problèmes

2. EULER :

Manipulateur des nombres du diable

Racine de polynôm

2. Calcul algébrique

4 Inégalités

2.4. Inégalités

. Gauss

3.1. U 3.2. Formules d'Euler et de c

3.2. Formules d'Euler et de : Moivre

3.3. Argument, form trigonométrique

Problème - Multiplication de nombres

Leçon 12 - Nombres complexes

Corps (€, +,

⇒ Interprétation dans le plan

⇒ Interprétation centré

1. Problèmes

Manipulateur des

- 1 Racine de polynôm
- .1. Hacine de polynome
- 3. Représentation graphique
- 2.4. Inégalités

Gauss

. GAUGG

- .2. Formules d'Euler et de de
- 3.3. Argument, forme rigonométrique

Problème - Multiplication de nombres

Problème - Théorème de Napoléon

Leçon 12 - Nombres complexes

· Corps (C,+,:

⇒ Interprétation dar le plan

⇒ Interprétat centré

1. Problèmes

Manipulateur des

- Bacine de polynôme
- .1. Hacine de polynom
- 3. Représentation graphique
- 2.4. Inégalités

Gauss

. GAUGG

- 3.2. Formules d'Euler et de d
- .3. Argument, forme

Problème - Multiplication de nombres

Problème - Théorème de Napoléon

Problème - Transformation du plan

Leçon 12 - Nombres complexes

· Corps (€, +

→ interpreta e plan

⇒ Interpréta

1. Problèmes

٠ ----

Manipulateur des

1 Bacine de polynôme

Hacine de polynor

3 Représentation graphique

2.4. Inégalités

GAUSS

. GAUSS

i.2. Formules d'Euler et de d

3. Argument, forme

Problème - Multiplication de nombres

Problème - Théorème de Napoléon

Problème - Transformation du plan

Problème - Application en physique

Leçon 12 - Nombres complexes

> Corps (ℂ, +

le plan

⇒ Interprétat centré

1. Problèmes

2 FILLER

Manipulateur des

Bacine de polynôme

2.1. Hacine de polynoi

3 Représentation graphique

2.4. Inégalités

CALLOC

. Gauss

.1. U .2. Formules d'Euler et de d

vre . Argument, forme

i.3. Argument, form rigonométrique

- ⇒Calculs simples dans le corps ℂ
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication
- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes

 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe

Lecon 12 - Nombres

1. Problèmes

nombres du diable

2.1. Racine de polynômes

Historique

Analyse Problème de Cardan (1545)

Leçon 12 - Nombres complexes

> Corps (€, +

→ Interprétation dan le plan

⇒ Interprétation centré

1 Problèmes

.

Manipulateur des

- 2.1. Racine de polynômes
 - nacine de polynor
- 2.3. Représentation graphiqu
- 2.4. Inégalités

Gauss

. UAUSS

- 3.2. Formules d'Euler et de de
- 3.3. Argument, forme

Historique

Analyse Problème de Cardan (1545)

Les règles de calcul sont données par Raphël Bombelli dans son algebra (1572).

Pendant deux siècles, les mathématiciens se querellent quant à leur existence et leurs emplois.

Leçon 12 - Nombres complexes

Corps (C, +, ×)
 Interprétation dans plans

⇒ Interprétation centré

1. Problèmes

. _

Manipulateur des

2.1. Racine de polynômes

- Calcul algébrique
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

GAUSS

- 2. Formules d'Euler et de de
- .3. Argument, forme

Historique

Analyse Problème de Cardan (1545)

Les règles de calcul sont données par Raphël Bombelli dans son algebra (1572).

Pendant deux siècles, les mathématiciens se querellent quant à leur existence et leurs emplois.

Exercice

On reprend un exercice historique de Bombelli.

En reprenant les règles classiques de calcul, évaluer $(2 + \sqrt{-1})^3$. En employant les formules de Cardan, trouver les racines de $x^3 = 15x + 4$ Leçon 12 - Nombres complexes

⇒ Corps (C,+,×)
⇒ Interprétation da

⇒ Interprétation centré

1. Problèmes

2. EULER : Manipulateur des

nombres du diable

2.1. Racine de polynômes

2.3. Représentation graphique

2.4. Inégalités

B. GAUSS

. GAUSS

.2. Formules d'Euler et de d

. Argument, forme

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication
- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

> Corps (C,+,×)
> Interprétation dan

⇒ Interprétati

1. Problèmes

2. EULER :

Manipulateur des nombres du diable

Racine de polynôr

2. Calcul algébrique

I. Inégalités

. Gauss

3.2. Formules d'Euler et de d

3.3. Argument, form

Notation

Euler invente la notation i bien pratique et les manipule avec précision. Il écrit à Diderot : « $e^{i\pi}=-1$ donc Dieu existe ». Un complexe est un « nombre » z qui s'écrit z=a+ib où

Leçon 12 - Nombres complexes

⇒ Corps (C,+,×) ⇒ Interprétation da e plan

1. Problèmes

. EULER : lanipulateur des

. Daving de autonium

Calcul algébrique

2.3. Hepresentation graphiq

2.4. Inégalités

GAUSS

GAUUU

2. Formules d'Euler et de de

3.3. Argument, forme

Notation

Euler invente la notation i bien pratique et les manipule avec précision. Il écrit à Diderot : « $e^{i\pi}=-1$ donc Dieu existe ». Un complexe est un « nombre » z qui s'écrit z=a+ib où **Remarque** Unicité

Leçon 12 - Nombres complexes

⇒ Corps (C,+,×) ⇒ Interprétation da e plan

Problèmes

l. EULER : Manipulateur des

1 Racine de polynôm

Calcul algébrique

Representation graph

2.4. Inégalités

. Gauss

U
 Formules d'Euler et de :

3.3. Argument, forme

2.2. Calcul algébrique

.4. Inégalités

2.4. Inégalités

3. Gauss

3.1. U 3.2. Formules d'Euler et de : Moivre

3.3. Argument, forme

Euler invente la notation i bien pratique et les manipule avec précision. Il écrit à Diderot : « $e^{i\pi}=-1$ donc Dieu existe ». Un complexe est un « nombre » z qui s'écrit z=a+ib où **Remarque** Unicité

Définition - Notation de nombre complexe

Soit z = a + ib un complexe (a et b sont des réels).

 $a = \mathbf{Re} z$ s'appelle la **partie réelle** de z.

 $b = \mathbf{Im} z$ s'appelle la **partie imaginaire** de z;

z est dit imaginaire pur $(z \in i\mathbb{R})$ si sa partie réelle est nulle.

 $\overline{z} = a - ib$ s'appelle le **conjugué** de z = a + ib.

 $|z| = \sqrt{a^2 + b^2}$ s'appelle le **module** de z.

Proposition - $\mathbb C$ est un corps

Pour tout $(z, z') \in \mathbb{C}^2$, $\lambda, \lambda' \in \mathbb{R}$,

- ► $\mathbf{Re}(\lambda z + \lambda' z') = \lambda \mathbf{Re}(z) + \lambda' \mathbf{Re}(z')$ (la partie réelle est \mathbb{R} -linéaire sur \mathbb{C})
- ► $\mathbf{Im}(\lambda z + \lambda' z') = \lambda \mathbf{Im}(z) + \lambda' \mathbf{Im}(z')$ (la partie imaginaire est \mathbb{R} -linéaire sur \mathbb{C})
- si z = a + ib et z' = a' + ib', alors $z \times z' = (aa' bb') + i(ab' + a'b)$ En particulier $z \times \overline{z} = a^2 + b^2 = |z|^2 = |\overline{z}|^2$, donc $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

1. Problèmes

2. EULER :

Manipulateur des nombres du diable

.1. Racine de polynô

Calcul algébrique
 Représentation graphique

I. Inégalités

3. Gauss

.1. U .2. Formules d'Euler et de d

t. Argument, forme jonométrique

Proposition - ℂ est un corps

Pour tout $(z, z') \in \mathbb{C}^2$, $\lambda, \lambda' \in \mathbb{R}$,

- ► $\mathbf{Re}(\lambda z + \lambda' z') = \lambda \mathbf{Re}(z) + \lambda' \mathbf{Re}(z')$ (la partie réelle est \mathbb{R} -linéaire sur \mathbb{C})
- ► $\mathbf{Im}(\lambda z + \lambda' z') = \lambda \mathbf{Im}(z) + \lambda' \mathbf{Im}(z')$ (la partie imaginaire est \mathbb{R} -linéaire sur \mathbb{C})
- si z = a + ib et z' = a' + ib', alors $z \times z' = (aa' bb') + i(ab' + a'b)$ En particulier $z \times \overline{z} = a^2 + b^2 = |z|^2 = |\overline{z}|^2$, donc $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

Remarque Importance du conjugué

⇒ Corps (C,+,×)⇒ Interprétation da le plan

1. Problèmes

2. EULER :

Manipulateur des

1. Racine de polyn

Calcul algébrique

l. Inégalités

3. Gauss

8.1. U 8.2. Formules d'Euler et de

3. Argument, forme gonométrique

Proposition - C est un corps

Pour tout $(z, z') \in \mathbb{C}^2$, $\lambda, \lambda' \in \mathbb{R}$,

- ► $\mathbf{Re}(\lambda z + \lambda' z') = \lambda \mathbf{Re}(z) + \lambda' \mathbf{Re}(z')$ (la partie réelle est \mathbb{R} -linéaire sur \mathbb{C})
- ► $\mathbf{Im}(\lambda z + \lambda' z') = \lambda \mathbf{Im}(z) + \lambda' \mathbf{Im}(z')$ (la partie imaginaire est \mathbb{R} -linéaire sur \mathbb{C})
- \triangleright si z = a + ib et z' = a' + ib'. alors $z \times z' = (aa' - bb') + i(ab' + a'b)$ En particulier $z \times \overline{z} = a^2 + b^2 = |z|^2 = |\overline{z}|^2$, donc $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

Remarque Importance du conjugué

Démonstration

1. Problèmes

2. EULER:

On a les propriétés du conjugué :

$$\forall (z, z') \in \mathbb{C}^2, \, \forall a \in \mathbb{R}, \quad \overline{\overline{z}} = z \qquad \qquad \overline{z + z'} = \overline{z} + \overline{z'}$$

$$\overline{zz'} = \overline{z}\overline{z'} \Rightarrow \overline{az} = a\overline{z} \qquad \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$

$$\mathbf{Re} z = \frac{z + \overline{z}}{2} \qquad \mathbf{Im} z = \frac{z - \overline{z}}{2i}$$

2.2. Calcul algébrique

Conjugaison

Proposition - Conjugaison

On a les propriétés du conjugué :

$$\forall (z,z') \in \mathbb{C}^2, \, \forall a \in \mathbb{R}, \quad \overline{\overline{z}} = z \qquad \overline{z+z'} = \overline{z} + \overline{z'}$$

$$\overline{zz'} = \overline{z}\overline{z'} \Rightarrow \overline{az} = a\overline{z} \qquad \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$

$$\mathbf{Re} \, z = \frac{z+\overline{z}}{2} \qquad \mathbf{Im} \, z = \frac{z-\overline{z}}{2i}$$

Démonstration

Lecon 12 - Nombres complexes

2.2. Calcul algébrique

On définit les puissances d'un nombre complexe par

$$\left\{ \begin{array}{l} z^0=1 \\ \forall n\in \mathbb{N}, z^{n+1}=z^nz \end{array} \right.$$

On a alors $\forall n \in \mathbb{N}, \overline{z^n} = \overline{z}^n$.

Pour $z \neq 0$ et $n \in \mathbb{N}$, on pose $z^{-n} = \frac{1}{z^n} = (z^n)^{-1}$, on a alors $\forall n \in \mathbb{Z}, \overline{z^n} = \overline{z}^n.$

nombres du diable

On définit les puissances d'un nombre complexe par

$$\left\{ \begin{array}{l} z^0=1 \\ \forall n\in \mathbb{N}, z^{n+1}=z^nz \end{array} \right.$$

On a alors $\forall n \in \mathbb{N}, \overline{z^n} = \overline{z}^n$.

Pour $z \neq 0$ et $n \in \mathbb{N}$, on pose $z^{-n} = \frac{1}{z^n} = (z^n)^{-1}$, on a alors $\forall n \in \mathbb{Z}, \overline{z^n} = \overline{z}^n$.

Exercice Faire la démonstration

1 Duahlàna

EULER : anipulateur

nombres du diable

1. Racine de polynômes

2.2. Calcul algébrique

. Représentation graphic

4. Inégalités

3. Gauss

.2. Formules d'Euler et de c

3.3. Argument, forme

On a les propriétés du module :

$$\forall (z, z') \in \mathbb{C}^2, \forall \ \alpha \in \mathbb{R} \quad |z| = \sqrt{z\overline{z}}$$

$$|zz'| = |z| |z'| \Rightarrow |az| = a|z|$$

$$|z| = |\overline{z}| = |-z|$$

$$\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \text{ (si } z' \neq 0\text{)}$$

→ Interprétation dans

le plan

⇒ Interprétati centré

- . Problèmes
- . Euler : Ianipulateur des
- nombres du diable
- 2.2. Calcul algébrique
- 2.3. Représentation graphique
- GALISS
 - SAUSS
- .1. U
- 3.3. Argument, forme

On a les propriétés du module :

$$\forall (z, z') \in \mathbb{C}^2, \forall \ \alpha \in \mathbb{R} \quad |z| = \sqrt{z\overline{z}}$$

$$|zz'| = |z| |z'| \Rightarrow |az| = a|z|$$

$$|z| = |\overline{z}| = |-z|$$

$$\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} (\operatorname{si} z' \neq 0)$$

Démonstration

⇒ Interprétation dan

⇒ Interprétation

. Problèmes

Manipulateur des

.....

2.2. Calcul algébrique

2.3. Représentation graphique

3. Gauss

. Formules d'Euler et de d

3.3. Argument, forme

On a les propriétés du module :

$$\forall (z,z') \in \mathbb{C}^2, \forall \ \alpha \in \mathbb{R} \quad |z| = \sqrt{z\overline{z}}$$

$$|zz'| = |z| |z'| \Rightarrow |az| = a|z|$$

$$|z| = |\overline{z}| = |-z|$$

$$\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} (\operatorname{si} z' \neq 0)$$

Démonstration

Remarque Valeur absolue et module

Problèmes

- EULER:
- Manipulateur des
- 2.1 Racine de polynômes
- 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - Cauco
 - Gauss
 - 3.1. U 3.2. Formules d'Euler et de
 - I. Argument, forme

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication
- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

 \Rightarrow Corps (ℂ,+,×) \Rightarrow Interprétation dat

⇒ Interprétati

1. Problèmes

2. EULER :

Manipulateur des nombres du diable

- Racine de polynôme
- 2. Calcul algébrique
- 2.3. Représentation graphique

. Gauss

.1. U

3.2. Formules d'Euler et de d Moivre

3.3. Argument, form trigonométrique

Affixe

On munit le plan d'un repère orthonormé direct (0, vect u, vect v). Le point M de coordonnées (a,b) caractérisé par vect OM = a vect u + b vect v, peut alors être représenté par le complexe z = a + ib.

Leçon 12 - Nombres complexes

 ⇒ Corps (C,+,×)
 ⇒ Interprétation da le plan
 ⇒ Interprétation

1 Problèmes

2. EULER :

- Manipulateur des nombres du diable
- Racine de polynôme
- 3. Représentation grap
- _
- . GAUSS
- .2. Formules d'Euler et de de
- 3.3. Argument, forme

Définition - Affixe d'un point. Affixe d'un vecteur

z = a + ib est alors appelé **affixe** du point M(a,b), on peut noter z = Aff(M).

Réciproquement, le point M est appelé (point) image de z. De même, si $\operatorname{vect} w$ est un $\operatorname{vecteur}$ de $\operatorname{coordonn\acute{e}es}(a,b), a+ib$ est appelé affixe de $\operatorname{vect} w$ (noté $\operatorname{Aff}(\operatorname{vect} w)$), lui-même appelé (vecteur) image du $\operatorname{complexe} a+ib$.

1 Problèmes

2. EULER : Manipulateur des nombres du diable

. Racine de polynômes

2.3. Représentation graphique

2.4. Inégalités

3. Gauss

i.2. Formules d'Euler et de d Anivre

.3. Argument, forme

Définition - Affixe d'un point. Affixe d'un vecteur

z = a + ib est alors appelé **affixe** du point M(a,b), on peut noter z = Aff(M).

Réciproquement, le point M est appelé (point) image de z. De même, si $\operatorname{vect} w$ est un $\operatorname{vecteur}$ de coordonnées (a,b), a+ib est appelé affixe de $\operatorname{vect} w$ (noté $\operatorname{Aff}(\operatorname{vect} w)$), lui-même appelé (vecteur) image du complexe a+ib.

Remarque Axes

1. Problèmes

 EULER : Manipulateur des nombres du diable

. Racine de polynô

2.3. Représentation graphique

2.4. Inégalités

3. Gauss

3.2. Formules d'Euler et de : Moivre

3.3. Argument, forme trigonométrique Si z est l'affixe de M alors \overline{z} est l'affixe du symétrique de M par rapport à l'axe des abscisses.

Si z = Aff(M) alors |z| est égal à la distance OM.

Si $z = \mathrm{Aff}(M)$ et $z_0 = \mathrm{Aff}(M_0)$, alors $\mathrm{Aff}(\mathrm{vect} M_0 M) = z - z_0$ et

 $|z-z_0|=M_0M$

1 Problèmes

. I TobleTiles

Manipulateur des

.1. Racine de polynôme

2.2. Calcul algébrique

2.3. Représentation graphique

2.4. Inégalités

B. Gauss

U Formules d'Euler et de

loivre .3. Argument, forme

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication
- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

⇒ Corps ($\mathbb{C}, +, \times$)
⇒ Interprétation dan

⇒ Interprétation centré

1. Problèmes

2. EULER :

Manipulateur des nombres du diable

Racine de polynôme

. Calcul algébrique

nepresentation grap

2.4. Inégalités

3. Gauss

3.1. U 3.2. Formules d'Euler et de

3.2. Formules d'Euler et de c Moivre

3.3. Argument, forme trigonométrique

Théorème - Inégalités

Pour $(z,z') \in \mathbb{C}^2$, on a les inégalités suivantes :

 $|\mathbf{Re}\,z| \le |z|$ avec égalité si et seulement si $z \in \mathbb{R}$

 $|\mathbf{Im}\,z| \leq |z|$ avec égalité si et seulement si $z \in i\mathbb{R}$

$$|z| - |z'|$$
 $\leq |z + z'| \leq |z| + |z'|$ (Inégalité triangulaire)

Avec égalité dans l'inégalité de droite si et seulement si

z'=0 ou il existe $\lambda \in \mathbb{R}^+$ tel que $z=\lambda z'$ (z,z' positivement liés).

1. Problèmes

Manipulateur des

Pour $(z,z') \in \mathbb{C}^2$, on a les inégalités suivantes :

 $|\mathbf{Re}\,z| \le |z|$ avec égalité si et seulement si $z \in \mathbb{R}$

 $|\mathbf{Im}\,z| \leq |z|$ avec égalité si et seulement si $z \in i\mathbb{R}$

$$|z| - |z'| \le |z + z'| \le |z| + |z'|$$
 (Inégalité triangulaire)

Avec égalité dans l'inégalité de droite si et seulement si

z'=0 ou il existe $\lambda \in \mathbb{R}^+$ tel que $z=\lambda z'$ (z,z' positivement liés).

Attention. Module ou valeur absolue?

Il y a des modules et des valeurs absolues partout ici!

1. Problèmes

2. EULER:

Manipulateur des

Théorème - Inégalités

Pour $(z,z') \in \mathbb{C}^2$, on a les inégalités suivantes :

 $|\mathbf{Re}\,z| \le |z|$ avec égalité si et seulement si $z \in \mathbb{R}$

 $|\mathbf{Im}\,z| \leq |z|$ avec égalité si et seulement si $z \in i\mathbb{R}$

$$|z| - |z'|$$
 $\leq |z + z'| \leq |z| + |z'|$ (Inégalité triangulaire)

Avec égalité dans l'inégalité de droite si et seulement si

z'=0 ou il existe $\lambda \in \mathbb{R}^+$ tel que $z=\lambda z'$ (z,z' positivement liés).

Attention, Module ou valeur absolue?

Il y a des modules et des valeurs absolues partout ici!

Analyse Interprétation de l'inégalité triangulaire

1. Problèmes

2. EULER:

Manipulateur des

Théorème - Inégalités

Pour $(z,z') \in \mathbb{C}^2$, on a les inégalités suivantes :

 $|\mathbf{Re}\,z| \le |z|$ avec égalité si et seulement si $z \in \mathbb{R}$

 $|\mathbf{Im}\,z| \leq |z|$ avec égalité si et seulement si $z \in i\mathbb{R}$

$$|z| - |z'|$$
 $\leq |z + z'| \leq |z| + |z'|$ (Inégalité triangulaire)

Avec égalité dans l'inégalité de droite si et seulement si

z'=0 ou il existe $\lambda \in \mathbb{R}^+$ tel que $z=\lambda z'$ (z,z' positivement liés).

Attention. Module ou valeur absolue?

Il y a des modules et des valeurs absolues partout ici!

Analyse Interprétation de l'inégalité triangulaire Démonstration

1. Problèmes

2. EULER:

Manipulateur des

4 D > 4 B > 4 B > 4 B > 90 0

Inégalités

Par récurrence :

Proposition - Inégalités

Pour n complexes z_1, \ldots, z_n on a

$$|z_1+\cdots+z_n| \leq |z_1|+\cdots+|z_n|.$$

Leçon 12 - Nombres complexes

· Corps (C,+,:

⇒ Interprétation da le plan

⇒ Interprétat centré

1. Problèmes

- 2. EULER :
- Manipulateur des
- 2.1 Racine de polynômes
- 2.1. Hacine de polynomes
- .3. Représentation graphique
- 2.4. Inégalités
- . Gauss
- I. U Formules d'Euler et de di
- Moivre 3.3. Argument, forme

Par récurrence :

Proposition - Inégalités

Pour n complexes z_1, \ldots, z_n on a

$$|z_1+\cdots+z_n| \leq |z_1|+\cdots+|z_n|.$$

Proposition - Caractérisation des complexes remarquables

$$z = 0 \Leftrightarrow |z| = 0 \Leftrightarrow \mathbf{Re}\,z = \mathbf{Im}\,z = 0$$

$$z \in \mathbb{R} \Leftrightarrow \operatorname{Im} z = 0 \Leftrightarrow \overline{z} = z \Leftrightarrow |z|^2 = (\operatorname{Re} z)^2$$

$$z \in i\mathbb{R} \Leftrightarrow \mathbf{Re} z = 0 \Leftrightarrow \overline{z} = -z \Leftrightarrow |z|^2 = (\mathbf{Im} z)^2$$

Droblàmos

EULER: Manipulateur des

nombres du diable

2.1. Racine de polynômes

2.2. Calcul algebrique

Représentation graphiques

2.4. Inégalités

3. Gauss

i.1. U i.2. Formules d'Euler et de

Moivre

8.3. Argument, forme rigonométrique

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication
- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

Leçon 12 - Nombres complexes

⇒ Corps (€,+,×)
⇒ Interprétation dans

⇒ Interprétati centré

1. Problèmes

2. EULER :

Manipulateur des nombres du diable

I. Racine de polynôm

2. Calcul algébrique

4. Inégalités

.4. megantes

3. Gauss

3.2. Formules d'Euler et de d

3.3. Argument, forme trigonométrique

Groupe unitaire

En 1800, les mathématiciens manipulent les nombres complexes, mais ces nombres manquent de légitimité.

C'est Gauss qui les justifie géométriquement sur \mathbb{R}^2 (Argand et Wessel semblent, chacun de leur côté, avoir eu la même idée).

Leçon 12 - Nombres complexes

⇒ Corps (C,+,×)⇒ Interprétation dar le plan

Problèmes

i. i iobieilles

. EULER : fanipulateur des ombres du diable

Racine de polynôme

2. Calcul algébrique

nepresentation grap
 Inégalités

. Gauss

1. U

.2. Formules d'Euler et de de foivre

C'est Gauss qui les justifie géométriquement sur \mathbb{R}^2 (Argand et Wessel semblent, chacun de leur côté, avoir eu la même idée).

Définition - Groupe unitaire

On note $\mathbb U$ l'ensemble des complexes de module 1, c'est aussi le cercle unité de $\mathbb C$, ensemble des affixes des points du cercle trigonométrique

$$\mathbb{U} = \{ z \in \mathbb{C} \mid , |z| = 1 \}.$$

Leçon 12 - Nombres complexes

e plan ⇒ Interprétation

. Problèmes

Problemes

Manipulateur des nombres du diable

- Bacine de polyn
- 2. Calcul algébrique
- 2.3. Représentation graphique

B. GAUSS

JAUSS II

2. Formules d'Euler et de de

C'est Gauss qui les justifie géométriquement sur \mathbb{R}^2 (Argand et Wessel semblent, chacun de leur côté, avoir eu la même idée).

Définition - Groupe unitaire

On note $\mathbb U$ l'ensemble des complexes de module 1, c'est aussi le cercle unité de $\mathbb C$, ensemble des affixes des points du cercle trigonométrique

$$\mathbb{U} = \{ z \in \mathbb{C} \mid , |z| = 1 \}.$$

Proposition - Conjugaison sur U

$$\forall (z,z') \in \mathbb{U}^2, zz' \in \mathbb{U}, \qquad \forall z \in \mathbb{U}, \overline{z} = \frac{1}{z} \in \mathbb{U}.$$

On dit que l'ensemble $\mathbb U$ muni de l'opération multiplication est un groupe commutatif.

Problèmes

EULER:
Manipulateur des
nombres du diable

.1. Racine de polyni

2. Calcul algébrique

2.4. Inémalitée

3. Gauss

1.11

i.2. Formules d'Euler et de d foivre

8.3. Argument, forme rigonométrique C'est Gauss qui les justifie géométriquement sur \mathbb{R}^2 (Argand et Wessel semblent, chacun de leur côté, avoir eu la même idée).

Définition - Groupe unitaire

On note $\mathbb U$ l'ensemble des complexes de module 1, c'est aussi le cercle unité de $\mathbb C$, ensemble des affixes des points du cercle trigonométrique

$$\mathbb{U}=\{z\in\mathbb{C}\mid,|z|=1\}.$$

Proposition - Conjugaison sur U

$$\forall (z, z') \in \mathbb{U}^2, zz' \in \mathbb{U}, \qquad \forall z \in \mathbb{U}, \overline{z} = \frac{1}{z} \in \mathbb{U}.$$

On dit que l'ensemble $\mathbb U$ muni de l'opération multiplication est un groupe commutatif.

Démonstration

Problèmes

Problemes

Manipulateur des nombres du diable

- . Racine de polynô
- . Calcul algébrique
- .o. nepresentation graphique
- GALISS
- GAUSS
- 8.2. Formules d'Euler et de Moivre
- .3. Argument, forme igonométrique

Interprétation géométrique du calcul $u \times z$ pour $u \in \mathbb{U}$ et $z \in \mathbb{C}$

Analyse Géométrique

Soit $u \in \mathbb{U} \setminus \{1\}$ et $z \in \mathbb{C}$. Considérons les 4 points du plan A(1), $B(u) \neq A$, C(z) et $D(u \times z)$.

Alors AC = |z - 1| et $BD = |uz - u| = |u| \times |z - 1| = AC$.

Leçon 12 - Nombres complexes

⇒ Corps (C, +, ×)⇒ Interprétation dans le plan

⇒ Interprétat centré

1. Problèmes

EULER:
 Manipulateur des

1 Pasina da nalvaâm

Racine de polynôme

2.3. Représentation graphiqu

2.4. Inégalités

3. Gauss

U
 Formules d'Euler et de de

Interprétation géométrique du calcul $u \times z$ pour $u \in \mathbb{U}$ et $z \in \mathbb{C}$

Analyse Géométrique

Soit $u \in \mathbb{U} \setminus \{1\}$ et $z \in \mathbb{C}$. Considérons les 4 points du plan A(1), $B(u) \neq A$, C(z) et $D(u \times z)$.

Alors AC = |z - 1| et $BD = |uz - u| = |u| \times |z - 1| = AC$.

Définition - Argument de $u \in \mathbb{U}$, de $z \in \mathbb{C}$

Soit $u \in \mathbb{U}$. On note I, le point du plan d'affixe 1 et M celui d'affixe u.

On appelle argument de $u \in \mathbb{U}$ noté arg(u), l'angle (principal) (vectOI, vectOM).

Dans un premier temps, on note $\measuredangle\theta$ ce nombre complexe de module 1 et d'argument θ .

On a alors $u = \cos \theta + i \sin \theta$, pour $\theta \equiv \arg(u)[2\pi]$.

Leçon 12 - Nombres complexes

 Interprétation dans plan

⇒ Interprétatio entré

1. Problèmes

EULER:
 Manipulateur des
 nombres du diable

.1. Racine de polynô

2.2. Calcul algébrique

2.3. Representation graph

2.4. Inégalités

3. Gauss

υ.

3.2. Formules d'Euler et de : Moivre

3.3. Argument, forme trigonométrique

Extension pour $\theta \notin [0, \frac{\pi}{2}]$

Remarque

Leçon 12 - Nombres complexes

Extension pour $\theta \notin [0, \frac{\pi}{2}]$

Remarque **Démonstration**

Lecon 12 - Nombres complexes

Extension pour $\theta \notin [0, \frac{\pi}{2}]$

Remarque

Démonstration

Proposition - Multiplication par $u \in \mathbb{U}$

Soit $z \in \mathbb{C}$ et $u \in \mathbb{U} \setminus \{1\}$.

Notons $\theta = \arg(u)$.

Alors $u \times z$ est l'affixe du point obtenu par rotation de centre 0 et d'angle θ , à partir du point d'affixe z

Leçon 12 - Nombres complexes

· Corps (€, +

→ interpret e plan

⇒ Interprétat centré

1. Problèmes

2. EULER

Manipulateur des nombres du diable

.1. Racine de polynôm

2. Calcul algébrique

2.3. Représentation graphique

2.4. Inégalités

0....

3. Gauss

Formules d'Euler et de

Moivre
3.3. Argument, forme

trigonométrique

Notation exponentielle

Corollaire - Propriété de e^i

Pour tout $\theta, \theta' \in \mathbb{R}$, $\angle \theta \times \angle \theta' = \angle (\theta + \theta')$.

Leçon 12 - Nombres complexes

⇒ Corps (C,+

⇒ Interprétation da e plan

⇒ Interprétati centré

1. Problème

2 EIII EB

Manipulateur des nombres du diable

- Bacine de polynôme
- .1. Hacine de polynome
- 2.3 Représentation graphique
- 2.4. Inégalités

3. Gauss

U
 Formules d'Euler et de d

Notation exponentielle

Corollaire - Propriété de e^i

Pour tout $\theta, \theta' \in \mathbb{R}$, $\angle \theta \times \angle \theta' = \angle (\theta + \theta')$.

Démonstration

Leçon 12 - Nombres complexes

> Corps (€, +,

 Interprétation dar plan

⇒ Interprétation centré

1. Problèmes

2 FILLER

Manipulateur des nombres du diable

- . Racine de polynôme:
- 2.1. Macine de polynom
- 2.3. Représentation graphique
- 2.4. Inégalités

B. GAUSS

i.2. Formules d'Euler et de d

Calcul algébrique

2.3. Représentation grap

2.4. Inégalités

.

GAUSS

.1. U

2. Formules d'Euler et de o

3.3. Argument, forme

Corollaire - Propriété de e^i

Pour tout $\theta, \theta' \in \mathbb{R}$, $\angle \theta \times \angle \theta' = \angle (\theta + \theta')$.

Démonstration

Définition - Notation d'Euler

Nous verrons que dans le cas réel, on appelle exponentielle les fonctions qui vérifient $f(a+b) = f(a) \times f(b)$.

Elles s'écrivent (dans le cas réel) sous la forme $x \mapsto A^x$ où A = f(1).

Par uniformité de notation, suivant L. Euler, on notera maintenant $e^{i\theta} = \angle \theta = \cos \theta + i \sin \theta$

Propriétés

On a alors, plus globalement:

Leçon 12 - Nombres complexes

Corps (C, +,

⇒ Interprétation dan le plan

⇒ Interprétati centré

1. Problèmes

Manipulateur des

- 2.1. Bacine de polynôme
- a a a l l l l l l
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

- .1. U .2. Formules d'Euler et de c
- Formules d'Euler et de de oivre
- 3.3. Argument, forme trigonométrique

Théorème - Propriétés

Soient $(\theta, \theta') \in \mathbb{R}^2$. On a :

$$e^{i(\theta+\theta')} = e^{i\theta}e^{i\theta'} \qquad \overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}}$$

$$e^{i\frac{\pi}{2}} = i \qquad e^{i\pi} = -1$$

$$e^{i\theta} = 1 \Leftrightarrow \theta \equiv 0[2\pi] \Leftrightarrow \theta \in 2\pi\mathbb{Z} \qquad e^{i\theta} = e^{i\theta'} \Leftrightarrow \theta \equiv \theta'[2\pi]$$

.

1. Problemes

2. EULER :

Manipulateur des nombres du diable

1. Racine de polynôme

a a

3 Représentation graphique

2.4 Inánalitás

2.4. Inégalités

3. Gauss

21.11

3.2. Formules d'Euler et de de Moivre

Théorème - Propriétés

Soient $(\theta, \theta') \in \mathbb{R}^2$. On a :

$$\begin{split} e^{i(\theta+\theta')} &= e^{i\theta}e^{i\theta'} & \overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}} \\ e^{i\frac{\pi}{2}} &= i & e^{i\pi} = -1 \\ e^{i\theta} &= 1 \Leftrightarrow \theta \equiv 0[2\pi] \Leftrightarrow \theta \in 2\pi\mathbb{Z} & e^{i\theta} = e^{i\theta'} \Leftrightarrow \theta \equiv \theta'[2\pi] \end{split}$$

Démonstration

> Interprétation

centré

Problèmes

. Euler :

Manipulateur des nombres du diable

2.1. Racine de polynôm

2.2. Calcul algébrique

2.3. Représentation graphique

2.4. Inégalités

B. GAUSS

3. GAUSS

. 3.2. Formules d'Euler et de de Moivre

Formule de Regionmontanus

Corollaire - Formule d'additions trigonométriques

Soient $a, b \in \mathbb{R}$.

$$cos(a+b) = cos a cos b - sin a sin b$$

et $sin(a+b) = sin a cos b + cos a sin b$

Leçon 12 - Nombres complexes

> Corps (ℂ, +,

⇒ Interprétation da: e plan

⇒ Interpréta centré

1. Problèmes

2. EULER

Manipulateur des

01 Residents

2.1. Racine de polynômes

2.2. Calcul algebrique
2.3. Représentation graphique

2.4. Inégalités

3. Gauss

1. U 2. Formules d'Euler et de

.2. Formules d'Euler et de de Moivre

3.3. Argument, forme trigonométrique

Formule de Regionmontanus

Corollaire - Formule d'additions trigonométriques

Soient $a, b \in \mathbb{R}$.

$$cos(a+b) = cos a cos b - sin a sin b$$

et $sin(a+b) = sin a cos b + cos a sin b$

Démonstration

Leçon 12 - Nombres complexes

Corps (C, +

⇒ interpre: e plan

⇒ Interprétat centré

Problèmes

2. EULER :

Manipulateur des

2.1 Racine de polynômes

2.2. Calcul algébrique

2.3. Représentation graphique

2.4. Inégalités

GALISS

JAUSS.

Formules d'Euler et de de

3.3. Argument, forme trigonométrique

2.1. Racine de polynômes

2.2. Calcul algébrique

2.3. Representation graphi

2.4. Inégalités

3. Gaus

GAU55

.1. U .2. Formules d'Euler et de d

3.3. Argument, forme

Corollaire - Formule d'additions trigonométriques

Soient $a, b \in \mathbb{R}$.

cos(a+b) = cos a cos b - sin a sin bet sin(a+b) = sin a cos b + cos a sin b

Démonstration

Exercice

En déduire les formules donnant cos(a - b) et sin(a - b).

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication
- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

Leçon 12 - Nombres complexes

⇒ Corps (C, +, ×)⇒ Interprétation dans plan

⇒ Interprétat centré

1. Problèmes

2. EULER :

Manipulateur des nombres du diable

Racine de polynôme

. Calcul algébrique

. Représentation graphic

Inégalités

Gauss

.1. U

3.2. Formules d'Euler et de de

3.3. Argument, forme trigonométrique

Formule d'Euler

Proposition - Formules d'Euler

$$\cos \theta = \mathbf{Re}(e^{i\theta}) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 , $\sin \theta = \mathbf{Im}(e^{i\theta}) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

Leçon 12 - Nombres complexes

· Corps (C,+,:

⇒ Interprétation da e plan

⇒ Interprétati centré

1. Problèmes

Manipulateur des

2.1 Racina da nolvoômas

2.1. Racine de polynôme

2.3. Représentation graphique

E.-. moganos

. Gauss

3.1. U 3.2. Formules d'Euler et de de

$$\cos\theta = \mathbf{Re}(e^{i\theta}) = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad , \quad \sin\theta = \mathbf{Im}(e^{i\theta}) = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

Exercice

Calculer $\frac{1}{3} + \frac{1}{4}$, en déduire une expression de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Problèmes

Manipulateur des

1 Panina da nalvaâmas

2.2. Calcul algébrio

2.3. Représentation graphique

2.4 Inénalités

. Gauss

.1. U

3.2. Formules d'Euler et de de

Formule de (de) Moivre

Proposition - Formule de Moivre

$$\forall n \in \mathbb{Z}, (e^{i\theta})^n = e^{in\theta}$$
$$\forall n \in \mathbb{Z}, (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Leçon 12 - Nombres complexes

Corps ($\mathbb{C},+,:$

⇒ interpretai le plan

⇒ Interprétat centré

1. Problèmes

2. EULER:

Manipulateur des

- 2.1. Racine de polynômes
- 2.1. Hacine de polynomes
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

3.1. U

3.2. Formules d'Euler et de de

3.3. Argument, forme rigonométrique

Formule de (de) Moivre

Proposition - Formule de Moivre

$$\forall n \in \mathbb{Z}, (e^{i\theta})^n = e^{in\theta}$$
$$\forall n \in \mathbb{Z}, (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Démonstration

Leçon 12 - Nombres complexes

Corps (ℂ, +,

⇒ interprei e plan

⇒ Interpretat centré

Problèmes

2. EULER :

Manipulateur des nombres du diable

2.1. Racine de polynômes

2.1. Racine de polynômes

2.3. Représentation graphique

2.4. Inégalités

3. Gauss

3.2. Formules d'Euler et de de

Lorsqu'on rencontre un expression de la forme $e^i a \pm e^i b$ (a, b réels), il faut toujours penser à factoriser par la moitié :

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
 , $b = \frac{a+b}{2} - \frac{a-b}{2}$

Cela donne:

$$e^{ia} \pm e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} \pm e^{-i\frac{a-b}{2}} \right)$$

Et on applique les formules d'Euler

nombres du diable

3.2 Formulas d'Eular et de de

3.2 Formulas d'Eular et de de

Trucs et astuces pour le calcul. Factorisation de l'angle moitié

Lorsqu'on rencontre un expression de la forme $e^i a \pm e^i b$ (a, b réels), il faut toujours penser à factoriser par la moitié :

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
 , $b = \frac{a+b}{2} - \frac{a-b}{2}$

Cela donne:

$$e^{ia} \pm e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} \pm e^{-i\frac{a-b}{2}} \right)$$

Et on applique les formules d'Euler

Exercice

Factoriser $1 + e^{i\theta}$ et $1 - e^{i\theta}$. Retrouver les formules donnant $1 + \cos\theta$

Lorsqu'on rencontre un expression de la forme $e^i a \pm e^i b$ (a, b)réels), il faut toujours penser à factoriser par la moitié :

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
 , $b = \frac{a+b}{2} - \frac{a-b}{2}$

Cela donne:

$$e^{ia} \pm e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} \pm e^{-i\frac{a-b}{2}} \right)$$

Et on applique les formules d'Euler

Exercice

Factoriser $1 + e^{i\theta}$ et $1 - e^{i\theta}$. Retrouver les formules donnant $1 \pm \cos \theta$

Exercice

Nouveau calcul de $\sum_{k=0}^{n} \cos kt$ et $\sum_{k=0}^{n} \sin kt$

3.2 Formulas d'Eular et de de

Il s'agit d'exprimer $\cos^n\theta$ ou $\sin^n\theta$ sous forme d'une somme de $\cos k\theta$ ou $\sin k\theta$

(il ne doit plus y avoir de puissances ni de produits de cosinus ou sinus).

- Ecrire $\cos^n \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^n$.
- Développer avec la formule du binôme.
- Regrouper les termes conjugués pour faire apparaître des cosinus ou des sinus.

Si il n'y a pas de faute de calculs, vous devez obtenir un nombre réel : **donc simplification des** i...

1. Problèmes

EULER:

Manipulateur des

nombres du diable

Racine de polynôme

2. Calcul algébrique

.3. Représentation graphic

2.4. Inégalités

Gauss

. GAUSS 3.1. U

3.2. Formules d'Euler et de de Moivre

Il s'agit d'exprimer $\cos^n\theta$ ou $\sin^n\theta$ sous forme d'une somme de $\cos k\theta$ ou $\sin k\theta$

(il ne doit plus y avoir de puissances ni de produits de cosinus ou sinus).

- $\qquad \qquad \textbf{Ecrire } \cos^n \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^n.$
- Développer avec la formule du binôme.
- Regrouper les termes conjugués pour faire apparaître des cosinus ou des sinus.

Si il n'y a pas de faute de calculs, vous devez obtenir un nombre réel : **donc simplification des** i...

Exercice

Linéariser $\cos^3 \theta$, $\sin^4 \theta$.

1. Problèmes

EULER:

Manipulateur des

nombres du diable

Racine de polynôme

2. Calcul algébrique

Représentation graphiq

2.4. Inegalites

. Gauss

3.2. Formules d'Euler et de de Moivre

.3. Argument, forme igonométrique

Savoir-faire. Expressions de $\cos(nt)$ et $\sin(nt)$ en fonction de $\cos t$ et $\sin t$

- Ecrire $\cos(nt) = \mathbf{Re}(e^{int}) = \mathbf{Re}[(e^{it})^n]$ ou $\sin(nt) = \mathbf{Im}[(e^{it})^n].$
- Utiliser la formule du binôme pour calculer $(e^{it})^n = (\cos t + i\sin t)^n$.
- Récupérer la partie réelle (ou imaginaire) en séparant les indices pairs des indices impairs.

Lecon 12 - Nombres

1. Problèmes

Manipulateur des nombres du diable

3.2 Formulas d'Eular et de de

2.2. Calcul algébrique

.3. Représentation graphic

2.4. Inégalités

3. Gaus

3.2. Formules d'Euler et de de

.3. Argument, forme

Savoir-faire. Expressions de $\cos(nt)$ et $\sin(nt)$ en fonction de $\cos t$ et $\sin t$

- Ecrire $\cos(nt) = \mathbf{Re}(e^{int}) = \mathbf{Re}[(e^{it})^n]$ ou $\sin(nt) = \mathbf{Im}[(e^{it})^n].$
- Utiliser la formule du binôme pour calculer $(e^{it})^n = (\cos t + i \sin t)^n$.
- Récupérer la partie réelle (ou imaginaire) en séparant les indices pairs des indices impairs.

Exercice

Ecrire $\cos 3t$ en fonction des puissances de $\cos t$, $\sin 3t$ comme le produit de $\sin t$ et d'une expression contenant des puissances de $\cos t$. Faire de même avec $\cos 5t$ et $\sin 5t$.

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication
- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

Leçon 12 - Nombres complexes

Corps (C, +, ×)
 Interprétation dans plan

⇒ Interprétat centré

1. Problèmes

EULER:

Manipulateur des nombres du diable

Racine de polynôm

2. Calcul algébrique

. nepresentation grap

Inégalités

. Gauss

. UAUSS

3.2. Formules d'Euler et de de

3.3. Argument, forme trigonométrique

Soit $z\in\mathbb{C},\,z\neq0,$ on a $\dfrac{z}{|z|}\in\mathbb{U}$ donc il existe $\theta\in\mathbb{R}$ tel que

$$\frac{z}{|z|} = e^{i\theta}.$$

On dit que θ est un argument de z. On note $\theta = \arg z$.

L'écriture $z=re^{i\theta}$ où r=|z| est appelée forme trigonométrique de z.

1 Problèmes

FILLER .

Manipulateur des nombres du diable

- Racine de polynôr
- 2.2. Calcul algébrique
- 2.3. Représentation graphique
-
- 3. Gaus
 - .1. U .2. Formules d'Euler et de d
- 3.3. Argument, forme trigonométrique

Argument

Proposition - Arithmétique de la congruence

Si
$$(z,z') \in (\mathbb{C}^*)^2$$
, on a

$$\arg \overline{z} \equiv -\arg z[2\pi]$$

$$\arg \frac{1}{z} \equiv -\arg z[2\pi]$$

$$\arg(zz') \equiv (\arg z + \arg z')[2\pi]$$

$$\arg\left(\frac{z}{z'}\right) \equiv (\arg z - \arg z')[2\pi]$$

Lecon 12 - Nombres complexes

3.3. Argument, forme trigonométrique

Proposition - Arithmétique de la congruence

Si
$$(z,z') \in (\mathbb{C}^*)^2$$
, on a

$$\arg \overline{z} \equiv -\arg z[2\pi]$$

$$\arg \frac{1}{z} \equiv -\arg z[2\pi]$$

$$\arg(zz') \equiv (\arg z + \arg z')[2\pi]$$

$$\arg\left(\frac{z}{z'}\right) \equiv (\arg z - \arg z')[2\pi]$$

Attention Pas d'unicité.

3.3. Argument, forme trigonométrique

Proposition - Arithmétique de la congruence

Si
$$(z,z') \in (\mathbb{C}^*)^2$$
, on a

$$\arg \overline{z} \equiv -\arg z[2\pi]$$

$$\arg \frac{1}{z} \equiv -\arg z[2\pi]$$

$$\arg(zz') \equiv (\arg z + \arg z')[2\pi]$$

$$\arg\left(\frac{z}{z'}\right) \equiv (\arg z - \arg z')[2\pi]$$

Attention Pas d'unicité.

Remarque Géométriquement

Interprétation dar plan

plan

centré

1. Problèmes

. Euler :

Manipulateur des nombres du diable

I. Racine de polynôm

2. Calcul algébrique

2.3. Représentation graphique

2.4. Inégalités

3. Gauss

U
 Formules d'Euler et de

loivre

3.3. Argument, forme trigonométrique

Arctan

Proposition - Relation arg et arctan

Soit $x \in \mathbb{R}$, alors $arg(1+ix) \equiv arctan x[2\pi]$

Leçon 12 - Nombres complexes

Corps ($\mathbb{C},+,>$

⇒ Interprétation le plan

⇒ interpretat centré

1. Problèmes

2. EULER :

Manipulateur des

2.1 Racine de polynômes

2.1. Racine de polynômes

2.2. Calcul algebrique

4. Inégalités

GAUSS

GAUSS

.2. Formules d'Euler et de de loivre

3.3. Argument, forme trigonométrique

Arctan

Proposition - Relation arg et arctan

Soit $x \in \mathbb{R}$, alors $arg(1+ix) \equiv arctan x[2\pi]$

Démonstration

Leçon 12 - Nombres complexes

Corps ($\mathbb{C}, +,$

→ interpretati e plan

⇒ interpretat centré

1. Problèmes

EULER:
 Manipulateur des

nombres da diable

2.1. Racine de polynômes

2.1. Macine de polynomes

2.2. Carcui argeorique

.s. nepresentation grapi 4. Inénalités

. Gauss

i.1. U i.2. Formules d'Euler et de d

3.3. Argument, forme trigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication

Leçon 12 - Nombres complexes

· Corps (ℂ,+,

⇒ interpre le plan

⇒ Interpretati centré

1. Problèmes

....

Manipulateur des

- 2.1 Bacine de polynôme
-
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

. GAUS

- 3.2. Formules d'Euler et de de
- .3. Argument, forme

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
 - ▶ Définition algébrique : $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$ et $i^2 = -1$

Leçon 12 - Nombres complexes

⇒ Corps (ℂ,+,×)⇒ Interprétation dans e plan

⇒ Interprétation centré

. Problèmes

2 EIIIED :

Manipulateur des nombres du diable

- 2.1. Racine de polynôme
-
- 2.3. Représentation graphique

. Gauss

- i.2. Formules d'Euler et de d
- 3.3. Argument, forme

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
 - ▶ Définition algébrique : $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$ et $i^2 = -1$
 - L'addition est naturelle. La multiplication est commutative, distributive.

Leçon 12 - Nombres complexes

⇒ Corps (ℂ, +, ×) ⇒ Interprétation da e plan

⇒ Interpretatio centré

Problèmes

_

Manipulateur des nombres du diable

- .1. Racine de polynôme
- a a
- 2.3. Représentation graphique

. Gauss

- .2. Formules d'Euler et de d
- 3.3. Argument, forme

Objectifs

\Rightarrow Calculs simples dans le corps $\mathbb C$

- ▶ Définition algébrique : $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$ et $i^2 = -1$
- L'addition est naturelle. La multiplication est commutative, distributive.
- Intéressant : le module de $z=\sqrt{a^2+b^2}$. z inversible ssi $|z|\neq 0$. Et $z^{-1}=\frac{1}{z}=\frac{\overline{z}}{|z|^2}$, d'où la conjugaison

Problèmes

Euro.

Manipulateur des nombres du diable

- Racine de polynôme
- 2. Calcul algébrique
- Représentation graphique
- 2.4. Inégalités

GAUSS

- 2. Formules d'Euler et de c
- 3.3. Argument, forme trigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
 - ▶ Définition algébrique : $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$ et $i^2 = -1$
 - L'addition est naturelle. La multiplication est commutative, distributive.
 - Intéressant : le module de $z=\sqrt{a^2+b^2}$. z inversible ssi $|z|\neq 0$. Et $z^{-1}=\frac{1}{z}=\frac{\overline{z}}{|z|^2}$, d'où la conjugaison
 - Inégalité triangulaire et série d'inégalités.

1. Problèmes

Manipulateur des nombres du diable

1. Racine de polynôme

2. Calcul algébrique

3. Représentation graphique

.4. Inegalites

. Gauss

I. U 2. Formules d'Euler et de d

3.3. Argument, forme

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication

Leçon 12 - Nombres complexes

· Corps (ℂ,+,

⇒ interpre le plan

⇒ Interpretati centré

1. Problèmes

....

Manipulateur des

- 2.1 Bacine de polynôme
-
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

. GAUS

- 3.2. Formules d'Euler et de de
- .3. Argument, forme

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
 - Somme : translation de vecteur

Leçon 12 - Nombres complexes

⇒ Corps (€, +, ×)
⇒ Interprétation dan

⇒ Interprétation centré

1 Problèmes

Manipulateur des nombres du diable

- .1. Racine de polynôme
- 2.1. Naume de polynor
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

.

- .2. Formules d'Euler et de d
- 3.3. Argument, forme

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
 - Somme : translation de vecteur
 - Le module : norme du vecteur.

Leçon 12 - Nombres complexes

⇒ Corps (c, +, ×)
⇒ Interprétation da

⇒ Interprétation

1. Problèmes

9 EULED

Manipulateur des nombres du diable

- 1. Racine de polynôme
- 2.1. Naume de polynor
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

- 3.1. U 3.2. Formules d'Euler et de
- .2. Formules d'Euler et de de loivre
- 3.3. Argument, forme trigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
 - Somme : translation de vecteur
 - Le module : norme du vecteur.
 - Comment interpréter le produit ?

Leçon 12 - Nombres complexes

 \Rightarrow Corps ($\mathbb{C}, +, \times$) \Rightarrow Interprétation dan

⇒ Interprétation centré

1. Problèmes

- FIIIER ·
- Manipulateur des nombres du diable
- Racine de polynôme
- o o a a a a a a a
- 2.3. Représentation graphiqu
- 2.4. Inégalités
- . Gauss
- . GAUSS
- 3.2. Formules d'Euler et de de
- 3.3. Argument, forme trigonométrique

Objectifs

- ⇒ Calculs simples dans le corps C
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication

Leçon 12 - Nombres complexes

· Corps (C, +

⇒ interpre le plan

⇒ Interpretat centré

1. Problèmes

Manipulateur des nombres du diable

- 2.1. Racine de polynôm
- e e e e e e e e
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

. GAUS

- 3.2. Formules d'Euler et de de
- 3.3. Argument, forme

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - ▶ Définir le groupe \mathbb{U} , de nombres complexes de module 1.

Leçon 12 - Nombres complexes

⇒ Corps (ℂ,+,×) ⇒ Interprétation dat e plan

⇒ Interpretatio centré

Problèmes

Manipulateur des nombres du diable

- 1. Racine de polynôme
- O Calant alaskadana
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

.2. Formules d'Euler et de d

3.3. Argument, forme rigonométrique

Objectifs

- ⇒ Calculs simples dans le corps C
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - ▶ Définir le groupe \mathbb{U} , de nombres complexes de module 1.
 - Notation complexe trigonométrique : $z = \rho e^{i\theta}$.

Leçon 12 - Nombres complexes

⇒ Corps (C, +, ×)⇒ Interprétation da⇒ plan

⇒ Interprétatio

1. Problèmes

I. Problemes

Manipulateur des

2.1. Racine de polynôm

2 Calcul algébrique

Représentation graphique

2.4. Inégalités

. Gauss

1. U

3. Argument, forme

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - ▶ Définir le groupe U, de nombres complexes de module 1.
 - Notation complexe trigonométrique : $z = \rho e^{i\theta}$.
 - Généralisation à la notion d'arguments.

Leçon 12 - Nombres complexes

⇒ Corps (ℂ,+,×) ⇒ Interprétation da e plan

⇒ Interprétation

1. Problèmes

2 FILLES

Manipulateur des nombres du diable

Racine de polynôme

Calant alaskaiana

3. Représentation graphique

2.4. Inégalités

. Gauss

.1. U

3.3. Argument, forme

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - ▶ Définir le groupe U, de nombres complexes de module 1.
 - Notation complexe trigonométrique : $z = \rho e^{i\theta}$.
 - Généralisation à la notion d'arguments.
 - Représentation graphique : multiplication comme homothétie et rotation

Leçon 12 - Nombres complexes

⇒ Corps (C, +, ×)
⇒ Interprétation c

⇒ Interprétatio

1. Problèmes

i. i iobieilles

Manipulateur des

Racine de polynôme

2. Calcul algébrique

. Nepresentation grapi

2.4. Inégalités

GAUSS

II.

2. Formules d'Euler et de de

8.3. Argument, forme rigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps \mathbb{C}
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - Définir le groupe U, de nombres complexes de module 1.
 - Notation complexe trigonométrique : $z = \rho e^{i\theta}$.
 - Généralisation à la notion d'arguments.
 - Représentation graphique : multiplication comme homothétie et rotation
 - Nombreux savoir-faire qui donnent les formules trigonométriques.

Lecon 12 - Nombres complexes

1. Problèmes

nombres du diable

Objectifs

- ⇒ Calculs simples dans le corps C
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication

Pour la prochaine fois

- Lecture 4. Racines & 5. Plan complexe
- Exercice n° 80 & 84
- TD de jeudi :

8h-10h: 74, 75, 79, 85b, 91

10h-12h: 90, 76, 82, 85a, 93

Leçon 12 - Nombres complexes

⇒ Corps (€,+,×) ⇒ Interprétation dar e plan

centré

1. Problèmes

2. EULER : Manipulateur des nombres du diable

1. Racine de polynôm

2. Calcul algébrique

o. Hepresentation gn

2.4. Inégalités

.

3. Gauss

.1. U

3.2. Formules d'Euler et de Moivre

3.3. Argument, forr trigonométrique