

Leçon 29 - Fonctions primitives et équations différentielles

Leçon 29 - Fonctions primitives et équations différentielles

Maîtrise de deux

Problème:

Intégrales et primitives

3.1. Théorème fondamental e

3.2. Quelques propriétés de

3.3. Technique 1 : Intégration

par parties

- ⇒De l'aire (intégrale) à la primitive
- ⇒Maîtrise de deux techniques

- Problèmes
- 2. Primitives
- 3. Intégrales et primitives
 - 3.1. Théorème fondamental et conséquences
 - 3.2. Quelques propriétés de l'intégrale
 - 3.3. Technique 1 : Intégration par parties
 - 3.4. Technique 2 : Changement de variables

Lecon 29 - Fonctions primitives et équations différentielles

3.1. Théorème fondamental et conséquences

⇒De l'aire (intégrale) à la primitive

⇒Maîtrise de deux techniques

- Problèmes
- 2. Primitives
- 3. Intégrales et primitives
 - 3.1. Théorème fondamental et conséquences

 - 3.4. Technique 2 : Changement de variables

Lecon 29 - Fonctions primitives et équations différentielles

3.1. Théorème fondamental et conséquences

4 D > 4 D > 4 D > 4 D > 9 Q C

Théorème - Théorème fondamental du calcul différentiel

Soit f continue sur I, intervalle de \mathbb{R} , à valeurs dans \mathbb{R} ou \mathbb{C} . Soit $a \in I$.

Alors la fonction

$$F: \quad I \longrightarrow K$$

$$x \mapsto \int_{a}^{x} f(t) dt$$

est de classe C^1 (c'est-à-dire dérivable de dérivée continue) sur I et $F^\prime=f$.

C'est de plus l'unique primitive de f nulle en $a \in I$.

Corollaire (1)

Corollaire - Existence de primitive

Toute fonction continue sur I admet une primitive sur I.

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

⇒Maîtrise de deux techniques

- 1 Problèmes
- 2. Primitive:
- Intégrales et primitives
- 3.1. Théorème fondamental et conséquences
- 3.2. Quelques propriétés de
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement

Corollaire (1)

Corollaire - Existence de primitive

Toute fonction continue sur I admet une primitive sur I.

Attention. Pas toutes les primitives avec cette notation

On n'obtient pas toutes les primitives ainsi.

Ainsi, pour $f(x) = \cos x$, la primitive $F(x) = \sin x + 2$ ne peut s'obtenir ainsi. En effet, on aurait alors $F(x) = \sin x - \sin \alpha$, or il n'existe pas de $\alpha \in \mathbb{R}$ tel que $\sin \alpha = -2$.

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

⇒Maîtrise de deux echniques

- Problèmes
- 2. Primitives
- 3. Integrales et orimitives
- 3.1. Théorème fondamental et conséquences
- 3.2. Quelques propriétés de
- întégrale
- 3.3. Technique 1 : Intégration
- par parties 3.4. Technique 2 : Changement de variables

Corollaire (1)

Corollaire - Existence de primitive

Toute fonction continue sur I admet une primitive sur I.

Attention. Pas toutes les primitives avec cette notation

On n'obtient pas toutes les primitives ainsi.

Ainsi, pour $f(x) = \cos x$, la primitive $F(x) = \sin x + 2$ ne peut s'obtenir ainsi. En effet, on aurait alors $F(x) = \sin x - \sin a$, or il n'existe pas de $a \in \mathbb{R}$ tel que $\sin a = -2$.

Remarque Démonstration?

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

⇒Maîtrise de deux echniques

- Problèmes
- Primitives
- l. Intégrales et primitives
- 3.1. Théorème fondamental et conséquences
- 3.2. Quelques propriétés de
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration
- par parties 3.4. Technique 2 : Changement de variables

⇒ De l'aire (intégrale) à la primitive

⇒Maîtrise de deux techniques

1. Problèmes

Primitives

3. Intégrales e

3.1. Théorème fondamental et conséquences

consequences 3.2. Quelques propriétés de

Théorème - Calcul fondamental

Soit f continue sur I intervalle de $\mathbb R$ contenant a et b. Soit F une primitive de f. Alors

$$\int_{a}^{b} f(t) dt = F(b) - F(a) = \left[F(t) \right]_{a}^{b}$$

^{3.4.} Technique 2 : Changement de variables

⇒Maîtrise de deux techniques

- 1. Problèmes
- Primitives
- primitives
 3.1. Théorème fondamental et
- conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- par parties 3.4. Technique 2 : Changemer

Démonstration

Théorème - Calcul fondamental

Soit f continue sur I intervalle de $\mathbb R$ contenant a et b. Soit F une primitive de f . Alors

$$\int_{a}^{b} f(t) dt = F(b) - F(a) = \left[F(t) \right]_{a}^{b}$$

On notera, par extension des notations précédentes :

 $\int_{-\infty}^{x} f(t) dt$, une primitive quelconque de f.

C'est plutôt l'ensemble de toutes les primitives de f, modulo la constante additive

 $[F(t)]^x = F(x)$

- ⇒ De l'aire (intégrale à la primitive
- ⇒Maîtrise de deux techniques
 - Problèmes
- 2. Primitives
- 3. Intégrales
- 3.1. Théorème fondamental et conséquences
- 3.2. Quelques propriétés de
- 3.3. Technique 1 : Intégration
- par parties 3.4. Technique 2 : Changement

3.1. Théorème fondamental et conséquences

Définition - Notation par extension

On notera, par extension des notations précédentes :

- $ightharpoonup \int_{-\infty}^{\infty} f(t) dt$, une primitive quelconque de f. C'est plutôt l'ensemble de toutes les primitives de f , modulo la constante additive
- $ightharpoonup [F(t)]^x = F(x)$

Corollaire. Avec f'

Soit f de classe C^1 sur I. Alors

$$\forall (a,x) \in I^2, f(x) - f(a) = \int_a^x f'(t) dt.$$

⇒De l'aire (intégrale) à la primitive

⇒Maîtrise de deux techniques

- Problèmes
- 2. Primitives
- 3. Intégrales et primitives

 - 3.2. Quelques propriétés de l'intégrale

 - 3.4. Technique 2 : Changement de variables

Lecon 29 - Fonctions primitives et équations différentielles

- 3.2. Quelques propriétés de

4□ → 4♠ → 4 ≡ → 4 ■ → 9 Q (~

Proposition - Linéarité, croissance, Chasles...

Pour des fonctions continues f et g continues sur un intervalle I à valeurs dans \mathbb{R} , on a, pour $a,b\in I$, les propriétés suivantes :

- ▶ **linéarité** : si λ et μ sont deux réels, $\int_a^b (\lambda f + \mu g)(t) dt = \lambda \int_a^b f(t) dt + \mu \int_a^b g(t) dt$
- relation de Chasles : pour $c \in]a, b[$,

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$$

- **positivité** : si $a \le b$ et $\forall x \in [a,b], f(x) \ge 0$ alors $\int_a^b f(t) dt \ge 0$
- **croissance** : si $a \le b$ et $\forall x \in [a,b], f(x) \ge g(x)$ alors $\int_a^b f(t) dt \ge \int_a^b g(t) dt$

Application

Truc & Astuce pour le calcul. Encadrer une intégrale Pour encadrer une intégrale, on encadre la fonction à intégrer (intégrant) Leçon 29 - Fonctions primitives et équations différentielles

 De l'aire (intégrale la primitive

⇒Maîtrise de deux techniques

- I. Problèmes
- . Primitives
- 3. Intégrales e primitives
- 3.1. Théorème fondamental e
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changem de variables

Truc & Astuce pour le calcul. Encadrer une intégrale

Pour encadrer une intégrale, on encadre la fonction à intégrer (intégrant)

Savoir-faire. Inégalité des accroissements finis (avec f de classe \mathscr{C}^1)

Si f est de classe \mathscr{C}^1 sur $[a,b] \subset I$. Notons $M = \sup_{[a,b]} f'$ et $m = \inf_{[a,b]} f'$, on a donc, pour tout $t \in [a,b]$:

$$f'(t) - m \ge 0$$
 et $M - f'(t) \ge 0$

On intègre sur [a,b], puis par linéarité (ou croissance) :

$$m(b-a) \le f(b) - f(a) \le M(b-a)$$

Truc & Astuce pour le calcul. Encadrer une intégrale

Pour encadrer une intégrale, on encadre la fonction à intégrer (intégrant)

Savoir-faire. Inégalité des accroissements finis (avec f de classe \mathscr{C}^1)

Si f est de classe \mathscr{C}^1 sur $[a,b] \subset I$. Notons $M = \sup_{[a,b]} f'$ et $m = \inf_{[a,b]} f'$, on a donc, pour tout $t \in [a,b]$:

$$f'(t) - m \ge 0$$
 et $M - f'(t) \ge 0$

On intègre sur [a,b], puis par linéarité (ou croissance) :

$$m(b-a) \le f(b) - f(a) \le M(b-a)$$

Remarque Combinaison linéaire

3.2 Quelques propriétés de

Proposition - Fonctions à valeurs complexes

Soient f,g deux fonctions continues sur [a,b] à valeurs dans \mathbb{C} et λ , μ deux complexes. Alors on a les propriétés suivantes :

linéarité :

$$\int_{a}^{b} (\lambda f + \mu g)(t) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

relation de Chasles : pour $c \in]a, b[$,

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$$

3.2 Quelques propriétés de

Proposition - Fonctions à valeurs complexes

Soient f,g deux fonctions continues sur [a,b] à valeurs dans \mathbb{C} et λ , μ deux complexes. Alors on a les propriétés suivantes :

linéarité :

$$\int_{a}^{b} (\lambda f + \mu g)(t) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

relation de Chasles : pour $c \in]a, b[$,

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

Attention Sur \mathbb{C} , pas de relation d'ordre...

⇒De l'aire (intégrale) à la primitive

⇒Maîtrise de deux techniques

- 1. Problèmes
- 2. Primitives
- 3. Intégrales et primitives
 - 3.1. Théorème fondamental et conséquences
 - 3.2. Quelques propriétés de l'intégrale
 - 3.3. Technique 1: Intégration par parties
 - 3.4. Technique 2 : Changement de variables

Leçon 29 - Fonctions primitives et équations différentielles

→ De l'aire (intégrale) à la primitive

⇒Maîtrise de deux techniques

- . Problèmes
- Primitives
- 3. Intégrales primitives
- 3.1. Théorème fondamental e
- consequences

 3.2. Quelques propriétés de
- Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement

⇒Maîtrise de deux techniques

- 1. Problèmes
- Primitives
- primitives
- 3.1. Théorème fondamental et conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement de variables

Théorème - Intégration par parties

Si u et v sont deux fonctions de classe C^1 sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} ou \mathbb{C} , alors

$$\forall (a,b) \in I^2, \quad \int_a^b u'(t)v(t)\,\mathrm{d}t = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)\,\mathrm{d}t$$

- 3.3. Technique 1 : Intégration

Démonstration

Théorème - Intégration par parties

 \mathbb{R} , à valeurs dans \mathbb{R} ou \mathbb{C} , alors

Si u et v sont deux fonctions de classe C^1 sur un intervalle I de

 $\forall (a,b) \in I^2, \qquad \int_a^b u'(t)v(t) \, \mathrm{d}t = \left[u(t)v(t) \right]_a^b - \int_a^b u(t)v'(t) \, \mathrm{d}t$

Obtenir une primitive

Savoir-faire. Obtenir une primitive avec une IPP cachée

Pour calculer une primitive par IPP de f, notée

$$\int_{1}^{x} f(t) dt$$

(attention, il s'agit d'**une fonction** et non d'un scalaire), on peut écrire

$$\int_{1}^{x} u'(t)v(t) dx = u(x)v(x) - \int_{1}^{x} u(t)v'(t) dt$$

Leçon 29 - Fonctions primitives et équations différentielles

 De l'aire (intégrale la primitive

⇒Maîtrise de deux echniques

- i. Flublellies
- Primitives
- primitives
- Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement de variables

Savoir-faire. Obtenir une primitive avec une IPP cachée

Pour calculer une primitive par IPP de f, notée

$$\int_{\cdot}^{x} f(t) \, \mathrm{d}t$$

(attention, il s'agit d'**une fonction** et non d'un scalaire), on peut écrire

$$\int_{\cdot}^{x} u'(t)v(t) dx = u(x)v(x) - \int_{\cdot}^{x} u(t)v'(t) dt$$

Exercice

Avec une intégration par parties trouver une primitive de $x\mapsto \frac{x^2}{(x^2+1)^2}$ puis de $x\mapsto \frac{1}{(x^2+1)^2}$.

De l'aire (intégrale la primitive

⇒Maîtrise de deux echniques

- Problèmes
- 2. Primitives
- primitives
- Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement de variables

Primitives de $P(x)e^{\alpha x}$

Savoir-faire. $f(x) = P(x)e^{\alpha x}$

Pour $f:t\mapsto P(t)e^{\alpha t}$ où P est une fonction polynomiale, on peut faire $\deg(P)$ intégrations par parties (IPP) en dérivant $v:t\mapsto P(t)$ et en intégrant $u':t\mapsto e^{\alpha t}$.

On peut appliquer la même méthode pour $f: t \mapsto P(t)\sin(\alpha t)$ ou $f: t \mapsto P(t)\cos(\alpha t)$.

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

⇒Maîtrise de deux techniques

- 1. Problèmes
- 2. Primitives
- primitives
- 3.1. Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- par parties 3.4. Technique 2 : Changement de variables

Primitives de $P(x)e^{\alpha x}$

Savoir-faire. $f(x) = P(x)e^{\alpha x}$

Pour $f:t\mapsto P(t)e^{\alpha t}$ où P est une fonction polynomiale, on peut faire $\deg(P)$ intégrations par parties (IPP) en dérivant $v:t\mapsto P(t)$ et en intégrant $u':t\mapsto e^{\alpha t}$.

On peut appliquer la même méthode pour $f: t \mapsto P(t)\sin(\alpha t)$ ou $f: t \mapsto P(t)\cos(\alpha t)$.

Remarque Autre méthode

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

⇒Maîtrise de deux echniques

- 1 Problèmes
- 2. Primitives
- 3. Integrales et primitives
- 3.1. Théorème fondamental e conséquences
- 3.2. Quelques propriétés de
- 3.3. Technique 1 : Intégration par parties
- 8.4. Technique 2 : Changement

Pour $f:t\mapsto P(t)e^{\alpha t}$ où P est une fonction polynomiale, on peut faire $\deg(P)$ intégrations par parties (IPP) en dérivant $v:t\mapsto P(t)$ et en intégrant $u':t\mapsto e^{\alpha t}$.

On peut appliquer la même méthode pour $f: t \mapsto P(t)\sin(\alpha t)$ ou $f: t \mapsto P(t)\cos(\alpha t)$.

Remarque Autre méthode

Exercice

Calculer

$$I = \int_0^{\pi/2} t \sin t \, dt, \quad J = \int_0^1 e^{2x} (6x^2 + 2x - 4) \, dx$$

Leçon 29 - Fonctions primitives et équations différentielles

→ De l'aire (intégrale à la primitive

⇒Maîtrise de deu techniques

- 1. Problèmes
- 2. Primitives
- 3. Intégrales et primitives
- 3.1. Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Change de variables

Pour $f:t\mapsto P(t)e^{\alpha t}$ où P est une fonction polynomiale, on peut faire $\deg(P)$ intégrations par parties (IPP) en dérivant $v:t\mapsto P(t)$ et en intégrant $u':t\mapsto e^{\alpha t}$.

On peut appliquer la même méthode pour $f: t \mapsto P(t)\sin(\alpha t)$ ou $f: t \mapsto P(t)\cos(\alpha t)$.

Remarque Autre méthode

Exercice

Calculer

$$I = \int_0^{\pi/2} t \sin t \, dt, \quad J = \int_0^1 e^{2x} (6x^2 + 2x - 4) \, dx$$

Exercice

Trouver une formule générale pour calculer $\int_{\cdot}^{x} P(t)e^{\alpha t} dt$.

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégral à la primitive

⇒Maîtrise d techniques

- . Problèmes
- 2. Primitives
- primitives
- conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Change de variables

Primitives de $P(x)\ln(Q(x))$

Savoir-faire.
$$f(x) = P(x) \ln (Q(x))$$

l'on sait intégrer, en principe...

Pour $f:t\mapsto P(t)\ln\big(Q(t)\big)$ où P est une fonction polynomiale, on peut faire une intégrations par parties (IPP) en dérivant $v:t\mapsto \ln\big(Q(t)\big)$ et en intégrant $u':t\mapsto P(t)$. On se retrouve alors en présence d'une fraction rationnelle, que

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

⇒Maîtrise de deux techniques

- Problèmes
- 2. Primitives
- primitives
- 3.1. Théorème fondamental e conséquences
- 3.2. Quelques propriétés de
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement

- 3.3. Technique 1 : Intégration

Savoir-faire. $f(x) = P(x) \ln (Q(x))$

Pour $f: t \mapsto P(t) \ln (Q(t))$ où P est une fonction polynomiale, on peut faire une intégrations par parties (IPP) en dérivant $v: t \mapsto \ln(Q(t))$ et en intégrant $u': t \mapsto P(t)$.

On se retrouve alors en présence d'une fraction rationnelle, que l'on sait intégrer, en principe...

Exercice

Calculer

$$I_b = \int_0^b x \ln(x^2 + 1) \, \mathrm{d}x.$$

On pourra remarquer que $x^3 = x(x^2 + 1) - x...$

⇒De l'aire (intégrale) à la primitive

⇒Maîtrise de deux techniques

- 1. Problèmes
- 2. Primitives
- 3. Intégrales et primitives
 - 3.1. Théorème fondamental et conséquences
 - 3.2. Quelques propriétés de l'intégral
 - 3.3. Technique 1 : Intégration par parties
 - 3.4. Technique 2 : Changement de variables

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

⇒Maîtrise de deux echniques

- Problèmes
- 2. Primitives
- 3. Intégrales primitives
- 3.1. Théorème fondamental e
- consequences
 3.2. Quelques propriétés de
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration
- 3.4. Technique 2 : Changement de variables

primitives

3.1. Théorème fondamental e

3.2. Quelques propriétés de

3.3. Technique 1 : Intégration

a. Technique 1 : Intégration

3.4. Technique 2 : Changement de variables

Théorème - Changement de variable

Soient I, J des intervalles de \mathbb{R} , $\alpha, \beta \in I$,

Soient $\phi: I \to \mathbb{R}$ de classe C^1 telle que $\phi(I) \subset J$ et $f: J \to \mathbb{R}$ (ou \mathbb{C}) continue.

Alors

$$\int_{\phi(\alpha)}^{\phi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\phi(x)) \phi'(x) dx.$$

 Théorème fondamental e conséquences

3.2. Quelques propriétés de l'intégrale

3.3. Technique 1 : Intégration par parties

3.4. Technique 2 : Changement de variables

Démonstration

- Théorème Changement de variable
- Soient I, J des intervalles de \mathbb{R} , $\alpha, \beta \in I$,
- Soient $\phi: I \to \mathbb{R}$ de classe C^1 telle que $\phi(I) \subset J$ et $f: J \to \mathbb{R}$ (ou \mathbb{C}) continue.

Alors

$$\int_{\phi(\alpha)}^{\phi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\phi(x)) \phi'(x) dx.$$

Théorème fondamental et conséquences

3.2. Quelques propriétés de l'intégrale

3.3. Technique 1 : Intégration

3.4. Technique 2 : Changement de variables

Théorème - Changement de variable

Soient I, J des intervalles de \mathbb{R} , $\alpha, \beta \in I$,

Soient $\phi: I \to \mathbb{R}$ de classe C^1 telle que $\phi(I) \subset J$ et $f: J \to \mathbb{R}$ (ou \mathbb{C}) continue.

Alors

$$\int_{\phi(\alpha)}^{\phi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\phi(x)) \phi'(x) dx.$$

Démonstration

Analyse Deux cas possibles

Savoir-faire

Savoir-faire. Changement de variable - dans la pratique

On veut calculer $\int_{\phi(\alpha)}^{\phi(\beta)} f(t) \, \mathrm{d}t$. On pose $t = \phi(x)$ (changement de variable), on remplace alors

- ightharpoonup t par $\phi(x)$
- ightharpoonup dt par $\phi'(x) dx$

$$(\phi'(x) = \frac{d\phi(x)}{dx} = \frac{dt}{dx})$$

• t varie de $\phi(\alpha)$ à $\phi(\beta)$ par x varie de α à β (et inversement)

On peut faire un tableau

Leçon 29 - Fonctions primitives et équations différentielles

- ⇒ De l'aire (intégrale ι la primitive
- ⇒Maîtrise de deux techniques
- Problèmes
- 2. Primitives
- 3. Intégrales primitives
- 3.1. Théorème fondamental e
- 3.2. Quelques propriétés de
- 3.3. Technique 1 : Intégration
- 3.4. Technique 2 : Changement

Savoir-faire. Changement de variable - dans la pratique

On veut calculer $\int_{\phi(\alpha)}^{\phi(\beta)} f(t) dt$. On pose $t = \phi(x)$ (changement de variable), on remplace alors

- ightharpoonup t par $\phi(x)$
- ightharpoonup dt par $\phi'(x) dx$

$$(\phi'(x) = \frac{d\phi(x)}{dx} = \frac{dt}{dx})$$

• t varie de $\phi(\alpha)$ à $\phi(\beta)$ par x varie de α à β (et inversement)

On peut faire un tableau

Exercice

Calculer par changement de variables les intégrales suivantes

$$I = \int_0^{\pi/2} x \sin(x^2) dx, \quad J = \int_0^1 \sqrt{1 - t^2} dt$$

Leçon 29 - Fonctions primitives et équations différentielles

 De l'aire (intégrale la primitive

⇒Maîtrise de deux

- . Problèmes
- 2. Primitives
- primitives
- conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement de variables

3.4. Technique 2 : Changement

Soulignons l'importance que ϕ soit bijective pour exploiter ϕ^{-1} ...

Savoir-faire. Calculer une primitive par changement de variable

On cherche une primitive F de f sur I,

- on pose $t = \phi(x)$ et donc $dt = \phi'(x)dx$ où ϕ est une bijection de classe C^1 de J sur I,
- on cherche une primitive $G(x) = \int f(\phi(x))\phi'(x) dx$ et on prend $F(t) = G(\phi^{-1}(t))$.

3.4. Technique 2 : Changement

Soulignons l'importance que ϕ soit bijective pour exploiter ϕ^{-1} ...

Savoir-faire. Calculer une primitive par changement de variable

On cherche une primitive F de f sur I,

- on pose $t = \phi(x)$ et donc $dt = \phi'(x)dx$ où ϕ est une bijection de classe C^1 de J sur I,
- on cherche une primitive $G(x) = \int f(\phi(x))\phi'(x) dx$ et on prend $F(t) = G(\phi^{-1}(t))$.

Exemple Primitive de $t \mapsto \frac{1}{t^2+a^2}$

Application

Attention. Ne pas oublier de revenir à la variable de départ

Pour éviter les erreurs (oubli de revenir à la variable de départ...) on peut aussi écrire

$$F(x) = \int_{.}^{x} \frac{dt}{t^2 + a^2}$$

Leçon 29 - Fonctions primitives et équations différentielles

 ⇒ De l'aire (intégrale à la primitive

- 1. Problèmes
- 2. Primitives
- Intégrales et primitives
- 3.1. Théorème fondamental e
- 3.2. Quelques propriétés de 'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement de variables

Pour éviter les erreurs (oubli de revenir à la variable de départ...) on peut aussi écrire

$$F(x) = \int_{\cdot}^{x} \frac{dt}{t^2 + a^2}$$

Exercice

Soit $a \in \mathbb{R}$. Donner une primitive de $x \mapsto \frac{1}{(x^2 + a^2)^2}$ en faisant le changement de variable $\tan t = \frac{x}{a}$.

On rappelle que $1 + \tan^2 u = \frac{1}{\cos^2 u}$

⇒ De l'aire (intégrale à la primitive

- 1. Problèmes
- 2. Primitives
- primitives
- Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement

Attention. Ne pas oublier de revenir à la variable de départ

Pour éviter les erreurs (oubli de revenir à la variable de départ...) on peut aussi écrire

$$F(x) = \int_{\cdot}^{x} \frac{dt}{t^2 + a^2}$$

Exercice

Soit $a \in \mathbb{R}$. Donner une primitive de $x \mapsto \frac{1}{(x^2 + a^2)^2}$ en faisant le changement de variable $\tan t = \frac{x}{a}$. On rappelle que $1 + \tan^2 u = \frac{1}{\cos^2 u}$

Exercice

Aller plus Join : Donner l'expression des primitives de

$$x \mapsto \frac{1}{(x^2 + a^2)^n}$$

⇒ De l'aire (intégrale . la primitive

- 1. Problèmes
- 2. Primitives
- primitives
- Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement de variables

Des morceaux

Savoir-faire. Bijection par morceaux

Lorsque le changement de variables doit être bijectif mais ne l'est que par morceaux, alors

- 1. on cherche une primitive sur chaque morceau de l'intervalle.
- 2. on « recolle » chaque morceau en ajustant les constantes de manière à ce que la primitive soit bien continue.

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

⇒Maîtrise de deux

- . Problèmes
- 2. Primitives
- primitives
- 3.1. Théorème fondamental e conséquences
- 3.2. Quelques propriétés de
- 3.3. Technique 1 : Intégration
- 3.4. Technique 2 : Changement de variables

3.4. Technique 2 : Changement

Savoir-faire. Bijection par morceaux

Lorsque le changement de variables doit être bijectif mais ne l'est que par morceaux, alors

- 1. on cherche une primitive sur chaque morceau de l'intervalle.
- 2. on « recolle » chaque morceau en ajustant les constantes de manière à ce que la primitive soit bien continue.

Exercice

Donner l'ensemble de définition et calculer une primitive de

$$h: x \mapsto \frac{1}{2 + \cos x}.$$
On posera $t = \tan \frac{x}{2}$

Fonctions définies à partir de fonctions trigonométrique

Savoir-faire. Calcul pour $f(t) = \sin^n t \cos^m t$ avec n ou m impair

Pour $f(t) = \sin^n t \cos^m t$, on peut linéariser, ou,

- ▶ si n est impair, effectuer le changement de variables $u = \cos t$ (ou isoler un $\sin t$ et dans $\sin^{n-1} t$ remplacer $\sin^2 t$ par $1 \cos^2 t$ puis reconnaître des primitives),
- si m est impair, effectuer le changement de variables $u = \sin t$ (ou remplacer $\cos^2 t$ par $1 \sin^2 t$).

Leçon 29 - Fonctions primitives et équations différentielles

 De l'aire (intégrale la primitive

⇒Maîtrise de deux

1. Problèmes

2 Primitives

. . . /

primitives

conséquences

3.2. Quelques propriétés de l'intégrale

8.3. Technique 1 : Intégration

3.4. Technique 2 : Changement

Savoir-faire. Calcul pour $f(t) = \sin^n t \cos^m t$ avec n ou mimpair

Pour $f(t) = \sin^n t \cos^m t$, on peut linéariser, ou,

- ▶ si *n* est impair, effectuer le changement de variables $u = \cos t$ (ou isoler un $\sin t$ et dans $\sin^{n-1} t$ remplacer $\sin^2 t$ par $1 - \cos^2 t$ puis reconnaître des primitives),
- si m est impair, effectuer le changement de variables $u = \sin t$ (ou remplacer $\cos^2 t$ par $1 - \sin^2 t$).

Exercice

Calculer par changement de variables l'intégrale suivante

$$\int_0^{\pi/2} \sin^2 u \cos^3 u \, \mathrm{d}u$$

Lecon 29 - Fonctions équations

. Technique 2 : Changement

Plus généralement

Savoir-faire. Cas général $(\tan \frac{x}{2})$

D'une manière générale, les changements de variables utiles pour les fonctions construites avec de fonctions trigonométriques sont $t = \cos x$, $t = \sin x$, $t = \tan x$, $t = \tan \frac{x}{2}$.

On rappelle que si
$$t = \tan \frac{x}{2}$$
, alors $\cos x = \frac{t^2 - 1}{t^2 + 1}$, $\sin x = \frac{2t}{t^2 + 1}$ et $\tan x = \frac{2t}{t^2 + 1}$

$$et \tan x = \frac{2t}{t^2 - 1}.$$

Lecon 29 - Fonctions primitives et équations différentielles

- 3.4. Technique 2 : Changement de variables

Savoir-faire. Cas général $(\tan \frac{x}{2})$

D'une manière générale, les changements de variables utiles pour les fonctions construites avec de fonctions trigonométriques sont $t=\cos x$, $t=\sin x$, $t=\tan x$, $t=\tan\frac{x}{2}$.

On rappelle que si
$$t=\tan\frac{x}{2}$$
, alors $\cos x=\frac{t^2-1}{t^2+1}$, $\sin x=\frac{2t}{t^2+1}$ et $\tan x=\frac{2t}{t^2-1}$.

Exercice

Calculer par changement de variables l'intégrale suivante

$$\int_{\pi/3}^{\pi/2} \frac{\mathrm{d}t}{\sin t}$$

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

⇒Maîtrise de deux

Problèmes

2. Primitives

primitives

 Théorème fondamental e conséquences

3.2. Quelques propriétés de l'intégrale

3.3. Technique 1 : Intégration par parties

3.4. Technique 2 : Changement

Théorème - Simplification des calculs

Soit $f:[-a,a] \to \mathbb{R}(\mathbb{C})$ une fonction continue :

- ► si f est paire, $\int_{0}^{a} f(t)dt = 2 \int_{0}^{a} f(t)dt$;
- ▶ si f est impaire, $\int_{-\pi}^{a} f(t) dt = 0$;
- ▶ si $f : \mathbb{R} \to \mathbb{R}$ (ou \mathbb{C}) est une fonction continue T-périodique,

 $\int_{a}^{b+T} f(t) dt = \int_{a}^{b} f(t) dt \text{ et } \int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt.$

Soit $f:[-a,a] \to \mathbb{R}(\mathbb{C})$ une fonction continue :

Théorème - Simplification des calculs

- ► si f est paire, $\int_{0}^{a} f(t)dt = 2 \int_{0}^{a} f(t)dt$;
- ▶ si f est impaire, $\int_{a}^{a} f(t)dt = 0$;
- ▶ si $f : \mathbb{R} \to \mathbb{R}$ (ou \mathbb{C}) est une fonction continue T-périodique, $\int_{a}^{b+T} f(t) dt = \int_{a}^{b} f(t) dt \text{ et } \int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt.$

Fonction de la borne supérieure

Savoir-faire. Variable dans les bornes de l'intégrale

Il arrive que l'on doit étudier des fonctions de la forme

 $g: x \mapsto \int_{f_{\tau}(x)}^{f_2(x)} h(t) dt$ sans pouvoir exprimer explicitement H, une primitive de h.

Néanmoins, la simple existence de H permet d'écrire : $g(x) = H(f_2(x)) - H(f_1(x))$ dont on déduit de nombreuses informations. Par exemple : g est dérivable si f_1 et f_2 le sont. Et dans ce cas:

$$g'(x) = f_2'(x)h(f_2(x)) - f_1'(x)h(f_1(x))$$

Lecon 29 - Fonctions primitives et équations différentielles

- 3.4. Technique 2 : Changement

Fonction de la borne supérieure

Savoir-faire. Variable dans les bornes de l'intégrale

Il arrive que l'on doit étudier des fonctions de la forme

$$g: x \mapsto \int_{f_1(x)}^{f_2(x)} h(t) \mathrm{d}t \text{ sans pouvoir exprimer explicitement } H, \text{ une primitive de } h.$$

Néanmoins, la simple existence de H permet d'écrire : $g(x) = H(f_2(x)) - H(f_1(x))$ dont on déduit de nombreuses informations. Par exemple : g est dérivable si f_1 et f_2 le sont. Et dans ce cas :

$$g'(x) = f_2'(x)h(f_2(x)) - f_1'(x)h(f_1(x))$$

Exercice

Soit $H: x \mapsto \int_x^{2x} \frac{\mathrm{d}t}{\sqrt{1+t^4}}$. Etudier la parité de H. Montrer que H est dérivable sur \mathbb{R} , calculer H' et dresser le tableau de variations de H.

Déterminer les limites de H en $+\infty$ et $-\infty$.

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégra ι la primitive

- Problèmes
- Primitives
- orimitives
- 3.1. Théorème fondamental e
- 3.2. Quelques propriétés de
- 3.3. Technique 1 : Intégration par parties
- par parties
 3.4. Technique 2 : Changement

Objectifs

- ⇒ De l'aire (intégrale) à la primitive
- ⇒ Maîtrise de deux techniques

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale_. à la primitive

⇒Maîtrise de deux techniques

- Problèmes
- 2 Primitives
- 3. Intégrales et primitives
- 3.1. Théorème fondamental e
- 3.2. Quelques propriétés de
- l'intégrale

 3.3. Technique 1 : Intégration
- par parties 3.4. Technique 2 : Changemer

◆ロト 4周ト 4 三ト 4 三 ・ 夕久○

Objectifs

- ⇒ De l'aire (intégrale) à la primitive

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale)à la primitive

- Problèmes
- Primitives
- 3. Intégrales et
- 3.1. Théorème fondamental
- 3.2. Quelques propriétés de
- l'intégrale
 3.3 Technique 1 : Intégration
- par parties 3.4. Technique 2 : Changemer

Objectifs

⇒ De l'aire (intégrale) à la primitive

L'intégrale vérifie des propriétés analytiques fortes (Chasles, croissance et encadrement...)

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale)à la primitive

- I. Problèmes
- 2. Primitives
- 3. Integrales et primitives
- 3.1. Théorème fondamental e
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- par parties 3.4. Technique 2 : Changement

- ⇒ De l'aire (intégrale) à la primitive

 - L'intégrale vérifie des propriétés analytiques fortes (Chasles, croissance et encadrement...)
 - Intégrale d'une fonction à valeurs complexes.

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale)
 à la primitive

- 1. Problèmes
- 2. Primitives
- Intègrales et primitives
- 3.1. Théorème fondamental e
- 3.2. Quelques propriétés de întégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement

- L'intégrale vérifie des propriétés analytiques fortes (Chasles, croissance et encadrement...)
- Intégrale d'une fonction à valeurs complexes.
- Question remise à plus tard : quelles sont les fonctions qui admettent une primitive, finalement. C'est un ensemble qui contient strictement l'ensemble des fonctions continues.

Lecon 29 - Fonctions primitives et équations différentielles

Objectifs

- ⇒ De l'aire (intégrale) à la primitive
- ⇒ Maîtrise de deux techniques

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale_. à la primitive

- . Problèmes
- 2 Primitives
- 3. Intégrales e
- 3.1. Théorème fondamental e
- 3.2. Quelques propriétés de
- l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changemer de variables

Objectifs

- ⇒ De l'aire (intégrale) à la primitive
- ⇒ Maîtrise de deux techniques
 - L'intégration par partie : récupérer la primitive d'un produit : $u' \times v \dots$

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

- Problèmes
- 2. Primitives
- primitives
- 3.1. Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changen de variables

Objectifs

- ⇒ De l'aire (intégrale) à la primitive
- ⇒ Maîtrise de deux techniques
 - L'intégration par partie : récupérer la primitive d'un produit : $u' \times v \dots$
 - Savoir-faire avec des polynômes, exponentielles (trigonométries) et logarithmes

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

- . Problèmes
- 2. Primitives
- primitives
- 3.1. Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration par parties
- 3.4. Technique 2 : Changement de variables

Objectifs

- ⇒ De l'aire (intégrale) à la primitive
- ⇒ Maîtrise de deux techniques
 - L'intégration par partie : récupérer la primitive d'un produit : $u' \times v \dots$
 - Savoir-faire avec des polynômes, exponentielles (trigonométries) et logarithmes
 - Le changement de variable : récupérer la primitive d'une composition : $u' \circ v \dots$

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

- Problèmes
- 2. Primitives
- primitives
- 3.1. Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3. Technique 1 : Intégration ar parties
- .4. Technique 2 : Changemer e variables

Objectifs

- ⇒ De l'aire (intégrale) à la primitive
- ⇒ Maîtrise de deux techniques
 - L'intégration par partie : récupérer la primitive d'un produit : $u' \times v \dots$
 - Savoir-faire avec des polynômes, exponentielles (trigonométries) et logarithmes
 - Le changement de variable : récupérer la primitive d'une composition : $u' \circ v \dots$
 - Savoir-faire (surtout avec des la trigonométrie)

Lecon 29 - Fonctions primitives et équations différentielles

Objectifs

- ⇒ De l'aire (intégrale) à la primitive
- ⇒ Maîtrise de deux techniques
 - L'intégration par partie : récupérer la primitive d'un produit : $u' \times v \dots$
 - Savoir-faire avec des polynômes, exponentielles (trigonométries) et logarithmes
 - Le changement de variable : récupérer la primitive d'une composition : $u' \circ v \dots$
 - Savoir-faire (surtout avec des la trigonométrie)
 - Transmission de propriétés de régularité de fonction (périodicité...)

Lecon 29 - Fonctions primitives et équations différentielles

Objectifs

- ⇒ De l'aire (intégrale) à la primitive
- ⇒ Maîtrise de deux techniques

Pour la prochaine fois

- Lecture du cours : chapitre 6 :
 - 4. Equation différentielle
- Exercice n°131 & 135

Leçon 29 - Fonctions primitives et équations différentielles

⇒ De l'aire (intégrale à la primitive

- Problèmes
- 2. Primitives
- primitives
- Théorème fondamental e conséquences
- 3.2. Quelques propriétés de l'intégrale
- 3.3. Technique 1 : Intégration
- par parties
- 3.4. Technique 2 : Changement de variables