

Leçon 13 - Nombres complexes

Leçon 13 - Nombres complexes

-- Flacines (complexes)

1. Problèmes

2. EULER:
Manipulateur des nombres du diable

3. GAUSS

4. Racines

4.1. √2

26 septembre 2024

EULER:
 Manipulateur des
 nombres du diable

3. Gauss

4. Racines

4.1. √2

4.2. 1 ---

- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
- 3. Le visionnaire : GAUSS et la multiplication complexe
- 4. Racines d'un nombre complexe
 - 4.1. Recherche de racines carrées
 - 4.2. Racines n-ièmes de l'unité
 - 4.3. Racines n-ièmes d'un nombre complexe

- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
- 3. Le visionnaire : GAUSS et la multiplication complexe
- 4. Racines d'un nombre complexe
 - 4.1. Recherche de racines carrées
 - 4.2. Racines n-ièmes de l'unité
 - 4.3. Racines *n*-ièmes d'un nombre complexe

çon 13 - Nombres complexes

⇒ Racines (complexes)

- 1. Problèmes
- EULER:
 Manipulateur des
 nombres du diable
 - Gauss
- 4. Racines

4.1. √z

4.2. 1 ...

On dit que $Z \in \mathbb{C}$ est une racine carrée de $z \in \mathbb{C}$ si $Z^2 = z$.

- Problème
- EULER:
 Manipulateur des
 nombres du diable
- 3. Gauss
 - I. Racines
- 4.1. √2
 - .2. 1 ····

EULER:
 Manipulateur des
 nombres du diable

3. Gauss

4. Racines

4.1. √z

4.2. 1 ...

On dit que $Z \in \mathbb{C}$ est une racine carrée de $z \in \mathbb{C}$ si $Z^2 = z$.

On dispose de deux méthodes pour chercher les racines carrées de z.

On considère un complexe z écrit sous forme trigonométrique $z=|z|e^{i\alpha}$, et on cherche Z sous forme trigonométrique $Z=\rho e^{i\theta}$ où $\rho>0$.

On a alors $Z^2 = \rho^2 e^{2i\theta}$, on fait ensuite une sorte d'identification entre les modules et les arguments (mais attention...).

(complexes)

- 1. Problèmes
- EULER:
 Manipulateur des
 nombres du diable
 - 3. Gauss
- 4.1. √z
 4.2. 1^{1/n}

On considère un complexe z écrit sous forme trigonométrique $z=|z|e^{i\alpha}$, et on cherche Z sous forme trigonométrique $Z=\rho e^{i\theta}$ où $\rho>0$.

On a alors $Z^2 = \rho^2 e^{2i\theta}$, on fait ensuite une sorte d'identification entre les modules et les arguments (mais attention...).

Exercice

Trouver les racines carrées de $z = \frac{1-i}{\sqrt{3}-i}$.

On rappelle que
$$\cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$$
 et $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$

Problèmes

EULER:
 Manipulateur des
 nombres du diable

B. GAUSS

4. Racines
 4.1. √2

Savoir-faire. Exploitation de la forme trigonométrique On considère un complexe z écrit sous forme trigonométrique $z = |z|e^{i\alpha}$, et on cherche Z sous forme trigonométrique $Z = \rho e^{i\theta}$

entre les modules et les arguments (mais attention...).

4. Racines

4.1. √2

Exercice

où $\rho > 0$.

Trouver les racines carrées de $z = \frac{1-i}{\sqrt{3}-i}$.

On rappelle que $\cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$ et $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$

La méthode-algorithmique précédente nous permet d'affirmer :

On a alors $Z^2 = \rho^2 e^{2i\theta}$, on fait ensuite une sorte d'identification

Proposition - Deux racines complexes

Tout complexe non nul possède exactement deux racines carrées complexes (opposées).

4. Bacines

4.1. √z

4.3. z^{1/n}

Savoir-faire. Exploitation de la forme algébrique

On considère un complexe $z = x + iy \neq 0$, et on cherche Z sous forme algébrique Z = X + iY.

Le principe est d'écrire l'égalité des modules, des parties réelles et imaginaires de z et Z^2 pour se ramener à une résolution simple de système donnant X^2,Y^2 et le signe de XY.

$$Z^{2} = z \Leftrightarrow \begin{cases} X^{2} + Y^{2} = \sqrt{x^{2} + y^{2}} \\ X^{2} - Y^{2} = x \\ 2XY = y \end{cases}$$

On résout le système formée par les deux premières équations, la troisième donne le signe de XY.

Savoir-faire. Exploitation de la forme algébrique

On considère un complexe $z = x + iy \neq 0$, et on cherche Z sous forme algébrique Z = X + iY.

Le principe est d'écrire l'égalité des modules, des parties réelles et imaginaires de z et Z^2 pour se ramener à une résolution simple de système donnant X^2,Y^2 et le signe de XY.

$$Z^{2} = z \Leftrightarrow \begin{cases} X^{2} + Y^{2} = \sqrt{x^{2} + y^{2}} \\ X^{2} - Y^{2} = x \\ 2XY = y \end{cases}$$

On résout le système formée par les deux premières équations, la troisième donne le signe de XY.

Exercice

Déterminer les racines carrées de 2-3i.

2. EULER: Manipulateur des

4. Racines

Le théorème suivant a déjà été vu. Mais ici, on insiste sur le fait que les coefficients peuvent être des nombres complexes.

Proposition - Nombre de racines et degré

L'équation $az^2 + bz + c = 0$, avec $(a, b, c) \in \mathbb{C}^3$, $a \neq 0$, admet deux solutions complexes $z_1 = \frac{-b-\delta}{2a}$ et $z_2 = \frac{-b+\delta}{2a}$ où δ est une racine carrée complexe de $b^2 - 4ac$.

4. Racines

carrée complexe de $b^2 - 4ac$.

Proposition - Nombre de racines et degré

Le théorème suivant a déjà été vu. Mais ici, on insiste sur le fait

L'équation $az^2 + bz + c = 0$, avec $(a, b, c) \in \mathbb{C}^3$, $a \neq 0$, admet deux solutions complexes $z_1 = \frac{-b-\delta}{2a}$ et $z_2 = \frac{-b+\delta}{2a}$ où δ est une racine

que les coefficients peuvent être des nombres complexes.

Remarque Bien connu...

4 D > 4 B > 4 E > 4 E > _ E

3. Gauss

4. Racines

4.1. √z 4.2 1^{1/n}

4.2. 1^{1/n}

Proposition - Théorème de Viète

Soient $(S,P) \in \mathbb{C}^2$. Les solutions du système $\left\{ \begin{array}{l} z_1 + z_2 = S \\ z_1 \times z_2 = P \end{array} \right.$ sont exactement (à permutation près) les solutions de $z^2 - Sz + P = 0$

3. GAUSS

Racines
 √z

4.1. V2 4.2. 1^{1/n}

4.2. 1^{1/n}
4.3. z^{1/n}

Proposition - Théorème de Viète

Soient $(S,P)\in\mathbb{C}^2$. Les solutions du système $\left\{ egin{array}{l} z_1+z_2=S\\ z_1 imes z_2=P \end{array}
ight.$ sont exactement (à permutation près) les solutions de $z^2-Sz+P=0$

Exercice

Résoudre dans \mathbb{C} le système d'équation $\begin{cases} z_1 + z_2 = 3 \\ z_1 \times z_2 = 1 - 3i \end{cases}$.

- Problèmes
- 2 FILLER Manipulateur des
- 4. Racines

4. Racines d'un nombre complexe

Problèmes

- 4.1. Recherche de racines carrées
- 4.2. Racines n-ièmes de l'unité
- 4.3. Racines *n*-ièmes d'un nombre complexe

3. Le visionnaire : GAUSS et la multiplication complexe

2. EULER: Manipulateur des nombres du diable

Soit $n \in \mathbb{N}^*$. Les racines n-ièmes de l'unité, c'est à dire les solutions de l'équation $z^n=1$, sont les n nombres $e^{\frac{2ik\pi}{n}}$ avec $k \in \{0,1,\ldots,n-1\}$.

On note
$$\mathbb{U}_n=\left\{e^{\frac{2ik\pi}{n}};k\in\{0,1,\ldots,n-1\}\right\}$$

1. Problèmes

EULER:
 Manipulateur des
 nombres du diable

Gauss

4. Racines

4.1. √z

Soit $n \in \mathbb{N}^*$. Les racines n-ièmes de l'unité, c'est à dire les solutions de l'équation $z^n = 1$, sont les n nombres $e^{\frac{2ik\pi}{n}}$ avec $k \in \{0, 1, \dots, n-1\}.$

On note $\mathbb{U}_n=\left\{e^{\frac{2ik\pi}{n}};k\in\{0,1,\ldots,n-1\}\right\}$

On obtient donc pour

$$\begin{array}{l} n=2:1 \text{ et } -1\,;\\ n=3:1,\, j=e^{\frac{2i\pi}{3}}=\exp{\frac{2i\pi}{3}}\text{ et } j^2=\overline{j}=e^{\frac{4i\pi}{3}}=\exp{\frac{4i\pi}{3}}\,;\\ n=4:1, i, -1 \text{ et } -i. \end{array}$$

Il faut savoir les placer sur le cercle trigonométrique.

Racines primitives n^{e} de l'unité.

Soit $n \in \mathbb{N}^*$. Les racines n-ièmes de l'unité, c'est à dire les solutions de l'équation $z^n = 1$, sont les n nombres $e^{\frac{2ik\pi}{n}}$ avec $k \in \{0, 1, \dots, n-1\}.$

On note
$$\mathbb{U}_n=\left\{e^{\frac{2ik\pi}{n}};k\in\{0,1,\ldots,n-1\}\right\}$$

On obtient donc pour

$$\begin{array}{l} n=2:1 \text{ et } -1\,;\\ n=3:1,\, j=e^{\frac{2i\pi}{3}}=\exp{\frac{2i\pi}{3}}\text{ et } j^2=\overline{j}=e^{\frac{4i\pi}{3}}=\exp{\frac{4i\pi}{3}}\,;\\ n=4:1, i, -1 \text{ et } -i. \end{array}$$

Il faut savoir les placer sur le cercle trigonométrique.

Racines primitives n^{e} de l'unité.

Démonstration

2 FILLER: Manipulateur des

2. EULER :
Manipulateur des
nombres du diable

3. Gauss

4. Racines

4.1. √z 4.2 1^{1/r}

4.2. 1 ...

Proposition - Somme des racines n-ième

Soit $n \in \mathbb{N}$, $n \ge 2$. La somme des racines n-ièmes de l'unité est nulle.

En particulier $1 + j + j^2 = 0$.

Proposition - Somme des racines *n*-ième

Soit $n \in \mathbb{N}$, $n \ge 2$. La somme des racines n-ièmes de l'unité est

4. Racines

Démonstration

En particulier $1 + j + j^2 = 0$.

nulle.

- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
- 3. Le visionnaire : GAUSS et la multiplication complexe
- 4. Racines d'un nombre complexe
 - 4.1. Recherche de racines carrées
 - 4.2. Racines *n*-ièmes de l'unité
 - 4.3. Racines n-ièmes d'un nombre complexe

çon 13 - Nombres complexes

⇒ Racines (complexes)

- 1. Problèmes
- EULER:
 Manipulateur des
 nombres du diable
 - 3. Gauss
- 4. Racines

4.1. √2 4.2 1^{1/n}

4.3 z^{1/n}

2 FILLER: nombres du diable

4. Racines

Théorème - Racines n-ièmes de z_0

Soient $z_0 \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$. Alors z_0 a exactement n racines n-ièmes (solutions de $z^n = z_0$).

Si $z_0 = |z_0|e^{i\alpha}$, alors ce sont les

$$z_k = |z_0|^{1/n} e^{i(\frac{\alpha}{n} + \frac{2k\pi}{n})}$$
 où $k \in \{0, 1, \dots, n-1\}$.

4. Racines

Théorème - Racines n-ièmes de z_0

Soient $z_0 \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$. Alors z_0 a exactement n racines *n*-ièmes (solutions de $z^n = z_0$).

Si $z_0 = |z_0|e^{i\alpha}$, alors ce sont les

$$z_k = |z_0|^{1/n} e^{i(\frac{\alpha}{n} + \frac{2k\pi}{n})}$$
 où $k \in \{0, 1, \dots, n-1\}$.

Démonstration

Il suffit de les écrire

Exercices

Exercice

Déterminer les racines n-ièmes de $\frac{1+\sqrt{3}i}{1-i}$.

On rappelle que
$$\cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$$
 et $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$

Leçon 13 - Nombres complexes

⇒ Racines complexes)

- Problème
- EULER:
 Manipulateur des
 nombres du diable
- J. CA033
- Racines
- 4.1. √z
 - 4.3 z^{1/n}

Exercices

Exercice

Déterminer les racines n-ièmes de $\frac{1+\sqrt{3}i}{1-i}$.

On rappelle que $\cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$ et $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$

Exercice

Résoudre dans \mathbb{C} l'équation $(z-1)^6 + (z+1)^6 = 0$.

eçon 13 - Nombres complexes

⇒ Racines complexes)

- Problèmes
- EULER:
 Manipulateur des
 nombres du diable
- 3. Gauss
 - Racines
- 4.1. √z
- 4.2. 1"

Conclusion

Leçon 13 - Nombres complexes

⇒ Racines complexes)

Problèmes

EULER:
 Manipulateur des
 nombres du diable

3. GAUSS

4. Racines

4.1. √z

3 z^{1/n}

Objectifs

⇒ Racines (complexes) d'un nombre

 Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique
 Applications à la recherche des racines des équations polynomiales de degré 2

1. Problèmes

EULER:
 Manipulateur des
 nombres du diable

. **G**A000

. Racin 4.1. √z 4.2. 1^{1/n}

- Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique Applications à la recherche des racines des équations polynomiales de degré 2
- Les *n* racines de 1 sont $e_k = e^{2ik\pi/n}$, ils vérifient $\sum e_k = 0...$ On coupe le gâteau en n parts égales.

1. Problèmes

2. EULER: nombres du diable

- Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique Applications à la recherche des racines des équations polynomiales de degré 2
- Les *n* racines de 1 sont $e_k = e^{2ik\pi/n}$, ils vérifient $\sum e_k = 0...$ On coupe le gâteau en n parts égales.
- Les n racines de Z sont $e_k = \sqrt[n]{|Z|}e^{2ik\pi/n + i\arg(Z)/n}$

1. Problèmes

2. EULER: Manipulateur des

- Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique Applications à la recherche des racines des équations polynomiales de degré 2
- Les *n* racines de 1 sont $e_k = e^{2ik\pi/n}$, ils vérifient $\sum e_k = 0...$ On coupe le gâteau en n parts égales.
- Les n racines de Z sont $e_k = \sqrt[n]{|Z|}e^{2ik\pi/n + i\arg(Z)/n}$
- Il est souvent préférable d'exploiter la forme trigonométrique. . .

Problèmes

Manipulateur des

Objectifs

- ⇒ Racines (complexes) d'un nombre
 - Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique Applications à la recherche des racines des équations polynomiales de degré 2
 - Les *n* racines de 1 sont $e_k = e^{2ik\pi/n}$, ils vérifient $\sum e_k = 0...$ On coupe le gâteau en n parts égales.
 - Les n racines de Z sont $e_k = \sqrt[n]{|Z|}e^{2ik\pi/n + i\arg(Z)/n}$
 - Il est souvent préférable d'exploiter la forme trigonométrique. . .
 - Il y a une importante structure de groupe cachée derrière!

Problèmes

Manipulateur des

EULER:
 Manipulateur des
 nombres du diable

3. Gauss

4. Racines

4.1. $\sqrt{2}$ 4.2. $1^{1/2}$

4.2. 12"

Objectifs

⇒ Racines (complexes) d'un nombre

Pour la prochaine fois

Lecture : 5. Le plan complexe

Exercice n °88 & 89