

Leçon 70 - Espace vectoriel

Leçon 70 - Espace vectoriel

⇒ Somme

- de vecteurs
- I. Problem
- Structure d'espace vectoriel
- Sous-espaces vectoriels
- Applications linéaires
- 5. Familles de
- ecteurs
- 5.1. Sur-tamilie, sous-tamilie
- 2. Familles génératrice
- 5.3. Familles libres, liées 5.4. Image d'une famille de

- 1. Problèmes
- 2. Structure d'espace vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications linéaires
- Familles de vecteurs.
 - 5.1. Sur-famille, sous-famille
 - 5.2. Familles génératrices
 - 5.3. Familles libres, liées
 - 5.4. Image d'une famille de vecteurs par une application linéaire

- 1 Problèmes

- 5.1 Sur-famille sous-famille

- Problèmes
- 2. Structure d'espace vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications linéaires
- Familles de vecteurs
 - 5.1. Sur-famille, sous-famille

 - 5.4. Image d'une famille de vecteurs par une application

- 1 Problèmes

- 5.1 Sur-famille sous-famille

Problèmes

- Structure d'espace vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications
- 5. Familles de
- /ecteurs
- . r. Sur-iamilie, sous-iamili
- 2. Familles génératrices
- 5.3. Familles libres, liees

 5.4. Image d'une famille de

On considère toujours, E comme un \mathbb{K} -espace vectoriel.

Définition - Sur-famille et sous-famille

Soit $(x_i)_{i \in I}$ une famille d'éléments de E.

On appelle sur-famille de $(x_i)_{i \in I}$ toute famille $(x_j)_{j \in J}$ d'éléments de E telle que $I \subset J$.

On appelle sous-famille de $(x_i)_{i \in I}$ toute famille $(x_k)_{k \in K}$ d'éléments de E telle que $K \subset I$.

1 Problèmes

5.1 Sur-famille sous-famille

On considère toujours, E comme un \mathbb{K} -espace vectoriel.

Définition - Sur-famille et sous-famille

Soit $(x_i)_{i \in I}$ une famille d'éléments de E.

On appelle sur-famille de $(x_i)_{i \in I}$ toute famille $(x_i)_{i \in J}$ d'éléments de E telle que $I \subset J$.

On appelle sous-famille de $(x_i)_{i \in I}$ toute famille $(x_k)_{k \in K}$ d'éléments de E telle que $K \subset I$.

Exemple Interprétation géométrique

- 1. Problèmes
- 2. Structure d'espace vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications linéaires
- 5. Familles de vecteurs
 - 5.1. Sur-famille, sous-famille
 - 5.2. Familles génératrices
 - 5.3. Familles libres, liées
 - 5.4. Image d'une famille de vecteurs par une application

Leçon 70 - Espace vectoriel

⇒ Somme

⇒ A partir de famil de vecteurs

- 1. Problèmes
- Structure d'espace vectoriel
 - 3. Sous-espaces
- 4. Applications
- 5. Familles de
- ecteurs
- J. I. Gui-laitille, sous-laitille
- 5.2. Familles génératrices
- i.3. Familles libres, liées
- 5.4. Image d'une famille de vecteurs par une application

Soient $x_1, x_2, \dots x_n$, n éléments de E.

On dit que la famille $(x_1,...,x_n)$ est génératrice de F si $F = \text{vect}(x_1,...,x_n)$, c'est-à-dire si

$$\forall x \in F, \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \mid x = \sum_{i=1}^n \lambda_i \cdot x_i \quad \text{et} \quad \forall i \in \mathbb{N}_n, x_i \in F$$

⇒ Somme

⇒ A partir de famille de vecteurs

- 1. Problèmes
- Structure d'espace vectoriel
- Sous-espaces vectoriels
- 4. Applications linéaires
- 5. Familles de vecteurs
- 5.1. Sur-famille, sous-famille
- 5.2. Familles génératrices
- 5.4. Image d'une famille de vecteurs par une application

Définition - Famille génératrice

Soient $x_1, x_2, \dots x_n$, n éléments de E.

On dit que la famille $(x_1,...,x_n)$ est génératrice de F si $F = \text{vect}(x_1,...,x_n)$, c'est-à-dire si

$$\forall x \in F, \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \mid x = \sum_{i=1}^n \lambda_i \cdot x_i \quad \text{et} \quad \forall i \in \mathbb{N}_n, x_i \in F$$

Démonstration

⇒ Somme

⇒ A partir de famille de vecteurs

- 1. Problèmes
- Structure d'espace vectoriel
- Sous-espaces vectoriels
- 4. Applications
 - 5. Familles de
 - ecteurs
 - 5.1. Sur-tamille, sous-tamille
 - 5.2. Familles génératrices
 - 5.4. Image d'une famille de vecteurs par une application

Soient $x_1, x_2, \dots x_n$, n éléments de E.

On dit que la famille $(x_1,...,x_n)$ est génératrice de F si $F = \text{vect}(x_1,...,x_n)$, c'est-à-dire si

$$\forall x \in F, \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \mid x = \sum_{i=1}^n \lambda_i \cdot x_i \quad \text{et} \quad \forall i \in \mathbb{N}_n, x_i \in F$$

Démonstration

Remarque Partie génératrice

⇒ Somme

 ⇒ A partir de tamilie de vecteurs

- 1. Problèmes
- Structure d'espace vectoriel
- Sous-espaces vectoriels
- 4. Applications
 - 5. Familles de
 - vecteurs
 - J. I. Gui-laitille, sous-laitille
 - 5.2. Familles génératrices
 - 5.4. Image d'une famille de vecteurs par une application

Définition - Famille génératrice

Soient $x_1, x_2, \dots x_n$, n éléments de E.

On dit que la famille $(x_1,...,x_n)$ est génératrice de F si $F = \text{vect}(x_1,...,x_n)$, c'est-à-dire si

$$\forall x \in F, \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \mid x = \sum_{i=1}^n \lambda_i \cdot x_i \quad \text{et} \quad \forall i \in \mathbb{N}_n, x_i \in F$$

Démonstration

Remarque Partie génératrice

Exercice

Donner des exemples de familles génératrices de :

- $\bullet \mathbb{R}^2$
- $\bullet \mathbb{R}^3$
- le ℝ-e.v ℂ
- $\mathbb{K}_n[X]$
- de $\{y \in \mathcal{F}(\mathbb{R}, \mathbb{R}) | y'' + y' 2y = 0\}$ dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$

⇒ Somme

de vecteurs

- 1. Problèmes
- Structure d'espace vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications linéaires
 - 6. Familles de
 - ecteurs
 - 5.2. Familles génératrices
 - i.2. Familles génératrices
 - 5.4. Image d'une famille de vecteurs par une application

Parfois, en cherchant une famille génératrice de F, on se rend compte que tout vecteur de F s'écrit comme une C.L. des vecteurs $(f_1, f_2, \cdots f_p)$.

L'erreur consisterait à écrire que $F = \text{vect}(f_1, f_2, \dots, f_p)$. La seule chose qu'on ait, est une inclusion $F \subset \text{vect}(f_1, \dots f_p)$.

Il faut donc vérifier l'inclusion réciproque : est-ce que tout $f_i \in F$?

1 Problèmes

Combinatoire de famille génératrice

Remarque Permutation

Leçon 70 - Espace vectoriel

⇒ Somme

⇒ A partir de famille de vecteurs

- Problèmes
- Structure d'espace vectoriel
- Sous-espaces vectoriels
- 4. Applications
- 5. Familles de
- ecteurs
- . r. our larino, sous larin
- 5.2. Familles génératrices
- 5.4. Image d'une famille de
- vecteurs par une application linéaire

Combinatoire de famille génératrice

Remarque Permutation

Si la famille (x_i) est génératrice de E, ajouter d'autres vecteurs à la famille ne peut pas faire perdre le caractère générateur de la famille :

çon 70 - Espace vectoriel

⇒ Somme

⇒ A partir de famille de vecteurs

- 1. Problèmes
- Structure d'espace vectoriel
 - Sous-espaces vectoriels
- 4. Applications linéaires
- 5. Familles de
- ecteurs
- 5.1. Our lanning, 5005 lanning
- 5.2. Familles génératrices
- 5.4. Image d'une famille de vecteurs par une application

Si la famille (x_i) est génératrice de E, ajouter d'autres vecteurs à la famille ne peut pas faire perdre le caractère générateur de la famille :

Proposition

Toute sur-famille d'une famille génératrice de E est encore génératrice de E.

- ⇒ A partir de famili de vecteurs
- Problèmes
- Structure d'espace vectoriel
 - Sous-espaces vectoriels
- Applications linéaires
- 5. Familles de
- ecteurs
- o. r. our-lamille, sous-lamille
- 5.2. Familles génératrices
- 5.4. Image d'une famille de vecteurs par une application

- 1. Problèmes
- Structure d'espace vectoriel
 - Sous-espaces vectoriels
- Applications
 Inéaires
- 5. Familles de
- ecteurs
- 5.1. Sur-tamille, sous-tamil
- 5.2. Familles génératrices
- 6.4. Image d'une famille de recteurs par une application

Remarque Permutation

Si la famille (x_i) est génératrice de E, ajouter d'autres vecteurs à la famille ne peut pas faire perdre le caractère générateur de la famille :

Proposition

Toute sur-famille d'une famille génératrice de E est encore génératrice de E.

Démonstration

Famille génératrice minimale, infinie

Définition - Famille génératrice minimale de E

On dit que la famille $(x_i)_{i \in I}$ est une famille génératrice minimale de E, si aucune sous-famille stricte $(x_i)_{i \in H}$ n'est génératrice de E (avec $H \subset I$ et $H \neq I$).

eçon 70 - Espace vectoriel

⇒ Somme

⇒ A partir de fami de vecteurs

- Problèmes
- Structure d'espace vectoriel
- 3. Sous-espaces
- 4. Applications
- 5. Familles de
- ecteurs
- J. I. Gui-laitille, sous-laitille
- 5.2. Familles génératrices
- 5.4. Image d'une famille de vecteurs par une application

On dit que la famille $(x_i)_{i\in I}$ est une famille génératrice minimale de E, si aucune sous-famille stricte $(x_i)_{i\in H}$ n'est génératrice de E (avec $H\subset I$ et $H\neq I$).

Définition - Généralisation (I potentiellement infini)

La famille d'éléments de E $(x_i)_{i\in I}$ (I infini) est dite génératrice de E, si $\mathrm{vect}((x_i)_{i\in I})=E$,

c'est-à-dire si tout élément de E s'écrit comme une combinaison linéaire d'un nombre fini d'éléments de E.

1. Problèmes

- Structure d'espace
 vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications linéaires
- 5. Familles de
- ecteurs
- 5.1. Sur-lamille, sous-lamille
- .2. Familles génératrices
- 5.4. Image d'une famille de vecteurs par une application

- base)
- Problèmes
- 2. Structure d'espace vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications linéaires
- Familles de vecteurs.

 - 5.3. Familles libres, liées
 - 5.4. Image d'une famille de vecteurs par une application

Lecon 70 - Espace

- 1 Problèmes

Définition - Famille libre (ou vecteurs linéairement indépendants)

Soit $(x_1, ..., x_n)$ une famille de vecteurs de E.

On dit que cette famille est une famille libre (ou que x_1, \ldots, x_n sont des vecteurs linéairement indépendants) si

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \, \lambda_1.x_1 + \dots + \lambda_n.x_n = 0_E \Rightarrow \lambda_1 = \dots = \lambda_n = 0$$

Si la famille n'est pas libre, on dit qu'elle est liée (ou que x_1,\ldots,x_n sont des vecteurs linéairement dépendants), c'est-à-dire qu'il existe $(\lambda_1,\ldots,\lambda_n) \neq (0,\ldots,0)$ (non tous nuls) tel que $\lambda_1.x_1+\cdots+\lambda_n.x_n=0_E$.

→ Somme

- de vecteurs
- 1. Problèmes
- Structure d'espace vectoriel
 - Sous-espaces vectoriels
 - 4. Applications linéaires
 - 5. Familles de vecteurs
 - 5.1. Sur-famille, sous-famille
 - 5.2. Familles génératrices
 - 5.3. Families libres, liees
 5.4. Image d'une famille de vecteurs par une application

Soit $(x_1, ..., x_n)$ une famille de vecteurs de E.

On dit que cette famille est une famille libre (ou que $x_1,...,x_n$ sont des vecteurs linéairement indépendants) si

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \, \lambda_1.x_1 + \dots + \lambda_n.x_n = 0_E \Rightarrow \lambda_1 = \dots = \lambda_n = 0$$

Si la famille n'est pas libre, on dit qu'elle est liée (ou que x_1,\ldots,x_n sont des vecteurs linéairement dépendants), c'est-à-dire qu'il existe $(\lambda_1,\ldots,\lambda_n) \neq (0,\ldots,0)$ (non tous nuls) tel que $\lambda_1.x_1+\cdots+\lambda_n.x_n=0_E$.

Remarque Interprétation importante!

⇒ Somme

⇒ A partir de t de vecteurs

- 1. Problèmes
- Structure d'espace vectoriel
 - Sous-espaces vectoriels
 - 4. Applications linéaires
 - 5. Familles de vecteurs
 - 5.1. Sur-famille, sous-famill
 - 5.2. Familles génératrices
 - i.3. Familles libres, lié
 - 5.4. Image d'une famille de vecteurs par une application

Soit $(x_1,...,x_n)$ une famille de vecteurs de E.

- Si n = 1, la famille est liée si et seulement si $x_1 = 0_E$.
- ▶ Si l'un des x_i est égal à 0_E , alors la famille est liée.
- Si $x_i = x_j$ pour $i \neq j$, alors la famille est liée.
- Si l'un des vecteurs est combinaison linéaire des autres alors la famille est liée.
- ▶ Réciproquement, si $n \ge 2$ et si la famille est liée, alors l'un des vecteurs au moins est combinaison linéaire des autres.

- 1. Problèmes
- vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications linéaires
- 5. Familles de
- 5.1. Sur-famille, sous-famille
- 5.2 Familles nénératrices
- .3. Familles libres, lie
- 5.4. Image d'une famille de vecteurs par une application

Soit (x_1, \ldots, x_n) une famille de vecteurs de E.

- Si n=1, la famille est liée si et seulement si $x_1=0_E$.
- \triangleright Si l'un des x_i est égal à 0_E , alors la famille est liée.
- Si $x_i = x_j$ pour $i \neq j$, alors la famille est liée.
- Si l'un des vecteurs est combinaison linéaire des autres. alors la famille est liée.
- Réciproguement, si $n \ge 2$ et si la famille est liée, alors l'un des vecteurs au moins est combinaison linéaire des autres.

Démonstration

1 Problèmes

Pour 2 vecteurs : la colinéarité

Remarque Colinéarité (DEUX vecteurs)

Leçon 70 - Espace vectoriel

⇒ Somme

⇒ A partir de familles de vecteurs

- Problèmes
- Structure d'espace vectoriel
 - Sous-espaces vectoriels
- 4. Application linéaires
- 5. Familles de
- ecteurs
- . 1. Gui-laitille, sous-laitille
- .2. Families generatrices
- 5.3. Familles libres, li
- 5.4. Image d'une famille de vecteurs par une application

Exercice

Compléter :

• dans
$$\mathbb{R}^3$$
 avec $x_1 = (1,0,2), x_2 = (1,1,1) = x_3$
 (x_1,x_2,x_3) est $(x_1,x_2,2x_3)$ est

$$(x_1, x_2)$$
 est (x_1) est

dans le ℝ-e.v C.

(1,i) est

(1, j) est

(1,i,j) est

- dans \mathbb{R}^2 , ((1,0),(0,1)) est
- dans $\mathbb{K}_n[X]$, $(1, X, X^2, \dots, X^n)$ est
- dans $\mathcal{F}(\mathbb{R},\mathbb{R})$, (cos, sin) est

1. Problèmes

- Structure d'espace vectoriel
- Sous-espaces vectoriels
- Application linéaires
- 5. Familles de
 - 1. Sur-famille, sous-famille
 - A F----
 - -
 - Familles libres, lié
- 5.4. Image d'une famille de vecteurs par une application linéaire

Exercice

On note $f_k: x \mapsto e^{-kx}$. Montrer que pour tout $n \in \mathbb{N}$, la famille (f_0, \ldots, f_n) est une famille libre de $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

1 Problèmes

La proposition suivante découle des définitions :

Proposition - Manipulation des termes de la famille

Une permutation des vecteurs ne change pas le caractère libre ou lié d'une famille.

Toute sous-famille d'une famille libre est libre.

Toute sur-famille d'une famille liée est liée.

1 Problèmes

La proposition suivante découle des définitions :

Proposition - Manipulation des termes de la famille

Une permutation des vecteurs ne change pas le caractère libre ou lié d'une famille.

Toute sous-famille d'une famille libre est libre.

Toute sur-famille d'une famille liée est liée.

Démonstration

Famille libre maximale, infinie

Définition - Famille libre maximale

On dit que la famille $(x_i)_{i\in I}$ est une famille libre maximale dans E, si aucune sur-famille stricte $(x_i)_{i\in J}$ n'est libre (avec $I\subset J$ et $I\neq J$).

Leçon 70 - Espace vectoriel

⇒ Somme

⇒ A partir de famille le vecteurs

- . Problèmes
- Structure d'espace vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications
- 5. Familles de
- ecteurs 5.1. Sur-famille sous-fami
- E 2 Camillos gónóratrigos
- 2. Families generatrices
- 5.4. Image d'une famille de vecteurs par une application linéaire

Problèmes

Structure d'espace vectoriel

3. Sous-espaces vectoriels

4. Application

5. Familles de

vecteurs

- 5.2 Famillos nánáratricos
- 5.2. Families generatrices
- 5.3. Familles libres, liées
- 5.4. Image d'une famille de vecteurs par une application

Définition - Famille libre maximale

On dit que la famille $(x_i)_{i \in I}$ est une famille libre maximale dans E, si aucune sur-famille stricte $(x_i)_{i \in J}$ n'est libre (avec $I \subset J$ et $I \neq J$).

Définition - Généralisation

Une famille infinie $(x_i)_{i \in I}$ d'éléments de E est dite libre si toute sous-famille finie est libre.

Exemple avec $\mathbb{K}[X]$

Exemple Famille libre infinie...

Leçon 70 - Espace vectoriel

⇒ Somme

⇒ A partir de famille de vecteurs

- Problèmes
- Structure d'espace
 vectoriel
 - Sous-espaces

 vectoriels
 - 4. Applications
 - 5. Familles de
 - ecteurs
 - r. our larring, sous larring
 - z. rammes generames
 - .3. Familles libres, lie
- 5.4. Image d'une famille de vecteurs par une application

1 Problèmes

5.3 Familles libres liées

Exemple Famille libre infinie...

Et plus généralement :

Théorème - Degrés échelonnés

Toute famille de polynômes non nuls à coefficients dans K de degrés échelonnés (distincts deux à deux...) est libre dans $\mathbb{K}[X]$.

1 Problèmes

Exemple Famille libre infinie...

Et plus généralement :

Théorème - Degrés échelonnés

Toute famille de polynômes non nuls à coefficients dans K de degrés échelonnés (distincts deux à deux...) est libre dans $\mathbb{K}[X]$.

Démonstration

Théorème - Application linéaire et familles de vecteurs

Soit $u \in \mathcal{L}(E,F)$.

- Si $(x_i)_{i \in I} \in E^I$, alors $u(\operatorname{vect}(x_i)) = \operatorname{vect}(u(x_i))$.
- Si u est injective alors l'image par u d'une famille libre de E est une famille libre de F. Réciproquement, si l'image par u de n'importe quelle famille libre de E est libre, alors u est injective.
- Si u est surjective alors l'image par u d'une famille génératrice de E (s'il en existe) est une famille génératrice de F.
- Si u est un isomorphisme, l'image par u d'une base de E (s'il en existe) est une base de F. Réciproquement, si il existe une base \mathscr{B} de E telle que son image par u soit une base de F, alors u est un isomorphisme.

A monthly

- de vecteurs
- 1. Problèmes
- Structure d'espace vectoriel
- Sous-espaces vectoriels
- 4. Applications linéaires
- 5. Familles de vecteurs
- 5.1. Sur-famille, sous-famille
- 5.2. Familles génératrices
- 5.3. Familles libres, lièes
 5.4. Image d'une famille de vecteurs par une application
- vecteurs par une application linéaire

Théorème - Application linéaire et familles de vecteurs

Soit $u \in \mathcal{L}(E,F)$.

- Si $(x_i)_{i \in I} \in E^I$, alors $u(\operatorname{vect}(x_i)) = \operatorname{vect}(u(x_i))$.
- Si u est injective alors l'image par u d'une famille libre de E est une famille libre de F. Réciproquement, si l'image par u de n'importe quelle famille libre de E est libre, alors u est injective.
- Si u est surjective alors l'image par u d'une famille génératrice de E (s'il en existe) est une famille génératrice de F.
- Si u est un isomorphisme, l'image par u d'une base de E (s'il en existe) est une base de F. Réciproquement, si il existe une base \mathscr{B} de E telle que son image par u soit une base de F, alors u est un isomorphisme.

→ A partir

- 1 Problèmes
- Structure d'espace vectoriel
- 3. Sous-espaces vectoriels
- 4. Applications linéaires
- . Familles de
- 5.1. Sur-famille, sous-famille
- 2. Familles génératrices
- 5.4. Image d'une famille de vecteurs par une application

Démonstration

Remarques

Remarque Réciproque pour la sujectivité?

Lecon 70 - Espace vectoriel

- vecteurs par une application linéaire

- 1. Problèmes
- Structure d'espace vectoriel
- Sous-espaces vectoriels
- Application linéaires
- 5. Familles de
 - ecteurs
 - 1. Sur-lamine, sous-lamine
 - 2. Familles génératrices
 - 4. Image d'une famille de
- linéaire

Remarque Réciproque pour la sujectivité ? <u>Exercice</u> Retrouver l'image de l'application linéaire $u: \mathbb{R}^3 \to \mathbb{R}^2$, $(x,y,z) \mapsto (x+y-z,x-y+2z)$ **Objectifs**

base)

⇒ Espace vectoriel à partir de familles de vecteurs (atomes de

1. Problèmes

- Structure d'espace vectoriel
 - 8. Sous-espaces
- 4. Applications linéaires
- 5. Familles de vecteurs
- ecteurs
-
- i.2. Familles génératrices
- .3. Familles libres, liées
- 5.4. Image d'une famille de vecteurs par une application linéaire

- ⇒ Espace vectoriel à partir de familles de vecteurs (atomes de base)
 - Sur-famille (extension) et sous-famille (extraction)

- ⇒ A partir de famille de vecteurs
- 1. Problèmes
- Structure d'espace vectoriel
- Sous-espaces
 vectoriels
- 4. Applications linéaires
- 5. Familles de
- ecteurs
- 2. Familles génératrices
- 5.4. Image d'une famille de vecteurs par une application

⇒ Espace vectoriel à partir

- \Rightarrow Espace vectoriel à partir de familles de vecteurs (atomes de base)
 - Sur-famille (extension) et sous-famille (extraction)
 - Famille génératrice de F. Toute sur-famille reste génératrice de F. \iff Surjectivité de Φ

- ⇒ A partir de famille de vecteurs
- 1. Problèmes
- Structure d'espace vectoriel
 - 3. Sous-espaces
- 4. Applications
 - 5. Familles de
 - ecteurs
 - Sur-tamille, sous-tamille
 - 2. Familles génératrices
- 5.4. Image d'une famille de vecteurs par une application

⇒ Espace vectoriel à partir de familles de vecteurs (atomes de base)

- Sur-famille (extension) et sous-famille (extraction)
- Famille génératrice de F. Toute sur-famille reste génératrice de F. \iff Surjectivité de Φ
- Famille libre. Toute sous-famille reste libre.
 - \iff Injectivité de Φ

- → A partir de iai de vecteurs
- 1. Problèmes
- Structure d'espace vectoriel
 - Sous-espaces
- 4. Applications
- 5. Familles de
- ecteurs
- Sur-tamille, sous-tamille
- . Familles génératrices
- 5.4. Image d'une famille de vecteurs par une application

Objectifs

⇒ Espace vectoriel à partir de familles de vecteurs (atomes de base)

- Sur-famille (extension) et sous-famille (extraction)
- Famille génératrice de F. Toute sur-famille reste génératrice de F. \iff Surjectivité de Φ
- Famille libre. Toute sous-famille reste libre.
 - ← Injectivité de Φ
- Stabilité par un endomorphisme

- 1. Problèmes

1. Problèmes

- Structure d'espace vectoriel
 - 3. Sous-espaces vectoriels
- Applications linéaires
- 5. Familles de
- E 1 Sur famillo sous for
-
- .2. Familles génératrices
- 3. Familles libres, liées
- 5.4. Image d'une famille de vecteurs par une application linéaire

Objectifs

⇒ Espace vectoriel à partir de familles de vecteurs (atomes de base)

Pour le prochain cours

- Lecture du cours : chapitre 28 : Espace vectoriels de dimension finie
- Exercice n° 473 & 499