

Leçon 72 - Espace vectoriel

- 1. I TODICITIC
- Bases et dimension
- 2.1. Existence et unicité de l'écriture de tout vecteur da une base
- 2.2. Critère pour être une base
 2.3. Dimension d'un espace
 - 2.4. Sous-espaces vectoriels en

⇒ Dimension (exploitation)

1. Problèmes

2. Bases et dimension

- 2.1. Existence et unicité de l'écriture de tout vecteur dans une base
- 2.2. Critère pour être une base
- 2.3. Dimension d'un espace vectoriel
- 2.4. Sous-espaces vectoriels en dimension finie

Leçon 72 - Espace vectoriel

⇒ Dimension (définition)

1. Problèmes

Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base

2.3. Dimension d'un espace vectoriel

1. Problèmes

2. Bases et dimension

- 2.1. Existence et unicité de l'écriture de tout vecteur dans une
- 2.2. Critère pour être une base
- 2.3. Dimension d'un espace vectoriel
- 2.4. Sous-espaces vectoriels en dimension finie

Leçon 72 - Espace vectoriel

⇒ Dimension (définition)

⇒ Dimensior (exploitation)

i. Probleme

2. Bases et

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base
2.3 Dimension d'un espace

ectoriel

1. Problèmes

2. Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels e

Définition - Espace de dimension finie

Un \mathbb{K} -espace vectoriel E est dit de dimension finie s'il admet une famille génératrice finie.

Par convention $\{0_E\}$ est un espace de dimension finie.

S'il n'est pas de dimension finie, E est dit de dimension infinie.

On a le théorème suivant très important :

Théorème - Théorème de la base incomplète (lemme de Steinitz)

Soit $E \neq \{0_E\}$ un espace vectoriel de dimension finie.

Soit $\mathscr{E}=(e_1,\ldots,e_p)$ une famille libre de E et $\mathscr{F}=(f_1,\ldots,f_q)$ une famille génératrice de E, alors : il existe une base de E de la forme $\mathscr{B}=(e_1,\ldots,e_p,e_{p+1},\ldots,e_n)$ où $\{e_{p+1},\ldots,e_n\}\subset\mathscr{F}$ (quitte à être vide).

En d'autres termes on peut compléter une famille libre de E en une base avec des vecteurs pris dans une famille génératrice.

Application Compléter $\mathscr{E} = ((1,1,1),(1,-1,-1))$ en une base de \mathbb{R}^3 .

Leçon 72 - Espace vectoriel

⇒ Dimension

⇒ Dimension (exploitation)

.....

2. Bases et

2.1. Existence et unicité de l'écriture de tout vecteur dans

2. Critère pour être une base

2.3. Dimension d'un espace vectoriel

Application Compléter $\mathcal{E} = ((1,1,1),(1,-1,-1))$ en une base de \mathbb{R}^3

A partir d'un ensemble réduit à l'unique élément {0},

Corollaire

Si E, non réduit au vecteur nul, est de dimension finie, alors de toute famille génératrice de E on peut extraire une base.

Application Compléter $\mathcal{E} = ((1,1,1),(1,-1,-1))$ en une base de \mathbb{R}^3

A partir d'un ensemble réduit à l'unique élément {0},

Corollaire

Si E, non réduit au vecteur nul, est de dimension finie, alors de toute famille génératrice de E on peut extraire une base.

Corollaire

Tout espace vectoriel de dimension finie, non réduit au vecteur nul, admet une base.

Cardinal d'une base

En fait, on a mieux, en terme de cardinaux

Leçon 72 - Espace vectoriel

⇒ Dimen (définition

⇒ Dimensio (exploitation)

i. Frobleme

Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dan

.2. Critère pour être une base

2.3. Dimension d'un espace vectoriel

Cardinal d'une base

En fait, on a mieux, en terme de cardinaux

Proposition - Relation entre cardinaux de familles libres/familles génératrices

Soit \mathcal{L} une famille libre de E et \mathcal{L} une famille génératrice finie de E, alors \mathscr{L} est finie et $\operatorname{Card}\mathscr{L} \leq \operatorname{Card}\mathscr{G}$

1. Problèmes

2. Bases et

2.3 Dimension d'un espace

Proposition - Relation entre cardinaux de familles libres/familles génératrices

Soit \mathcal{L} une famille libre de E et \mathcal{L} une famille génératrice finie de E, alors \mathscr{L} est finie et $\operatorname{Card}\mathscr{L} \leq \operatorname{Card}\mathscr{G}$

Heuristique - Amélioration du lemme de Steinitz

On améliore la démonstration du lemme de Steinitz.

En cherchant un invariant : comment transformer un à un les élément de \mathscr{G} en élément de \mathscr{L} tout en gardant la génération de E.

On démontre que pour tout $s \leq \operatorname{card}(\mathcal{L}) = p \ (q = \operatorname{card}(\mathcal{G}))$: il existe $I_s \subset \mathbb{N}_q$, tel que $\operatorname{card}(I_s) = q - s$ et $E = \text{vect}((e_i)_{i \in \mathbb{N}_c}, (f_i)_{i \in I_c})$

1. Problèmes

2 Rases et

2.3 Dimension d'un espace

En fait, on a mieux, en terme de cardinaux

Proposition - Relation entre cardinaux de familles libres/familles génératrices

Soit $\mathscr L$ une famille libre de E et $\mathscr G$ une famille génératrice finie de E, alors $\mathscr L$ est finie et $\operatorname{Card}\mathscr L\leqslant\operatorname{Card}\mathscr G$

Heuristique - Amélioration du lemme de Steinitz

On améliore la démonstration du lemme de Steinitz.

En cherchant un invariant : comment transformer un à un les élément de $\mathscr G$ en élément de $\mathscr L$ tout en gardant la génération de E.

On démontre que pour tout $s \leq \operatorname{card}(\mathcal{L}) = p \ (q = \operatorname{card}(\mathcal{G}))$: il existe $I_s \subset \mathbb{N}_q$, tel que $\operatorname{card}(I_s) = q - s$ et $E = \operatorname{vect}((e_i)_{i \in \mathbb{N}_s}, (f_i)_{i \in I_s})$

Notons que la démonstration qui suit est en fait constructive!

Démonstration

eçon 72 - Espace vectoriel

⇒ Dimension

Problèmes

....

2. Bases et dimension

 2.1. Existence et unicité de l'écriture de tout vecteur dans une base

2.2. Critère pour être une base 2.3. Dimension d'un espace

2.3. Dimension d'un espace vectoriel

 Sous-espaces vectoriels e dimension finie

Autre point de vue

Autre interprétation :

Leçon 72 - Espace vectoriel

⇒ Dimens

⇒ Dimension (exploitation)

i. Probleme

2. Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dan

2.2. Critère pour être une bas

2.3. Dimension d'un espace vectoriel

Corollaire - Maximalité de liberté

Soit (e_1, \ldots, e_n) une famille de vecteurs de E.

Soit $(x_j)_{j\in J}$ une famille de vecteurs de E qui sont combinaisons linéaires de (e_1,\ldots,e_n) (i.e. $\forall j\in J, x_j\in \mathrm{vect}(e_1,e_2,\ldots e_n)$).

Si $\operatorname{Card} J \ge n+1$ alors nécessairement la famille $(x_j)_{j\in J}$ est liée.

exploitation)

1. Problèmes

2. Bases et

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base

2.3. Dimension d'un espace

Corollaire - Maximalité de liberté

Soit (e_1, \ldots, e_n) une famille de vecteurs de E. Soit $(x_i)_{i \in J}$ une famille de vecteurs de E qui sont combinaisons linéaires de (e_1, \dots, e_n) (i.e. : $\forall j \in J, x_j \in \text{vect}(e_1, e_2, \dots e_n)$).

Si $\operatorname{Card} J \ge n+1$ alors nécessairement la famille $(x_i)_{i \in J}$ est liée.

Si l'espace vectoriel possède une famille libre infinie, alors il est de dimension infinie (au sens : il n'est pas de dimension finie).

Corollaire - Espace vectoriel de dimension infinie

Il existe des espaces vectoriels de dimension infinie. C'est en particulier le cas de $\mathbb{R}^{\mathbb{N}}$ ou de $\mathscr{F}(\mathbb{R},\mathbb{R})$.

1. Problèmes

2.3 Dimension d'un espace

Corollaire - Maximalité de liberté

Soit (e_1, \ldots, e_n) une famille de vecteurs de E.

Soit $(x_j)_{j\in J}$ une famille de vecteurs de E qui sont combinaisons linéaires de (e_1,\ldots,e_n) (i.e. : $\forall \ j\in J,\ x_j\in \mathrm{vect}(e_1,e_2,\ldots e_n)$).

Si $\operatorname{Card} J \ge n+1$ alors nécessairement la famille $(x_j)_{j\in J}$ est liée.

Si l'espace vectoriel possède une famille libre infinie, alors il est de dimension infinie (au sens : il n'est pas de dimension finie).

Corollaire - Espace vectoriel de dimension infinie

Il existe des espaces vectoriels de dimension infinie. C'est en particulier le cas de $\mathbb{R}^{\mathbb{N}}$ ou de $\mathscr{F}(\mathbb{R},\mathbb{R})$.

Démonstration

définition) ⇒ Dimension

1. Problèmes

2. Bases et

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base 2.3. Dimension d'un espace

2.3. Dimension d'un espace vectoriel

Le cardinal d'une base ne dépend que de l'espace!

Théorème - Dimension constante

Toutes les bases d'un \mathbb{K} -espace vectoriel E de dimension finie, non réduit au vecteur nul, ont même cardinal.

eçon 72 - Espace vectoriel

Dimension éfinition)

⇒ Dimension (exploitation)

1. Problèmes

2. Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base

2.3. Dimension d'un espace

(exploitation)

1. Problèmes

2. Bases et dimension

 2.1. Existence et unicité de l'écriture de tout vecteur dans une base

2.2. Critère pour être une base

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels e

Théorème - Dimension constante

Toutes les bases d'un \mathbb{K} -espace vectoriel E de dimension finie, non réduit au vecteur nul, ont même cardinal.

Démonstration

Soit E un \mathbb{K} -e.v. de dimension finie, non réduit au vecteur nul.

On appelle dimension de ${\cal E}$ le cardinal commun de toutes ses bases.

On le note $\dim E$ ou $\dim_{\mathbb{K}} E$.

Par convention $\dim\{0_E\} = 0$.

⇒ Dimension

Problèmes

2. Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2. Critère pour être une base

2.2. Critere pour etre une base 2.3. Dimension d'un espace

Soit E un \mathbb{K} -e.v. de dimension finie, non réduit au vecteur nul. On appelle dimension de E le cardinal commun de toutes ses bases.

On le note $\dim E$ ou $\dim_{\mathbb{K}} E$.

Par convention $\dim\{0_E\} = 0$.

Exemple Compléter

- $\dim_{\mathbb{K}} \mathbb{K}^n =$
- $\dim_{\mathbb{R}} \mathbb{C} =$
- $\dim_{\mathbb{R}} \mathbb{C}^n =$
- $\dim_{\mathbb{K}} \mathbb{K}_n[X] =$
- Pour $a \in \mathscr{C}(\mathbb{R}, \mathbb{K})$, $\dim_{\mathbb{K}} \{ y \in \mathscr{F}(\mathbb{R}, \mathbb{K}) \mid y' + a(t)y = 0 \} = 0$
- Pour $(a,b,c) \in \mathbb{K}^3$ fixé, $a \neq 0$,

 $\dim_{\mathbb{K}}\{y\in\mathcal{F}(\mathbb{R},\mathbb{K})\,|\,ay''+by'+cy=0\}=$

• Pour $(a,b,c) \in K^3$, $a \neq 0, c \neq 0$, $\dim_{\mathbb{K}} \{(u_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}} | au_{n+2} + bu_{n+1} + cu_n = 0\} =$ (définition)

⇒ Dimension

1. Problèmes

Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

.2. Critère pour être une base

2.3. Dimension d'un espace vectoriel

Théorème - Conséquence sur les cardinaux

Soit E un \mathbb{K} -e.v. de dimension $n \ge 1$. Alors :

- ▶ Une famille libre de E de cardinal p vérifie $p \le n$ et c'est une base si et seulement si p = n.
- ▶ Une famille génératrice de E de cardinal p vérifie $p \ge n$ et c'est une base si et seulement si p = n.

ine base 2.2. Critère pour être une base

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels

Théorème - Conséquence sur les cardinaux

Soit E un \mathbb{K} -e.v. de dimension $n \ge 1$. Alors :

- ▶ Une famille libre de E de cardinal p vérifie $p \le n$ et c'est une base si et seulement si p = n.
- ▶ Une famille génératrice de E de cardinal p vérifie $p \ge n$ et c'est une base si et seulement si p = n.

Démonstration

En général pour montrer qu'une famille d'un \mathbb{K} -e.v. de **dimension** n **connue** est une base on montre qu'elle est **libre de cardinal** n. (Dans de rares cas, on montre que la famille est génératrice et du bon cardinal).

> Dimension

⇒ Dimension (exploitation)

Problème

2. Bases e dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base

2.3. Dimension d'un espace

Savoir-faire. Montrer qu'une famille est une base

En général pour montrer qu'une famille d'un K-e.v. de **dimension** n connue est une base on montre qu'elle est libre de cardinal n. (Dans de rares cas, on montre que la famille est génératrice et du bon cardinal).

Exemple Dans $E = \mathbb{R}^n$

2.3 Dimension d'un espace

Savoir-faire. Montrer qu'une famille est une base

En général pour montrer qu'une famille d'un K-e.v. de **dimension** n connue est une base on montre qu'elle est libre de cardinal n. (Dans de rares cas, on montre que la famille est génératrice et du bon cardinal).

Exemple Dans $E = \mathbb{R}^n$

Exercice

Montrer que la famille des polynômes $(N_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$. Avec

$$N_0 = 1$$
 $\forall k \ge 1: N_k = \frac{X \times (X-1) \cdots (X-k+1)}{k!}$

Théorème - Dimension d'un produit cartésien

Soient E,F deux \mathbb{K} -e.v. de dimension finie. Alors $E\times F$ est de dimension finie et

 $\dim E \times F = \dim E + \dim F$.

eçon 72 - Espace vectoriel

définition)

⇒ Dimension (exploitation)

1. Problèmes

2. Bases et

 2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base

2.3. Dimension d'un espace

Théorème - Dimension d'un produit cartésien

Soient E,F deux \mathbb{K} -e.v. de dimension finie. Alors $E\times F$ est de dimension finie et

$$\dim E \times F = \dim E + \dim F$$
.

Démonstration

eçon 72 - Espace vectoriel

définition)

(exploitation)

1. Problèmes

Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base

2.3. Dimension d'un espace

1. Problèmes

Bases et dimension

 2.1. Existence et unicité de l'écriture de tout vecteur dans une base

2.2. Critère pour être une base

2.3. Dimension d'un espace vectoriel

2.4. Sous-espaces vectoriels e

Par récurrence :

Corollaire - Dimension d'un produit fini d'espaces vectoriels Soient E_1, \ldots, E_k des \mathbb{K} -e.v. de dimensions finies respectivement n_1, \ldots, n_k . Alors $E_1 \times \cdots \times E_k$ est de dimension finie égale à $n_1 + \cdots + n_k$.

1. Problèmes

2. Bases et dimension

- 2.4. Sous-espaces vectoriels en dimension finie

2. Bases et

Bases et dimension

 2.1. Existence et unicité de l'écriture de tout vecteur dans une base

2.2. Critère pour être une bas

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels en

Théorème - Dimension d'un sous-espace vectoriel

Soit E un \mathbb{K} -e.v. de dimension finie. Soit F un s.e.v de E. Alors F est de dimension finie, avec $\dim F \leqslant \dim E$. De plus

 $\dim F = \dim E$ si et seulement si E = F.

Bases et dimension

 2.1. Existence et unicité de l'écriture de tout vecteur dans une base

2.2. Critère pour être une base

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels en dimension finie

Théorème - Dimension d'un sous-espace vectoriel

Soit E un \mathbb{K} -e.v. de dimension finie. Soit F un s.e.v de E. Alors F est de dimension finie, avec $\dim F \leqslant \dim E$. De plus

 $\dim F = \dim E$ si et seulement si E = F.

Démonstration

Exploitation des dimensions

Savoir-faire. Montrer que deux espaces vectoriels sont égaux

Pour montrer que deux \mathbb{K} -e.v. E et F de **dimension finie** sont égaux, on montre généralement une inclusion et l'égalité des dimensions.

Leçon 72 - Espace vectoriel

(définition)

⇒ Dimension (exploitation)

1. Problémes

2. Bases et

2.1. Existence et unicité de l'écriture de tout vecteur dan

2.2. Critère pour être une base

Dimension d'un espace

2.4 Sous-espaces vectoriels er

Corollaire, S.e.v. de \mathbb{R}^2 et \mathbb{R}^3

égaux

dimensions.

Les sous-espaces vectoriels de \mathbb{R}^2 , autres que $\{0_{\mathbb{R}^2}\}$ et \mathbb{R}^2 , sont les droites vectorielles.

Savoir-faire. Montrer que deux espaces vectoriels sont

Pour montrer que deux \mathbb{K} -e.v. E et F de **dimension finie** sont

égaux, on montre généralement une inclusion et l'égalité des

Les sous-espaces vectoriels de \mathbb{R}^3 , autres que $\{0_{\mathbb{R}^3}\}$ et \mathbb{R}^3 , sont les droites vectorielles et les plans vectoriels.

Soit $(x_1, ..., x_p)$ une famille finie de vecteurs d'un \mathbb{K} -espace vectoriel.

On appelle rang de la famille $(x_1,...,x_p)$ la dimension du sous-espace vectoriel $\text{vect}(x_1,...,x_p)$:

$$\operatorname{rg}(x_1,\ldots,x_p)=\dim\operatorname{vect}(x_1,\ldots,x_p)$$

(définition)

⇒ Dimension (exploitation)

Problèmes

Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base

Dimension d'un espace

Définition - Rang d'une famille de vecteurs

Soit $(x_1,...,x_p)$ une famille finie de vecteurs d'un \mathbb{K} -espace vectoriel.

On appelle rang de la famille (x_1,\ldots,x_p) la dimension du sous-espace vectoriel $\text{vect}(x_1,\ldots,x_p)$:

$$\operatorname{rg}(x_1,\ldots,x_p)=\dim\operatorname{vect}(x_1,\ldots,x_p)$$

Comme $(x_1,...,x_p)$ est une famille génératrice de $\text{vect}(x_1,...,x_p)$, on peut affirmer

Proposition Majorant

$$\operatorname{rg}(x_1,\ldots,x_p) \leq p$$
. Et $\operatorname{rg}(x_1,\ldots,x_p) = p \ (\Rightarrow) \Longrightarrow (x_1,\ldots,x_p)$ est libre

Théorème - Base et dimension d'une somme directe

Soient E un \mathbb{K} -e.v. de dimension finie, E_1 et E_2 deux s.e.v de ESoient (e_1, \ldots, e_p) une base de E_1 et (f_1, \ldots, f_q) une base de E_2 .

Alors E_1 et E_2 sont en somme directe si et seulement si $(e_1,\ldots,e_n,f_1,\ldots,f_n)$ (juxtaposition des bases de E_1 et E_2) est libre.

Dans ce cas c'est une base de $E_1 \oplus E_2$ et on a

$$\dim E_1 \oplus E_2 = \dim E_1 + \dim E_2$$
.

Le résultat se généralise à plus de deux s.e.v.

Soient E un \mathbb{K} -e.v. de dimension finie, E_1 et E_2 deux s.e.v de ESoient (e_1, \ldots, e_p) une base de E_1 et (f_1, \ldots, f_q) une base de E_2 .

Alors E_1 et E_2 sont en somme directe si et seulement si $(e_1,\ldots,e_n,f_1,\ldots,f_n)$ (juxtaposition des bases de E_1 et E_2) est libre.

Dans ce cas c'est une base de $E_1 \oplus E_2$ et on a

$$\dim E_1 \oplus E_2 = \dim E_1 + \dim E_2.$$

Le résultat se généralise à plus de deux s.e.v.

Théorème - Caractérisation des couples de s.e.v supplémentaires

Soient E un e.v. de dimension finie n et F, G deux s.e.v de E. Alors

- $E = F \oplus G \Leftrightarrow F \cap G = \{0_E\}$ et $\dim F + \dim G = n$;
- $E = F \oplus G \Leftrightarrow F + G = E$ et $\dim F + \dim G = n$;
- $\bullet E = F \oplus G$
 - \Leftrightarrow la juxtaposition d'une base de F et d'une base de Gest une base de E.

Théorème - Caractérisation des couples de s.e.v supplémentaires

Soient E un e.v. de dimension finie n et F, G deux s.e.v de E. Alors

- $E = F \oplus G \Leftrightarrow F \cap G = \{0_E\}$ et $\dim F + \dim G = n$;
- $E = F \oplus G \Leftrightarrow F + G = E$ et $\dim F + \dim G = n$:
- $E = F \oplus G$
 - \Leftrightarrow la juxtaposition d'une base de F et d'une base de Gest une base de E.

Exercice

Montrer que dans \mathbb{R}^4 , F = vect((1, 2, -1, 0), (0, 2, 0, 1)) et G = vect((2,0,0,1),(1,0,0,1)) sont supplémentaires.

Théorème - Caractérisation des couples de s.e.v supplémentaires

Soient E un e.v. de dimension finie n et F, G deux s.e.v de E.

Alors

- $E = F \oplus G \Leftrightarrow F \cap G = \{0_E\}$ et $\dim F + \dim G = n$;
- $E = F \oplus G \Leftrightarrow F + G = E$ et $\dim F + \dim G = n$:
- $\bullet E = F \oplus G$
 - \Leftrightarrow la juxtaposition d'une base de F et d'une base de Gest une base de E.

Exercice

Montrer que dans \mathbb{R}^4 , F = vect((1, 2, -1, 0), (0, 2, 0, 1)) et G = vect((2,0,0,1),(1,0,0,1)) sont supplémentaires.

Existence d'un supplémentaire

Remarque - Famille libre $F \cap G = \emptyset$ & Famille génératrice : F + G = E.

Leçon 72 - Espace vectoriel

⇒ Dimens (définition)

⇒ Dimension (exploitation)

....

Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dan

2.2. Critère pour être une base

2.3. Dimension d'un espace vectoriel

⇒ Dimension (exploitation)

Problèmes

2. Bases et dimension

une base

2.2. Critère pour être une base

2.2. Critere pour etre une base
 2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels en

Remarque - Famille libre $F \cap G = \emptyset$ & Famille génératrice : F + G = E.

Théorème - Existence de supplémentaires en dimension finie

Soit E un \mathbb{K} -e.v. de dimension finie, F un s.e.v de E. Alors F admet au moins un supplémentaire dans E.

2. Bases et

2.4 Sous-espaces vectoriels en

Remarque - Famille libre $F \cap G = \emptyset$ & Famille génératrice : F+G=E.

Théorème - Existence de supplémentaires en dimension finie

Soit E un \mathbb{K} -e.v. de dimension finie, F un s.e.v de E. Alors Fadmet au moins un supplémentaire dans E.

Exercice

Remarque Processus algorithmique

Leçon 72 - Espace vectoriel

⇒ Dimer (définition

⇒ Dimension (exploitation)

i. Froblettie

Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur da

.2. Critère pour être une base

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels en dimension finie

2. Bases et dimension

 2.1. Existence et unicité de l'écriture de tout vecteur da une base

2.2. Critère pour être une base

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels en

Remarque Processus algorithmique

Exercice

 $\overline{\ \ \ \ \ \ \ \ \ \ \ }$ Donner $\overline{\ \ \ \ \ \ \ \ \ \ }$ un supplémentaire dans \mathbb{R}^4 de

 $F=\mathrm{vect}((1,1,1,1),(2,0,1,1),(-2,4,1,1))$

dimension

2.1. Existence et unicité de

une base

2.2. Critère pour être une base

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels en dimension finie

Théorème - Dimension d'une somme de deux s.e.v., relation de Grassman

Soient E un \mathbb{K} -e.v. de dimension finie, F,G deux s.e.v de E. Alors

 $\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$

2.4 Sous-espaces vectoriels en

Théorème - Dimension d'une somme de deux s.e.v., relation de Grassman

Soient E un \mathbb{K} -e.v. de dimension finie, F, G deux s.e.v de E. Alors

$$\dim(F+G)=\dim F+\dim G-\dim(F\cap G).$$

dimension
2.1. Existence et unicité de

une base

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels en

Théorème - Dimension et somme d'espaces vectoriels

Si F_1,\dots,F_p sont des s.e.v. de dimension finie de E \mathbb{K} -espace vectoriel, alors

$$\dim \sum_{i=1}^{p} F_i \leq \sum_{i=1}^{p} \dim F_i$$

avec égalité si et seulement si la somme est directe.

une base 2.2. Critère pour être une base

2.3. Dimension d'un espace

 Sous-espaces vectoriels en dimension finie

Théorème - Dimension et somme d'espaces vectoriels

Si F_1,\ldots,F_p sont des s.e.v. de dimension finie de E \mathbb{K} -espace vectoriel, alors

$$\dim \sum_{i=1}^{p} F_i \le \sum_{i=1}^{p} \dim F_i$$

avec égalité si et seulement si la somme est directe.

2.1. Existence et unicité de l'écriture de tout vecteur dans une base

2.2. Critère pour être une base

.3. Dimension d'un espace ectoriel

2.4. Sous-espaces vectoriels en

Définition - Droite et plan vectoriel

Soit E un \mathbb{K} -e.v. de dimension quelconque et soit F un s.e.v de E. On dit que

- F est une droite (vectorielle) si $\dim F = 1$;
- F est un plan (vectoriel) si $\dim F = 2$.

Objectifs

- ⇒ Dimension (définition)
- ⇒ Dimension (exploitation)

Leçon 72 - Espace vectoriel

⇒ Dimer (définition

⇒ Dimension (exploitation)

Problèmes

Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une bas

2.3. Dimension d'un espace

Objectifs

- ⇒ Dimension (définition)
 - Un espace est de dimension finie, lorsqu'il admet une famille une famille génératrice finie

Leçon 72 - Espace vectoriel

· Dimension éfinition)

Dimension exploitation)

...........

2. Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dan

2.2. Critère pour être une base

2.3. Dimension d'un espace vectoriel

Objectifs

- ⇒ Dimension (définition)
 - Un espace est de dimension finie, lorsqu'il admet une famille une famille génératrice finie
 - ▶ Dans ce cas, toutes les bases (nombreuses!!) ont le même cardinal, qui ne dépend que de E, appelé dimension de E

Leçon 72 - Espace vectoriel

(définition)

→ Dimension

exploitation)

...............................

2. Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une base

2.3. Dimension d'un espace vectoriel

- ⇒ Dimension (définition)
 - Un espace est de dimension finie, lorsqu'il admet une famille une famille génératrice finie
 - ▶ Dans ce cas, toutes les bases (nombreuses!!) ont le même cardinal, qui ne dépend que de E, appelé dimension de E
 - On a un processus constructif à partir d'une famille libre et d'une famille génératrice pour former une base de E (contenant toute la famille libre). C'est le lemme de Steinitz ou théorème de la base incomplète

2. Bases et

⇒ Dimension (définition)

- Un espace est de dimension finie, lorsqu'il admet une famille une famille génératrice finie
- ▶ Dans ce cas, toutes les bases (nombreuses!!) ont le même cardinal, qui ne dépend que de E, appelé dimension de E
- On a un processus constructif à partir d'une famille libre et d'une famille génératrice pour former une base de E (contenant toute la famille libre). C'est le lemme de Steinitz ou théorème de la base incomplète
- Exemples de dimension d'espace vectoriel classique, dont le produit cartésien.

1. Problème:

2. Bases et dimension

l'écriture de tout vecteur dans une base

2.2. Critère pour être une base

ectoriel

2.4. Sous-espaces vectoriels en firmension finie

Objectifs

- ⇒ Dimension (définition)
- ⇒ Dimension (exploitation)

Leçon 72 - Espace vectoriel

⇒ Dimer (définition

⇒ Dimension (exploitation)

Problèmes

Bases et dimension

2.1. Existence et unicité de l'écriture de tout vecteur dans

2.2. Critère pour être une bas

2.3. Dimension d'un espace

- ⇒ Dimension (exploitation)
 - Réciproquement, si l'on connait la dimension, on a un critère minimaliste pour reconnaitre une base.

2. Bases et

une base

2.2. Critère pour être une bas

2.3. Dimension d'un espace

2.4. Sous-espaces vectoriels e

Objectifs

- ⇒ Dimension (définition)
- ⇒ Dimension (exploitation)
 - Réciproquement, si l'on connait la dimension, on a un critère minimaliste pour reconnaitre une base.
 - Réciproquement, si l'on connait la dimension, on a un critère minimaliste pour reconnaitre deux espaces supplémentaires.

Objectifs

- ⇒ Dimension (définition)
- ⇒ Dimension (exploitation)
 - Réciproquement, si l'on connait la dimension, on a un critère minimaliste pour reconnaitre une base.
 - Réciproquement, si l'on connait la dimension, on a un critère minimaliste pour reconnaître deux espaces supplémentaires.
 - Formule de Grassman : $\dim F + G = \dim F + \dim G \dim(F \cap G)$

Objectifs

Pour le prochain cours

⇒ Dimension (définition)

⇒ Dimension (exploitation)

- Lecture du cours : chapitre 28 : Espace vectoriels de dimension finie
 - 3. Ecriture d'une application linéaire en dimension finie
- Exercice n° 513 & 517