

Leçon 33 - Construction d'ensembles numériques

Leçon 33 -Construction d'ensembles numériques

- > Propriétés de la orne supérieure (de \
- \Rightarrow Densités dans $\mathbb R$
- 1. Problème:
- algébriques
- 3. Propriétés de ℝ
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- 4.2 Densité de D ou O dans R

- 1 Problèmes

- 4.1 Bornes supérieure et

- ⇒ Propriétés de la borne supérieure (de ℝ)
- ⇒ Densités dans R

- 1. Problèmes
- 2. Nombres algébriques
- 3. Propriétés de ℝ
- 4. Parties de \mathbb{R} et topologie
 - 4.1. Bornes supérieure et inférieure

- Problèmes
- 2. Nombres algébriques
- 3. Propriétés de ℝ
- 4. Parties de ℝ et topologie
 - 4.1. Bornes supérieure et inférieure
 - 4.2. Densité de D ou Q dans R

- 4.1 Bornes supérieure et

4 Parties de ℝ et

4.1 Bornes supérieure et

4□▶ 4周▶ 4 □ ▶ 4 □ ▶ 9 0 0

On commence par quelques rappels de définitions, mais adaptés ici au cas réel :

Définition - Sous-ensemble majoré, minoré, borné

Soit A un sous-ensemble de \mathbb{R} . On dit que :

- ightharpoonup A est *majoré* s'il existe un réel M tel que, pour tout x de A, on ait $x \leq M$.
 - M est alors un majorant de A.
- ightharpoonup A est *minoré* s'il existe un réel m tel que, pour tout x de A. on ait $m \leq x$.
 - m est alors un minorant de A.
- Si A est majoré et minoré, on dit qu'il est borné.

topologie

 4.1. Bornes supérieure et inférieure

.2. Densité de D ou Q dans R

, , , , , <u>-</u>

On commence par quelques rappels de définitions, mais adaptés ici au cas réel :

Définition - Sous-ensemble majoré, minoré, borné

Soit A un sous-ensemble de \mathbb{R} . On dit que :

A est *majoré* s'il existe un réel M tel que, pour tout x de A, on ait $x \le M$.

M est alors un majorant de A.

A est *minoré* s'il existe un réel m tel que, pour tout x de A, on ait $m \le x$.

m est alors un minorant de A.

► Si A est majoré et minoré, on dit qu'il est borné.

Remarque Ensemble N

Si l'ensemble des majorants de A est non vide et si il admet un plus petit élément a, alors a est appelé borne supérieure de A, on note $a = \sup A$:

 $\sup A := \min\{M \in \mathbb{R} \mid \forall \ a \in A, a \leq M\} \text{ (si non vide)}$

Si l'ensemble des minorants de A est non vide et si il admet un plus grand élément b, alors b est appelé borne inférieure de A, on note $b = \inf A$: $\inf A := \max\{m \in \mathbb{R} \mid \forall \ a \in A, a \ge m\} \text{ (si non vide)}$

Lecon 33 numériques

- 4 Parties de ℝ et
 - 4.1 Bornes supérieure et

Définition - Borne inférieure, borne supérieure

Si l'ensemble des majorants de A est non vide et si il admet un plus petit élément a, alors a est appelé borne supérieure de A, on note $a = \sup A$:

 $\sup A := \min\{M \in \mathbb{R} \mid \forall \ a \in A, a \leq M\} \text{ (si non vide)}$

Si l'ensemble des minorants de A est non vide et si il admet un plus grand élément b, alors b est appelé borne inférieure de A, on note $b = \inf A$: $\inf A := \max\{m \in \mathbb{R} \mid \forall \ a \in A, a \ge m\} \text{ (si non vide)}$

Lecon 33 numériques

1 Problèmes

Parties de ℝ et

4.1 Bornes supérieure et

Attention - Borne supérieure

Comme son nom ne l'indique pas, la borne supérieure est par définition le plus petit élément d'un certain ensemble (celui des majorants).

- 1 Problèmes
- 4 Parties de ℝ et
- 4.1 Bornes supérieure et

L'exercice suivant donne des exemples à toujours bien garder dans un coin de sa tête...

Exercice

Déterminer, s'ils existent, le plus grand élément, le plus petit élément, la borne supérieure, la borne inférieure (sur ℝ) des parties suivantes:

$$A = [0, 1], \quad B = [0, 1[, \quad C = \left\{\frac{1}{n} \mid n \in \mathbb{N}^*\right\}]$$

Proposition - Condition d'existence de la borne supérieure

Soit $A \subset \mathbb{R}$ non vide. On suppose que A possède un plus grand élément a (resp. plus petit élément b).

Alors A possède une borne supérieure (resp. inférieure) et $\sup A = a$ (resp $\inf A = b$).

- Propriétés de la orne supérieure (de \(\)
- ⇒ Densités dans ℝ
- 1. Problèmes
- 2. Nombres
- 3. Propriétés de ℝ
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- Interieure

Soit $A \subset \mathbb{R}$ non vide. On suppose que A possède un plus grand élément a (resp. plus petit élément b).

Alors A possède une borne supérieure (resp. inférieure) et $\sup A = a$ (resp $\inf A = b$).

Savoir-faire. Etudier une borne supérieure

En règle générale, pour obtenir une égalité sur la borne supérieure, on exploite deux inégalité :

- $\forall a \in A, a \leq \sup A \text{ (minoration de } \sup A)$
- ▶ $\forall M \in \mathbb{R}$ tel que $\forall a \in A, a \leq M$, alors $M \geqslant \sup A$ (majoration de $\sup A$)

 Propriétés de la orne supérieure (de

 \Rightarrow Densités dans ${\mathbb R}$

- 1. Problèmes
- 2. Nombres
- Propriétés de ℝ
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- 4.2. Densité de D ou Q dans R

Soit $A \subset \mathbb{R}$ non vide. On suppose que A possède un plus grand élément a (resp. plus petit élément b).

Alors A possède une borne supérieure (resp. inférieure) et $\sup A = a$ (resp $\inf A = b$).

Savoir-faire. Etudier une borne supérieure

En règle générale, pour obtenir une égalité sur la borne supérieure, on exploite deux inégalité :

- $ightharpoonup \forall a \in A, a \leq \sup A \text{ (minoration de } \sup A)$
- ▶ $\forall M \in \mathbb{R}$ tel que $\forall a \in A, a \leq M$, alors $M \geqslant \sup A$ (majoration de $\sup A$)

On a évidemment des relations symétriques pour la borne inférieure...

- ⇒ Propriétés de la orne supérieure (de
- \Rightarrow Densités dans ${\mathbb R}$
- 1. Problèmes
- 2. Nombres algébriques
- 3. Propriétés de ℝ
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de $\mathbb D$ ou $\mathbb Q$ dans $\mathbb R$

- ⇒ Proprietes de la porne supérieure (de R)
- ⇒ Densités dans ℝ
- 1. Problèmes
- 2. Nombres algébriques
- 3. Propriétés de ${\mathbb R}$
- topologie
- 4.1. Bornes supérieure et inférieure
 - 2. Densité de D ou Q dans

Exercice

Soient A et B deux parties de $\mathbb R$ admettant des bornes supérieures. Montrer que

$$A \subset B \Rightarrow \sup A \leq \sup B$$
.

Donner un résultat similaires avec les bornes inférieures.

Les deux propositions suivantes donnent des caractérisations opératoires (avec lesquelles travailler dans les démonstrations) et donc un nouveau savoir-faire.

- ⇒ Propriétés de la orne supérieure (de
- ⇒ Densités dans ℝ
- . Problèmes
- Nombres
- 3. Propriétés de ℝ
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- L2 Dansitá da D au O dans D

Proposition - Caractérisation de la borne sup.

$$\begin{split} & \text{Soit } A \subset \mathbb{R} \text{ et } a \in \mathbb{R}. \text{ Alors} \\ & a = \sup A \text{ si et seulement si } \left\{ \begin{array}{l} \forall \ x \in A, x \leqslant a \\ \forall \ \varepsilon > 0, \exists \ x_{\varepsilon} \in A \ | \ , a - \varepsilon < x_{\varepsilon} \end{array} \right. \end{split}$$

- Propriétés de la orne supérieure (de
- ⇒ Densités dans ℝ
- . Problèmes
- llgébriques
- Propriétés de ℝ
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- nférieure

Proposition - Caractérisation de la borne sup.

$$\begin{split} & \text{Soit } A \subset \mathbb{R} \text{ et } a \in \mathbb{R}. \text{ Alors} \\ & a = \sup A \text{ si et seulement si } \left\{ \begin{array}{l} \forall \ x \in A, x \leqslant a \\ \forall \ \epsilon > 0, \exists \ x_\epsilon \in A \ | \ , a - \epsilon < x_\epsilon \end{array} \right. \end{split}$$

Proposition - Caractérisation de la borne inf.

$$\begin{array}{l} \text{Soit } A \subset \mathbb{R} \text{ et } b \in \mathbb{R}. \text{ Alors} \\ b = \inf A \text{ si et seulement si } \left\{ \begin{array}{l} \forall x \in A, \, b \leqslant x \\ \forall \varepsilon > 0, \, \exists x_\varepsilon \in A \, | \, x_\varepsilon < b + \varepsilon \end{array} \right. \end{array}$$

Propriétés de la orne supérieure (de

- Problèmes
- algébriques
- Propriétés de ℝ
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
 - 4.2. Densité de D ou Q dans ℝ

Les deux propositions suivantes donnent des caractérisations opératoires (avec lesquelles travailler dans les démonstrations) et donc un nouveau savoir-faire.

Proposition - Caractérisation de la borne sup.

$$\begin{split} & \text{Soit } A \subset \mathbb{R} \text{ et } \alpha \in \mathbb{R}. \text{ Alors} \\ & a = \sup A \text{ si et seulement si } \left\{ \begin{array}{l} \forall \ x \in A, x \leqslant \alpha \\ \forall \ \varepsilon > 0, \exists \ x_\varepsilon \in A \ | \ , \alpha - \varepsilon < x_\varepsilon \end{array} \right. \end{split}$$

Proposition - Caractérisation de la borne inf.

$$\begin{split} & \text{Soit } A \subset \mathbb{R} \text{ et } b \in \mathbb{R}. \text{ Alors} \\ & b = \inf A \text{ si et seulement si } \left\{ \begin{array}{l} \forall x \in A, \, b \leqslant x \\ \forall \epsilon > 0, \, \exists x_\epsilon \in A \, | \, x_\epsilon < b + \epsilon \end{array} \right. \end{split}$$

Démonstration

 Propriétés de la orne supérieure (de o

⇒ Densités dans ℝ

Problèmes

algébriques

3. Propriétés de ℝ
 4. Parties de ℝ et

topologie
4.1. Bornes supérieure et

inférieure

l.2. Densité de D ou Q dans R

Conditition d'existence dans ℝ

Le théorème suivant est parfois pris comme caractérisation de \mathbb{R} .

Leçon 33 -Construction d'ensembles numériques

· Propriétés de la orne supérieure (de ı

- . Problèmes
- 2. Nombres
- 3. Propriétés de F
- 4 Parties de ₽ et
- 4.1. Bornes supérieure et
- 4.2. Donoitá do D. ou O. dono

Conditition d'existence dans ℝ

Le théorème suivant est parfois pris comme caractérisation de \mathbb{R} .

Théorème - Existence de la borne supérieure

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure. Toute partie non vide minorée de $\mathbb R$ admet une borne inférieure.

Leçon 33 -Construction d'ensembles numériques

Propriétés de la orne supérieure (de

 \Rightarrow Densités dans ${\mathbb R}$

- Problèmes
- 2. Nombres
- B. Propriétés de ℝ
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- 12 Denoité de Dou O dons D

Le théorème suivant est parfois pris comme caractérisation de \mathbb{R} .

Théorème - Existence de la borne supérieure

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure. Toute partie non vide minorée de $\mathbb R$ admet une borne inférieure.

Attention - Propriété non vérifiée par Q

Cette propriété différencie $\mathbb R$ et $\mathbb Q$:

- $\{x \in \mathbb{R} \mid x^2 < 2\}$ admet une borne supérieure (dans \mathbb{R}), que l'on notera : $\sqrt{2}$
- mais $\{x \in \mathbb{Q} \mid x^2 < 2\}$ n'admet pas de borne supérieure dans \mathbb{Q} (non existence d'un plus petit élément dans \mathbb{Q} de l'ensemble des majorants rationnels).

Le théorème suivant est parfois pris comme caractérisation de \mathbb{R} .

Théorème - Existence de la borne supérieure

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure. Toute partie non vide minorée de $\mathbb R$ admet une borne inférieure.

 Propriétés de la orne supérieure (de

- Problèmes
- 2. Nombres
- 3. Propriétés de ℝ
- 4 Parties de ℝ et
- 4.1. Bornes supérieure et
- 1.2 Denoité de D ou O dons D

Le théorème suivant est parfois pris comme caractérisation de $\ensuremath{\mathbb{R}}.$

Théorème - Existence de la borne supérieure

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure. Toute partie non vide minorée de $\mathbb R$ admet une borne inférieure.

Heuristique - Manipuler l'ensemble des majorants et non l'ensemble E lui-même

L'ensemble E peut être très compliqué, un ensemble à trous par exemple : $\bigcup_{n\in\mathbb{N}}\left[(1+\frac{1}{n})^n-\frac{1}{n^2};(1+\frac{1}{n})^n+\frac{1}{n^2}\right].$

Il vaut mieux raisonner sur l'ensemble des majorants $\mathcal M$: celui-ci est nécessairement un intervalle. Mieux (mais on ne le sait pas encore), il s'agit de l'intervalle fermé $[\sup E, +\infty[$

· Propriétés de la orne supérieure (de

 \Rightarrow Densités dans $\mathbb R$

- . Problèmes
- 2. Nombres algébriques
- 3. Propriétés de ℝ
- 4. Parties de $\mathbb R$ et
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans ℝ

Nullité d'un nombre

Lecon 33 -Construction d'ensembles numériques

- 4.1 Bornes supérieure et

Exercice

Soit A une partie de \mathbb{R} . On note $\mathcal{M}(A)$ l'ensemble des majorants de A.

A quoi ressemble $\mathcal{M}(A)$?

- 1. Problèmes
- 2. Nombres algébrigues
- Propriétés de ℝ
- Parties de ℝ et
 - 4.1. Bornes supérieure et inférieure
 - eneure > Densité de Dou O dans ℝ

- **Exercice**
- Soit A une partie de \mathbb{R} . On note $\mathcal{M}(A)$ l'ensemble des majorants de A.
- A quoi ressemble $\mathcal{M}(A)$?
- Corollaire Critère de nullité d'un nombre
- Un réel α vérifiant $\forall \epsilon > 0, |\alpha| \leq \epsilon$ est nul.

1 Problèmes

4.1 Bornes supérieure et

A quoi ressemble $\mathcal{M}(A)$?

de A.

Exercice

Soit A une partie de \mathbb{R} . On note $\mathcal{M}(A)$ l'ensemble des majorants

Corollaire - Critère de nullité d'un nombre

Un réel α vérifiant $\forall \epsilon > 0$, $|\alpha| \le \epsilon$ est nul.

Démonstration

- 1 Problèmes

- 4.1 Bornes supérieure et

Exercice

Soit A une partie de \mathbb{R} . On note $\mathcal{M}(A)$ l'ensemble des majorants de A.

A quoi ressemble $\mathcal{M}(A)$?

Corollaire - Critère de nullité d'un nombre

Un réel α vérifiant $\forall \epsilon > 0$, $|\alpha| \le \epsilon$ est nul.

Démonstration

On avait déjà fait une démonstration ici par contraposée.

- ⇒ Propriétés de la borne supérieure (de R)
- ⇒ Densités dans R

- 1. Problèmes
- 2. Nombres algébriques
- 3. Propriétés de ℝ
- 4. Parties de \mathbb{R} et topologie
 - 4.1. Bornes supérieure et inférieure
 - 4.2. Densité de $\mathbb D$ ou $\mathbb Q$ dans $\mathbb R$

⇒ Propriétés de la porne supérieure (de R)

⇒ Densités dans ℝ

- . Problèmes
- 2. Nombres
- Propriétés de ℝ
- 4. Parties de ℝ et

4.1. Bornes supérieure et

4.2. Densité de D ou O dans ℝ

1. Problèmes

algébriques

3. Propriétés de ℝ

opologie

 4.1. Bornes supérieure et inférieure

4.2. Densité de D ou Q dans ℝ

Définition - Ensemble des décimaux

Soit $x \in \mathbb{R}$.

On dit que x est un nombre décimal s'il existe $p \in \mathbb{Z}, n \in \mathbb{N}$ tels

que $x = \frac{r}{10^n}$

On note \mathbb{D} l'ensemble des nombres décimaux. On a $\mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$.

1 Problèmes

algébriques

3. Propriétés de ℝ

Parties de ℝ et topologie

4.1. Bornes supérieure et inférieure

4.2. Densité de D ou Q dans ℝ

Définition - Ensemble des décimaux

Soit $x \in \mathbb{R}$.

On dit que x est un nombre décimal s'il existe $p \in \mathbb{Z}, n \in \mathbb{N}$ tels que $x = \frac{p}{10^n}$.

On note \mathbb{D} l'ensemble des nombres décimaux. On a $\mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$.

Remarque Un nombre décimal...

Si
$$p \in \mathbb{Z}$$
 est tel que $\frac{p}{10^n} \le x \le \frac{p+1}{10^n}$,

on dit que $\frac{p}{10^n}$ (resp. $\frac{p+1}{10^n}$) est une valeur décimale approchée par défaut (resp. par excès) de x à la précision 10^{-n} .

Propriétés de la orne supérieure (de

- Problèmes
- . Nombres
- Propriétés de ℝ
- Parties de ℝ et
- 4.1. Bornes supérieure et
- inférieure
 4.2. Densité de D ou O dans R

Si
$$p \in \mathbb{Z}$$
 est tel que $\frac{p}{10^n} \le x \le \frac{p+1}{10^n}$,

on dit que $\frac{p}{10^n}$ (resp. $\frac{p+1}{10^n}$) est une valeur décimale approchée par défaut (resp. par excès) de x à la précision 10^{-n} .

Proposition - Obtenir la valeur décimale approchée

Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, $\frac{\lfloor 10^n x \rfloor}{10^n}$ (resp. $\frac{\lfloor 10^n x \rfloor + 1}{10^n}$) est une valeur approchée de x par défaut (resp. par excès) à la précision 10^{-n} .

⇒ Propriétés de la borne supérieure (de

Deribites daris i

- Problèmes
- 2. Nombres algébriques
- 3. Propriétés de ℝ
- 4 Parties de ℝ et
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou € dans R

Si
$$p \in \mathbb{Z}$$
 est tel que $\frac{p}{10^n} \le x \le \frac{p+1}{10^n}$,

on dit que $\frac{p}{10^n}$ (resp. $\frac{p+1}{10^n}$) est une valeur décimale approchée par défaut (resp. par excès) de x à la précision 10^{-n} .

Proposition - Obtenir la valeur décimale approchée

Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, $\frac{\lfloor 10^n x \rfloor}{10^n}$ (resp. $\frac{\lfloor 10^n x \rfloor + 1}{10^n}$) est une valeur approchée de x par défaut (resp. par excès) à la précision 10^{-n} .

Démonstration

⇒ Propriétés de la borne supérieure (de

- Problèmes
- 2. Nombres algébriques
- 3. Propriétés de ℝ
- 4 Parties de ℝ et
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans ℝ

Une partie X est dense dans $\mathbb R$ si elle peut toucher (à $\epsilon>0$ près choisi par avance, aussi petit qu'on veut) tous les éléments de $\mathbb R$ avec ses propres éléments.

$$\forall x \in \mathbb{R}, \quad \forall \epsilon > 0, \exists r \in X, |x - r| < \epsilon$$

⇒ Propriétés de la porne supérieure (de p\

 \Rightarrow Densités dans ${\mathbb R}$

- I. Problèmes
- 2. Nombres
- Propriétés de ℝ
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans ℝ

Une partie X est dense dans $\mathbb R$ si elle peut toucher (à $\epsilon>0$ près choisi par avance, aussi petit qu'on veut) tous les éléments de $\mathbb R$ avec ses propres éléments.

$$\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists r \in X, |x - r| < \epsilon$$

Analyse Vers une définition équivalente

⇒ Propriétés de la porne supérieure (de p\

- Problèmes
- 2. Nombres daébriaues
- Propriétés de ℝ
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans R

Une partie X est dense dans $\mathbb R$ si elle peut toucher (à $\epsilon>0$ près choisi par avance, aussi petit qu'on veut) tous les éléments de $\mathbb R$ avec ses propres éléments.

$$\forall x \in \mathbb{R}, \quad \forall \epsilon > 0, \exists r \in X, |x - r| < \epsilon$$

Analyse Vers une définition équivalente

Définition - Partie dense

Une partie non vide X de $\mathbb R$ est dite dense dans $\mathbb R$ si elle rencontre tout intervalle ouvert non vide, c'est-à-dire si pour deux réels a et b, a < b, il existe $x \in X \cap]a, b[$.

- Propriétés de la orne supérieure (de
- ⇒ Densités dans ℝ
- 1. Problèmes
 - Nombres aébriaues
- Propriétés de ℝ
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans R

 \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

⇒ Propriétés de la porne supérieure (de R)

- 1. Problèmes
- . Nombres
- Propriétés de ℝ
- l. Parties de ℝ et
- 4.1. Bornes supérieure et
- 4.2. Densité de D ou O dans ℝ

Théorème - Parties denses dans R

 \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Par construction de \mathbb{R} , le résultat est évident concernant la densité de \mathbb{Q} dans \mathbb{R} .

Démontrons la densité de \mathbb{D} et celle de $\mathbb{R} \setminus \mathbb{Q}$.

⇒ Proprietes de la porne supérieure (de p\

ightarrow Densités dans ${\mathbb R}$

- Problèmes
- 2. Nombres
- 3. Propriétés de R
- I. Parties de ℝ et
- 4.1. Bornes supérieure et
- 4.2. Densité de D ou O dans R

Théorème - Parties denses dans R

 \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Par construction de \mathbb{R} , le résultat est évident concernant la densité de \mathbb{Q} dans \mathbb{R} .

Démontrons la densité de \mathbb{D} et celle de $\mathbb{R} \setminus \mathbb{Q}$.

Démonstration

- ₹)
- ⇒ Densites dans ℝ
- 1. Problèmes
- 2. Nombres
- 3. Propriétés de I
- 1 Parties de D et
- opologie 4.1. Bornes supérieure et
- inférieure 4.2. Densité de D ou O dans ℝ

Théorème - Parties denses dans R

 \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Par construction de \mathbb{R} , le résultat est évident concernant la densité de \mathbb{Q} dans \mathbb{R} .

Démontrons la densité de \mathbb{D} et celle de $\mathbb{R} \setminus \mathbb{Q}$.

Démonstration

Corollaire -

Tout intervalle de $\mathbb R$ contient donc au moins un rationnel et un irrationnel.

On en déduit qu'il y a un rationnel (ainsi qu'un irrationnel) « aussi proche que l'on veut » d'un réel x donné :

Soit

 $x \in \mathbb{R}$: $\forall \epsilon > 0, \exists r \in \mathbb{Q}, |x - r| < \epsilon, \exists \xi \in \mathbb{R} \setminus \mathbb{Q}, |x - \xi| < \epsilon$

- ⇒ Densités dans ℝ
- 1. Problèmes
- 2. Nombres algébriques
- 3. Propriétés de ℝ
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans ℝ

- \Rightarrow Propriétés de la borne supérieure (de $\mathbb R$)
- ⇒ Densités dans R

 Propriétes de la orne supérieure (de)

⇒ Densités dans ℝ

- 1. Problèmes
 - Nombres
- 3. Propriétés de ℝ
- A Parties de □ et
- 4.1. Bornes supérieure et
- .2. Densité de D ou O da

- ⇒ Propriétés de la borne supérieure (de ℝ)
 - lacktriangle Définition : $\sup A$ est des majorants, le plus petits.

Leçon 33 -Construction d'ensembles numériques

⇒ Propriétés de la orne supérieure (de R)

⇒ Densités dans ℝ

- Problèmes
- 2. Nombres
- 3. Propriétés de R
- A Parties de □ et
- 4.1. Bornes supérieure et
- 4.2. Densité de D.ou O de

- ⇒ Propriétés de la borne supérieure (de R)
 - ▶ Définition : $\sup A$ est des majorants, le plus petits. $\forall x \in A, x \leq \sup A$ et $(\forall x \in A, x \leq M) \Rightarrow \sup A \leq M$

Leçon 33 -Construction d'ensembles numériques

⇒ Propriétés de la porne supérieure (de ₹)

 \Rightarrow Densités dans ${\mathbb R}$

- Problèmes
- 2. Nombres
- 3. Propriétés de R
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- interieure

- ⇒ Propriétés de la borne supérieure (de ℝ)
 - Définition : sup A est des majorants, le plus petits. $\forall x \in A, x \leq \sup A \text{ et } (\forall x \in A, x \leq M) \Rightarrow \sup A \leq M$ $\forall x \in A, x \leq \sup A \text{ et } (\forall \epsilon > 0, \exists x \in A \text{ tel que } \sup A \leq x + \epsilon$

Lecon 33 -Construction d'ensembles numériques

Objectifs

- ⇒ Propriétés de la borne supérieure (de ℝ)
 - ▶ Définition : $\sup A$ est des majorants, le plus petits. $\forall \ x \in A, \ x \leq \sup A$ et $(\forall \ x \in A, x \leq M) \Rightarrow \sup A \leq M$ $\forall \ x \in A, \ x \leq \sup A$ et $(\forall \ \varepsilon > 0, \exists \ x \in A \text{ tel que } \sup A \leq x + \varepsilon)$
 - ► Toute partie non vide majorée de R admet une borne supérieure.

Leçon 33 -Construction d'ensembles numériques

⇒ Propriétés de la orne supérieure (de P)

 \Rightarrow Densités dans $\mathbb R$

- 1. Problèmes
 - Nombres
- 3. Propriétés de ℝ
- 1. Parties de ℝ et
- 4.1. Bornes supérieure et inférieure
- i lielleule 4.2. Daneité de D au O dane l

- ⇒ Propriétés de la borne supérieure (de ℝ)
 - Définition : sup A est des majorants, le plus petits. $\forall x \in A, x \leq \sup A \text{ et } (\forall x \in A, x \leq M) \Rightarrow \sup A \leq M$ $\forall x \in A, x \leq \sup A \text{ et } (\forall \epsilon > 0, \exists x \in A \text{ tel que } \sup A \leq x + \epsilon)$
 - ► Toute partie non vide majorée de R admet une borne supérieure.
 - Version symétrique pour la borne inférieure.

Lecon 33 -Construction d'ensembles numériques

- \Rightarrow Propriétés de la borne supérieure (de $\mathbb R$)
- ⇒ Densités dans R

 Propriétes de la orne supérieure (de)

⇒ Densités dans ℝ

- 1. Problèmes
 - Nombres
- 3. Propriétés de ℝ
- A Parties de □ et
- 4.1. Bornes supérieure et
- .2. Densité de D ou O da

- ⇒ Propriétés de la borne supérieure (de R)
- ⇒ Densités dans R
 - Valeur approchée à 10^{-k} , par excès et par défaut

 \Rightarrow Densités dans ${\mathbb R}$

- 1. Problèmes
- . Nombres
- Propriétés de ℝ
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- interieure

- ⇒ Propriétés de la borne supérieure (de R)
- ⇒ Densités dans R
 - Valeur approchée à 10^{-k} , par excès et par défaut
 - ▶ Densité de \mathbb{D} , puis \mathbb{Q} et enfin $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R} .

⇒ Proprietes de la borne supérieure (de ℝ)

 \Rightarrow Densités dans ${\mathbb R}$

- 1. Problèmes
 - Nombres
- 3. Propriétés de R
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- nterieure

4 Parties de ℝ et

Objectifs

- ⇒ Propriétés de la borne supérieure (de ℝ)
- ⇒ Densités dans ℝ

Pour la prochaine fois

- Lecture du cours : chapitre 18 Suites numériques
 - Problèmes
 - Exemples fondamentaux
 - Suites extraites
- Exercices N°286 & 290
- Activités sur la construction de C et R (pour vendredi 29 novembre!).