

Leçon 91 - Variables aléatoires

- Problemes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
- 5.1. Espérance
- 5.2. Varia
- 5.3. Covariance (de deux

- 1. Problèmes
- 2. Variable aléatoire
- 3. Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
 - 5.2. Variance
 - 5.3. Covariance (de deux variables aléatoires)

on 91 - Variables aléatoires

Espérance

- Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - .1. Espérance
 -
- 5.3. Covariance (de deux

- 1. Problèmes
- 2. Variable aléatoire
- 3. Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
 - 5.2 Variance
 - 5.3. Covariance (de deux variables aléatoires)

on 91 - Variables aléatoires

Espérance

- . Problemes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
- 5.1. Espérance
- 5.2 Variano
- 5.3. Covariance (de deux

- 1. Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- 5.2. Varian
- 5.3. Covariance (de deux

 (Ω, \mathbf{P}) désigne un espace probabilisé fini.

Définition - Espérance. Loi centrée

Soit X une v.a. réelle, $X(\Omega) = \{x_1, \dots, x_n\}$.

On appelle **espérance** de X le réel noté $\mathbf{E}(X)$ défini par :

$$\mathbf{E}(X) = \sum_{k=1}^{n} x_k \mathbf{P}(X = x_k) = \sum_{x \in X(\Omega)} x \mathbf{P}(X = x)$$

X est dite **centrée** si $\mathbf{E}(X) = 0$.

Soit (Ω, \mathbf{P}) un espace de probabilité fini

- ▶ si X est constante égale à a alors $\mathbf{E}(X) = a$;
- ▶ si $X \hookrightarrow \mathcal{B}(p)$ alors $\mathbf{E}(X) = p$;
- ▶ si $X \hookrightarrow \mathcal{B}(n,p)$ alors $\mathbf{E}(X) = np$.

- 1 Dunblama
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1 Espérance
- .1. Esperance
- 5.3. Covariance (de deux

5.1 Espérance

Proposition - Espérance des lois usuelles

Soit (Ω, \mathbf{P}) un espace de probabilité fini

- ightharpoonup si X est constante égale à a alors $\mathbf{E}(X) = a$;
- ightharpoonup si $X \hookrightarrow \mathcal{B}(p)$ alors $\mathbf{E}(X) = p$;
- ightharpoonup si $X \hookrightarrow \mathcal{B}(n,p)$ alors $\mathbf{E}(X) = np$.

Démonstration

Soit (Ω, \mathbf{P}) un espace de probabilité fini

- ▶ si X est constante égale à a alors $\mathbf{E}(X) = a$;
- ▶ si $X \hookrightarrow \mathcal{B}(p)$ alors $\mathbf{E}(X) = p$;
- ▶ si $X \hookrightarrow \mathcal{B}(n,p)$ alors $\mathbf{E}(X) = np$.

Démonstration

Savoir-faire. Exploitation d'indicatrice (2)

Si $A\subset\Omega$ est un événement, alors $\mathbb{1}_A\hookrightarrow \mathscr{B}(\mathbf{P}(A))$ et donc $\mathbf{E}(\mathbb{1}_A)=\mathbf{P}(A)$.

On exploitera cette relation associée à des propriétés essentielles de l'espérance (linéarité...).

- 1. Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- 5.1. Laperance
- 5.3. Covariance (de deux

Formule de transfert

Proposition - Formulation équivalente

Soit X une v.a.r. On a $\mathbf{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathbf{P}(\{\omega\})$.

Leçon 91 - Variables aléatoires

⇒ Espéranci

- Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
 - 4. Indépendance
 - 5. Moments d'une variable aléatoire
 -
 - 5.1. Espérance
 - 5.3. Covariance (de deux

I. Problemes

Variable aléatoire

Couples de variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire réelle finie

5.1. Espérance

5.2 Variance

5.3. Covariance (de deux

Proposition - Formulation équivalente

Soit X une v.a.r. On a $\mathbf{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathbf{P}(\{\omega\})$.

On peut aussi noter que, si $X(\Omega) = \{x_1, x_2, \dots x_p\},\$

$$X = \sum_{i=1}^{p} x_i \mathbb{1}_{[X=x_i]}$$

- Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
 - 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
 - 5.2. Variano
 - 5.3. Covariance (de deux

Proposition - Formulation équivalente

Soit X une v.a.r. On a $\mathbf{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathbf{P}(\{\omega\})$.

On peut aussi noter que, si $X(\Omega) = \{x_1, x_2, \dots x_p\},\$

$$X = \sum_{i=1}^{p} x_i \, \mathbb{I}_{[X = x_i]}$$

Démonstration

variables aléatoire

4. Indépendance

5. Moments d'une variable aléatoire

5.1 Esnérance

.1. Esperanci

5.3. Covariance (de deux

Théorème - Formule de transfert

Soient X une v.a. définie sur Ω , à valeurs dans un ensemble E et $g: X(\Omega) = \{x_1, \dots, x_n\} \to \mathbb{R}$.

Alors l'espérance de la v.a.r. Z = g(X) est donnée par la formule :

 $\mathbf{E}(Z) = \sum_{k=1}^{n} g(x_k) \mathbf{P}(X = x_k) = \sum_{x \in X(\Omega)} g(x) \mathbf{P}(X = x)$

variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire

5.1. Espérance

5.2. Variar

5.3. Covariance (de deux

Théorème - Formule de transfert

Soient X une v.a. définie sur Ω , à valeurs dans un ensemble E et $g: X(\Omega) = \{x_1, \dots, x_n\} \to \mathbb{R}$.

Alors l'espérance de la v.a.r. Z = g(X) est donnée par la formule :

$$\mathbf{E}(Z) = \sum_{k=1}^{n} g(x_k) \mathbf{P}(X = x_k) = \sum_{x \in X(\Omega)} g(x) \mathbf{P}(X = x)$$

C'est-à-dire que l'on n'a pas besoin de connaître la loi de ${\cal Z}$ pour calculer son espérance, la loi de ${\cal X}$ suffit.

Couples de variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire

5.1. Espérance

2 Variance

5.3. Covariance (de deux

Théorème - Formule de transfert

Soient X une v.a. définie sur Ω , à valeurs dans un ensemble E et $g: X(\Omega) = \{x_1, \dots, x_n\} \to \mathbb{R}$.

Alors l'espérance de la v.a.r. Z = g(X) est donnée par la formule :

$$\mathbf{E}(Z) = \sum_{k=1}^{n} g(x_k) \mathbf{P}(X = x_k) = \sum_{x \in X(\Omega)} g(x) \mathbf{P}(X = x)$$

C'est-à-dire que l'on n'a pas besoin de connaître la loi de ${\it Z}$ pour calculer son espérance, la loi de ${\it X}$ suffit.

Démonstration

Corollaires

Corollaire - Application : pseudo-linéarité

Soient X une v.a.r., a et b deux réels. Alors $\mathbf{E}(aX+b)=a\mathbf{E}(X)+b$.

En particulier $X - \mathbf{E}(X)$ est une v.a. centrée (appelée v.a. centrée associée à X).

Leçon 91 - Variables aléatoires

⇒ Espérance

- Problèmes
- Variable aléatoire
- Couples de variables aléatoires
 - 1. Indépendance
 - i. Moments d'une variable aléatoire éelle finie
- 5.1. Espérance
 - 2 Variance
- 5.3. Covariance (de deux

Corollaires

Corollaire - Application : pseudo-linéarité

Soient X une v.a.r., a et b deux réels. Alors

$$\mathbf{E}(aX+b)=a\mathbf{E}(X)+b.$$

En particulier $X - \mathbf{E}(X)$ est une v.a. centrée (appelée v.a. centrée associée à X).

Démonstration

Leçon 91 - Variables aléatoires

⇒ Espérance

- Problèmes
- Variable aléatoire
- Couples de variables aléatoires
 - 4. Indépendance
 - i. Moments d'une rariable aléatoire éelle finie
 - 5.1. Espérance
 - 2 Variance
- 5.3. Covariance (de deux

Soient X une v.a.r., a et b deux réels. Alors

$$\mathbf{E}(aX+b)=a\mathbf{E}(X)+b.$$

En particulier $X - \mathbf{E}(X)$ est une v.a. centrée (appelée v.a. centrée associée à X).

Démonstration

Corollaire - Espérance de couple

Soient (X,Y) un couple de v.a. définies sur Ω et $g:(X,Y)(\Omega) \to \mathbb{R}$.

Alors l'espérance de la v.a.r. g(X,Y) est donnée par la formule :

$$\mathbf{E}(g(X,Y)) = \sum_{(x,y)\in(X,Y)(\Omega)} g(x,y) \mathbf{P}(X,Y) = (x,y)$$

⇒ Espérance

- I. Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- E O Mariana
- 5.3. Covariance (de deux

Soient X une v.a.r., a et b deux réels. Alors

$$\mathbf{E}(aX+b)=a\mathbf{E}(X)+b.$$

En particulier $X - \mathbf{E}(X)$ est une v.a. centrée (appelée v.a. centrée associée à X).

Démonstration

Corollaire - Espérance de couple

Soient (X,Y) un couple de v.a. définies sur Ω et $g:(X,Y)(\Omega) \to \mathbb{R}$.

Alors l'espérance de la v.a.r. g(X,Y) est donnée par la formule :

$$\mathbf{E}(g(X,Y)) = \sum_{(x,y)\in(X,Y)(\Omega)} g(x,y) \mathbf{P}(X,Y) = (x,y)$$

Démonstration

⇒ Espérance

- Problème:
- Variable aléatoire
- Couples de variables aléatoires
- Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- 5.2 Variance
- 5.3. Covariance (de deux

Soient X une v.a.r., a et b deux réels. Alors

$$\mathbf{E}(aX+b)=a\mathbf{E}(X)+b.$$

En particulier $X - \mathbf{E}(X)$ est une v.a. centrée (appelée v.a. centrée associée à X).

Démonstration

Corollaire - Espérance de couple

Soient (X,Y) un couple de v.a. définies sur Ω et $g:(X,Y)(\Omega) \to \mathbb{R}$.

Alors l'espérance de la v.a.r. g(X,Y) est donnée par la formule :

$$\mathbf{E}(g(X,Y)) = \sum_{(x,y)\in(X,Y)(\Omega)} g(x,y) \mathbf{P}(X,Y) = (x,y)$$

Démonstration

On peut généraliser la formule à une v.a. du type $g(X_1, \dots, X_n)$.

⇒ Espérance

→ variance Covariance

- . Problémes
- 2. Variable aleatoire
- 3. Couples de variables aléatoires
- Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- . 1. Laperanio
- 5.3. Covariance (de deux

Proposition - Propriétés

Si X et Y sont deux v.a.r. (plus généralement si X_1,\cdots,X_n sont n v.a.r) définies sur un même espace probabilisé fini (Ω,\mathbf{P}) . Alors :

- i) $\mathbf{E}(\lambda X + \mu Y) = \lambda \mathbf{E}(X) + \mu \mathbf{E}(Y)$ (linéarité de l'espérance)
- ii) si $X \ge 0$ p.s. alors $\mathbf{E}(X) \ge 0$ (positivité de l'espérance)
- iii) si $X \ge 0$ p.s. et $\mathbf{E}(X) = 0$ alors X = 0 p.s.
- iv) si $X \le Y$ p.s. alors $\mathbf{E}(X) \le \mathbf{E}(Y)$ (croissance)
- v) si X, Y sont indépendantes, $\mathbf{E}(XY) = \mathbf{E}(X)\mathbf{E}(Y)$
- vi) $\mathbf{E}(X_1 + X_2 + \dots + X_n) = \mathbf{E}(X_1) + \mathbf{E}(X_2) + \dots + \mathbf{E}(X_n)$
- vii) si X_1, \dots, X_n sont indépendantes, $\mathbf{E}(X_1X_2 \dots X_n) = \mathbf{E}(X_1)\mathbf{E}(X_2) \dots \mathbf{E}(X_n)$

⇒ Espérance

- 1. Problèmes
- 2. Variable aléatoire
 - 3. Couples de variables aléatoires
 - 4. Indépendance
 - 6. Moments d'une variable aléatoire
 - 5.1. Espérance
 - 5.2. Variance
 - 5.3. Covariance (de deux

Propriétés (d'intégrale)

Proposition - Propriétés

Si X et Y sont deux v.a.r. (plus généralement si X_1,\cdots,X_n sont n v.a.r.) définies sur un même espace probabilisé fini (Ω,\mathbf{P}) . Alors :

- i) $\mathbf{E}(\lambda X + \mu Y) = \lambda \mathbf{E}(X) + \mu \mathbf{E}(Y)$ (linéarité de l'espérance)
- ii) si $X \ge 0$ p.s. alors $\mathbf{E}(X) \ge 0$ (positivité de l'espérance)
- iii) si $X \ge 0$ p.s. et $\mathbf{E}(X) = 0$ alors X = 0 p.s.
- iv) si $X \le Y$ p.s. alors $\mathbf{E}(X) \le \mathbf{E}(Y)$ (croissance)
- v) si X,Y sont indépendantes, $\mathbf{E}(XY) = \mathbf{E}(X)\mathbf{E}(Y)$
- vi) $\mathbf{E}(X_1 + X_2 + \dots + X_n) = \mathbf{E}(X_1) + \mathbf{E}(X_2) + \dots + \mathbf{E}(X_n)$
- vii) si X_1, \dots, X_n sont indépendantes, $\mathbf{E}(X_1X_2 \dots X_n) = \mathbf{E}(X_1)\mathbf{E}(X_2) \dots \mathbf{E}(X_n)$

- Loperance

- 1. Problèmes
- Variable aléatoire
- 3. Couples de variables aléatoires
- Indépendance
- i. Moments d'une rariable aléatoire
- 5.1. Espérance
- 5.2. Variance
- 5.3. Covariance (de deux

Applications

Remarque Espérance d'une loi binomiale

Leçon 91 - Variables aléatoires

> Espérance

- i. Problemes
- 2. Variable aléatoire
- Couples de variables aléatoires
 - 4. Indépendance
 - 5. Moments d'une variable aléatoire
 - 5.1. Espérance
 - .1. Esperance
 - 5.3. Covariance (de deux

Applications

Remarque Espérance d'une loi binomiale Exercice

Faites le calcul

Leçon 91 - Variables aléatoires

> Espérance

- i. Problemes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4 Indépendance
- 5. Moments d'une variable aléatoire
 -
- 5.1. Espérance
- 5.3. Coverience (de deu

Inégalité de Markov

Proposition - Inégalité de Markov

Toute v.a.r. positive sur Ω fini vérifie l'inégalité :

$$\forall a > 0, \mathbf{P}(X \ge a) \le \frac{\mathbf{E}(X)}{a}$$

Leçon 91 - Variables aléatoires

Espérance

 Variance & ovariance

- Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- o veriere
- 5.3. Covariance (de deux

- Problème:
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- 5.2 Variance
- 5.3. Covariance (de deux

Proposition - Inégalité de Markov

Toute v.a.r. positive sur Ω fini vérifie l'inégalité :

$$\forall a > 0, \mathbf{P}(X \ge a) \le \frac{\mathbf{E}(X)}{a}$$

Savoir-faire. Exploitation d'indicatrice (3)

Il y a un événement naturel à étudier ici : $A = [X \ge x]$, puis on exploite la propriété de l'espérance de la variable $\mathbb{1}_A$.

- Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- 5.2 Variano
- 5.3. Covariance (de deux

Proposition - Inégalité de Markov

Toute v.a.r. positive sur $\boldsymbol{\Omega}$ fini vérifie l'inégalité :

$$\forall a > 0, \mathbf{P}(X \ge a) \le \frac{\mathbf{E}(X)}{a}$$

Savoir-faire. Exploitation d'indicatrice (3)

Il y a un événement naturel à étudier ici : $A = [X \ge x]$, puis on exploite la propriété de l'espérance de la variable $\mathbb{1}_A$.

Démonstration

Exercices

Exercice

Soit $X : \Omega \to \mathbb{N}$. Montrer que $\mathbf{P}(X = 0) \ge 1 - \mathbf{E}(X)$.

Leçon 91 - Variables aléatoires

Espérance

- Problèmes
- 2. Variable aléatoire
- 3. Couples de variables aléatoires
- 4. Indépendanc
- 5. Moments d'une variable aléatoire réelle finie
- 5.1. Espérance
- .2. Variance
- 5.3. Covariance (de deux

Savoir-faire. Composition avec exp (Chernoff)

Il arrive fréquemment qu'on compose avec \exp la variable X. On parle de comparaison avec des vecteurs sous-gaussiens.

On a alors
$$\mathbf{P}(X \ge x) = \mathbf{P}(e^X \ge e^x) \le \frac{\mathbf{E}(e^X)}{e^x}$$
.

- 5.1 Espérance

Exercice

Soit $X : \Omega \to \mathbb{N}$. Montrer que $\mathbf{P}(X = 0) \ge 1 - \mathbf{E}(X)$.

Savoir-faire. Composition avec exp (Chernoff)

Il arrive fréquemment qu'on compose avec \exp la variable X. On parle de comparaison avec des vecteurs sous-gaussiens.

On a alors
$$\mathbf{P}(X \ge x) = \mathbf{P}(e^X \ge e^x) \le \frac{\mathbf{E}(e^X)}{e^x}$$
.

Exercice

Soit $X: \Omega \to \{-2, -1, 0, 1, 2\}$ telle que $\mathbf{P}(X=1) = \mathbf{P}(X=-1) = p_1$ et $\mathbf{P}(X=2) = \mathbf{P}(X=-2) = p_2$. Montrer que pour tout $\epsilon > 0$,

$$P(X \ge \epsilon) \le (2p_2(\cosh 2 - 1) + 2p_1(\cosh 1 - 1) + 1)e^{-\epsilon}$$

⇒ Variance &

- 1. Problème
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- 5.1. Laperance
- 5.3. Covariance (de deux

- 1. Problèmes
- 2. Variable aléatoire
- 3. Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
 - 5.2. Variance
 - 5.3. Covariance (de deux variables aléatoires)

on 91 - Variables aléatoires

Espérance

- . Problemes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1 Espérance
- 5.2 Variance
- 5.3. Covariance (de deux

- 1. Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - .1. Espérance
 - .2. Variance
- 5.3. Covariance (de deux

Définition - Moment d'ordre r

Soit X une v.a.r. sur (Ω, \mathbf{P}) fini. On appelle **moment d'ordre r** $(r \in \mathbb{N})$ de X le réel $m_r(X) = \mathbf{E}(X^r)$ et **moment centré d'ordre r** de X le réel $m_r(X) = \mathbf{E}[(X - \mathbf{E}(X))^r]$.

variables aléatoire

4. Indépendance

5. Moments d'une variable aléatoire

5.1. Espérance

5.2. Varian

5.3. Covariance (de deux

Définition - Moment d'ordre r

Soit X une v.a.r. sur (Ω, \mathbf{P}) fini. On appelle **moment d'ordre r** $(r \in \mathbb{N})$ de X le réel $m_r(X) = \mathbf{E}(X^r)$ et **moment centré d'ordre r** de X le réel $m_r(X) = \mathbf{E}[(X - \mathbf{E}(X))^r]$.

Savoir-faire. Formulation calculatoire (transfert)

Si X est centrée : $m_r(X) = \sum_{x \in X(\Omega)} x^r \mathbf{P}(X = x)$.

Soit X une v.a.r. sur (Ω, \mathbf{P}) fini. On appelle **variance** de X, notée $\mathbf{V}(X)$, le moment centré d'ordre 2 de

$$X : \mathbf{V}(X) = \mathbf{E}(X - \mathbf{E}(X))^2$$

 $\sigma(X) = \sqrt{\mathbf{V}(X)}$ est appelé écart-type de X.

Si $\sigma(X) = 1$ on dit que X est **réduite**.

- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 1 Fenérance
 - 5.2 Variance
- 5.3. Covariance (de deux

Couples de variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire

.1. Espérance

5.2. Varian

5.3. Covariance (de deux

Définition - Variance et écart-type

Soit X une v.a.r. sur (Ω, \mathbf{P}) fini. On appelle **variance** de X, notée $\mathbf{V}(X)$, le moment centré d'ordre 2 de

 $X : \mathbf{V}(X) = \mathbf{E}(X - \mathbf{E}(X))^2$

 $\sigma(X) = \sqrt{\mathbf{V}(X)}$ est appelé **écart-type** de X.

Si $\sigma(X) = 1$ on dit que X est **réduite**.

Remarque Positivité de la variance.

4. Indépendance

5. Moments d'une variable aléatoire

.1. Espérance

5.2. Varian

5.3. Covariance (de deux

Définition - Variance et écart-type

Soit X une v.a.r. sur (Ω, \mathbf{P}) fini. On appelle **variance** de X, notée $\mathbf{V}(X)$, le moment centré d'ordre 2 de

$$X: \mathbf{V}(X) = \mathbf{E}((X - \mathbf{E}(X))^2).$$

 $\sigma(X) = \sqrt{\mathbf{V}(X)}$ est appelé **écart-type** de X .

Si $\sigma(X) = 1$ on dit que X est **réduite**.

Remarque Positivité de la variance.

Savoir-faire. Formulation calculatoire (transfert)

On a donc
$$\mathbf{V}(X) = \sum_{x \in X(\Omega)} (x - \mathbf{E}(X))^2 \mathbf{P}(X = x).$$

 Couples de variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire

5.1. Espérance

5.2 Variance

5.3. Covariance (de deux

Proposition - Propriétés

Soit (Ω, \mathbf{P}) un espace de probabilité fini. Alors

- i) $V(X) = E(X^2) E(X)^2$ formule de Huygens
- ii) $\mathbf{V}(aX+b) = a^2\mathbf{V}(X)$
- iii) $\sigma(aX + b) = |a|\sigma(X)$
- iv) si $\sigma(X) > 0$, $X^* = \frac{X \mathbf{E}(X)}{\sigma(X)}$ est centrée réduite, on l'appelle v.a. centrée réduite associée à X
- v) $V(X) = 0 \Leftrightarrow X$ est constante presque sûrement

2. variable aleatoire

variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire

5.1. Espérance

5.2 Variance

5.3. Covariance (de deux

Proposition - Propriétés

Soit (Ω, \mathbf{P}) un espace de probabilité fini. Alors

i) $V(X) = E(X^2) - E(X)^2$ formule de Huygens

ii)
$$\mathbf{V}(aX+b) = a^2\mathbf{V}(X)$$

iii)
$$\sigma(aX + b) = |a|\sigma(X)$$

iv) si $\sigma(X) > 0$, $X^* = \frac{X - \mathbf{E}(X)}{\sigma(X)}$ est centrée réduite, on l'appelle **v.a. centrée réduite associée** à X

v) $V(X) = 0 \Leftrightarrow X$ est constante presque sûrement

Exemple Variance de la loi uniforme sur [[1, n]].

 Couples de variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire

.1. Espérance

5.2. Variance

5.3. Covariance (de deux

Proposition - Propriétés

Soit (Ω, \mathbf{P}) un espace de probabilité fini. Alors

i) $V(X) = E(X^2) - E(X)^2$ formule de Huygens

ii)
$$\mathbf{V}(aX+b) = a^2\mathbf{V}(X)$$

iii)
$$\sigma(aX + b) = |a|\sigma(X)$$

iv) si $\sigma(X) > 0$, $X^* = \frac{X - \mathbf{E}(X)}{\sigma(X)}$ est centrée réduite, on l'appelle **v.a. centrée réduite associée** à X

v) $V(X) = 0 \Leftrightarrow X$ est constante presque sûrement

Exemple Variance de la loi uniforme sur [1, n].

Démonstration

Lois usuelles

Proposition - Variance des lois usuelles

- ▶ si $X \hookrightarrow \mathcal{B}(p)$ alors $\mathbf{V}(X) = p(1-p)$;
- ▶ si $X \hookrightarrow \mathcal{B}(n,p)$ alors $\mathbf{V}(X) = n p(1-p)$.

Leçon 91 - Variables aléatoires

⇒ Espérance

- . Froblemes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 1 Espérance
 - 5.2. Variance
- 5.3. Covariance (de deux

Lois usuelles

Proposition - Variance des lois usuelles

- ▶ si $X \hookrightarrow \mathcal{B}(p)$ alors $\mathbf{V}(X) = p(1-p)$;
- ▶ si $X \hookrightarrow \mathcal{B}(n,p)$ alors $\mathbf{V}(X) = np(1-p)$.

Démonstration

Leçon 91 - Variables aléatoires

Espérance

- . Problemes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 1 Fenérance
 - 2 Variance
- 5.3. Covariance (de deux

- i. Problemes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 5.1. Espérance
 - 5.2 Variance
 - 5.3. Covariance (de deux variables aléatoires)

Proposition - Variance des lois usuelles

- ▶ si $X \hookrightarrow \mathcal{B}(p)$ alors $\mathbf{V}(X) = p(1-p)$;
- ▶ si $X \hookrightarrow \mathcal{B}(n,p)$ alors $\mathbf{V}(X) = np(1-p)$.

Démonstration

Remarque A propos de la loi hypergéométrique

- 1. Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
 - 4. Indépendance
 - 5. Moments d'une variable aléatoire
 - .1. Espérance
 - 5.2. Variar
 - 5.3. Covariance (de deux

Exercice

Une urne contient N boules, de deux catégories : des blanches en proportion p et des non blanches en proportion q=1-p ($Np\in\mathbb{N}$ désigne donc le nombre de boules blanches et $Nq\in\mathbb{N}$ celui de non blanches).

On tire successivement n boules de cette urne **sans remise** et on note X la v.a. égale au nombre de boules blanches obtenues. Déterminer la loi de X, son espérance et sa variance (on pourra, pour cette dernière, commencer par calculer $\mathbf{E}(X(X-1))$).

Inégalité de Bienaymé-Tchebychev

Théorème - Inégalité de Bienaymé-Tchebychev

Soit X une v.a.r. sur (Ω, \mathbf{P}) fini. Alors :

$$\forall \ \epsilon > 0, \mathbf{P}(|X - \mathbf{E}(X)| \ge \epsilon) \le \frac{\mathbf{V}(X)}{\epsilon^2}$$

Leçon 91 - Variables aléatoires

⇒ Espérance

- Problème
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 1 Esnérance
 - 2 Variance
- 5.3. Covariance (de deux

Inégalité de Bienaymé-Tchebychev

Théorème - Inégalité de Bienaymé-Tchebychev

Soit X une v.a.r. sur (Ω, \mathbf{P}) fini. Alors :

$$\forall \ \epsilon > 0, \mathbf{P}(|X - \mathbf{E}(X)| \ge \epsilon) \le \frac{\mathbf{V}(X)}{\epsilon^2}$$

Démonstration

Leçon 91 - Variables aléatoires

Espérance

- Probleme
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 1 Fenérance
 - .2. Variance
- 5.3. Covariance (de deux

- Probléme
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
- 5.1. Espérance
- 5.2. Varia
- 5.3. Covariance (de deux

Théorème - Inégalité de Bienaymé-Tchebychev

Soit X une v.a.r. sur (Ω, \mathbf{P}) fini. Alors :

$$\forall \ \epsilon > 0, \mathbf{P}(|X - \mathbf{E}(X)| \ge \epsilon) \le \frac{\mathbf{V}(X)}{\epsilon^2}$$

Démonstration

Exercice

Soit X une variable aléatoire à valeurs entières.

Montrer que
$$\mathbf{P}(X=0) \leq \frac{\mathbf{V}(X)}{(\mathbf{E}(X))^2}$$
.

- 1. Problèmes
- 2. Variable aléatoire
- 3. Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
 - 5.2 Variance
 - 5.3. Covariance (de deux variables aléatoires)

on 91 - Variables aléatoires

Esnérance

- . Problemes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- 5.1. Laperance
- 5.3. Covariance (de deux

- . Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 5.1. Espérance
 - 5.2. Variano
- 5.3. Covariance (de deux variables aléatoires)

Définition - Covariance

Soient X,Y deux v.a.r sur (Ω,P) fini. On appelle **covariance** de X et Y le réel :

$$\mathbf{Cov}(X,Y) = \mathbf{E}((X - \mathbf{E}(X))(Y - \mathbf{E}(Y)))$$

- Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 5.1. Espérance
 - 5.2. Varianc
 - 5.3. Covariance (de deux variables aléatoires)

Définition - Covariance

Soient X,Y deux v.a.r sur (Ω,P) fini. On appelle **covariance** de X et Y le réel :

$$\mathbf{Cov}(X,Y) = \mathbf{E}((X - \mathbf{E}(X))(Y - \mathbf{E}(Y)))$$

Exemple - Application

variables aléatoire

Indépendance

5. Moments d'une variable aléatoire

1. Espérance

5.2. Variance

5.3. Covariance (de deux variables aléatoires)

Proposition - Propriétés de la covariance

Soient X,X',Y,Y' des v.a.r. sur (Ω,\mathbf{P}) fini et $a,b,c,d,\lambda\in\mathbb{R}.$ On a

- i) $\mathbf{Cov}(X,Y) = \mathbf{E}(XY) \mathbf{E}(X)\mathbf{E}(Y)$
- ii) $\mathbf{Cov}(aX + b, cY + d) = ac\mathbf{Cov}(X, Y)$
- iii) $\mathbf{Cov}(X,Y) = \mathbf{Cov}(Y,X)$
- iv) Cov(X,X) = V(X)
- v) $\mathbf{Cov}(X + X', Y) = \mathbf{Cov}(X, Y) + \mathbf{Cov}(X', Y)$ et $\mathbf{Cov}(\lambda X, Y) = \lambda \mathbf{Cov}(X, Y)$ $\mathbf{Cov}(X, Y + Y') = \mathbf{Cov}(X, Y) + \mathbf{Cov}(X, Y')$ et $\mathbf{Cov}(X, \lambda Y) = \lambda \mathbf{Cov}(X, Y)$

Démonstration

Démonstration

Leçon 91 - Variables aléatoires

Espérance

- . Problèmes
- Variable aléatoire
- Couples de variables aléatoires
 - 4 Indépendanc
 - 5. Moments d'une variable aléatoire

 - 5.1. Espérance
 - 5.3. Covariance (de deux

Produit scalaire?

Remarque Cov comme un produit scalaire

Leçon 91 - Variables aléatoires

Espérance

- . Problèmes
- 2. Variable aléatoire
- 3. Couples de variables aléatoires
- 4. Indépendanc
- Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
 - 2.1. Loperanio
- 5.3. Covariance (de deux

Si les variables aléatoires X et Y ne sont pas indépendantes :

Théorème - Lien variance-covariance

Pour des v.a.r. définies sur (Ω, \mathbf{P}) fini, on a

$$\mathbf{V}(X+Y) = \mathbf{V}(X) + \mathbf{V}(Y) + 2\mathbf{Cov}(X,Y)$$

$$\mathbf{V}(X_1 + X_2 + \dots + X_n) = \mathbf{V}(X_1) + \mathbf{V}(X_2) + \dots + \mathbf{V}(X_n) + 2\sum_{i < j} \mathbf{Cov}(X_i, X_j)$$

$$= \sum_{i,j} \mathbf{Cov}(X_i, X_j)$$

1 Problèmes

2 Variable aléatoire

Couples de variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire véelle finie

.1. Espérance

5.2. Variar

5.3. Covariance (de deux

Si les variables aléatoires X et Y ne sont pas indépendantes :

Théorème - Lien variance-covariance

Pour des v.a.r. définies sur (Ω, \mathbf{P}) fini, on a

$$\mathbf{V}(X+Y) = \mathbf{V}(X) + \mathbf{V}(Y) + 2\mathbf{Cov}(X,Y)$$

$$\mathbf{V}(X_1 + X_2 + \dots + X_n) = \mathbf{V}(X_1) + \mathbf{V}(X_2) + \dots + \mathbf{V}(X_n) + 2\sum_{i < j} \mathbf{Cov}(X_i, X_i)$$

$$=\sum_{i,j}\mathbf{Cov}(X_i,X_j)$$

Démonstration

- 1 Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - .1. Espérance
- 5.2. Variano
- 5.3. Covariance (de deux variables aléatoires)

Si X et Y sont deux v.a. **indépendantes** (plus généralement si X_1,\cdots,X_n sont n v.a. **deux à deux indépendantes**) définies sur un même espace probabilisé fini. Alors :

- i) Cov(X,Y) = 0 (on dit que X et Y sont **non** corrélées)
- ii) V(X + Y) = V(X) + V(Y)
- iii) $V(X_1+X_2+\cdots+X_n) = V(X_1)+V(X_2)+\cdots+V(X_n)$

⇒ Espérance

- 1. Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - Espérance
- 5.2. Varianc
- 5.3. Covariance (de deux

Théorème - Cas d'indépendance

Si X et Y sont deux v.a. **indépendantes** (plus généralement si X_1, \cdots, X_n sont n v.a. **deux à deux indépendantes**) définies sur un même espace probabilisé fini. Alors :

- i) Cov(X,Y) = 0 (on dit que X et Y sont non corrélées)
- ii) $\mathbf{V}(X+Y) = \mathbf{V}(X) + \mathbf{V}(Y)$
- iii) $V(X_1+X_2+\cdots+X_n) = V(X_1)+V(X_2)+\cdots+V(X_n)$

D'une certaine façon, deux variables aléatoires non corrélées sont orthogonales pour le pseudo-produit scalaire **Cov** d'ioù la notation :

Définition - Variables non corrélées (notations)

Si X et Y sont deux variables aléatoires non corrélées (i.e. $\mathbf{Cov}(X,Y)=0$), on note $X\perp Y$. On a donc $X\perp\!\!\!\perp Y\Rightarrow X\perp Y$

⇒ Espérance

- 1. Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
- Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
- 5.2. Varian
- 5.3. Covariance (de deux variables aléatoires)

Si X et Y sont deux v.a. **indépendantes** (plus généralement si X_1,\cdots,X_n sont n v.a. **deux à deux indépendantes**) définies sur un même espace probabilisé fini. Alors :

- i) Cov(X,Y) = 0 (on dit que X et Y sont non corrélées)
- ii) $\mathbf{V}(X+Y) = \mathbf{V}(X) + \mathbf{V}(Y)$
- iii) $\mathbf{V}(X_1 + X_2 + \dots + X_n) = \mathbf{V}(X_1) + \mathbf{V}(X_2) + \dots + \mathbf{V}(X_n)$

D'une certaine façon, deux variables aléatoires non corrélées sont orthogonales pour le pseudo-produit scalaire **Cov** d'ioù la notation :

Définition - Variables non corrélées (notations)

Si X et Y sont deux variables aléatoires non corrélées (i.e. $\mathbf{Cov}(X,Y)=0$), on note $X\perp Y$. On a donc $X\perp\!\!\!\perp Y\Rightarrow X\perp Y$

1. Problèmes

2. Variable aleatoire

Couples de variables aléatoires

Indépendance

5. Moments d'une variable aléatoire réelle finie

.1. Espérance

5.2. Varian

5.3. Covariance (de deux variables aléatoires)

Applications

Remarque Variance d'une binomiale

Leçon 91 - Variables aléatoires

Espérance

- 1. Problémes
- 2. Variable aléatoire
- Couples de variables aléatoires
 - 1. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
- 5.1. Espérance
- 2 Variance
- 5.3. Covariance (de deux

Applications

Remarque Variance d'une binomiale

Attention. La réciproque est fausse.

Cela signifie que deux var peuvent avoir une covariance nulle (ou plus loin un coefficient de corrélation linéaire), sans être indépendantes.

Leçon 91 - Variables aléatoires

⇒ Espérance

- 1. I TODICITICS
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1 Espérance
- 5.1. Esperance
- 5.2. Variance
- 5.3. Covariance (de deux

Soit X et Y deux variables aléatoires qui suivent une loi de Bernoulli et telles que la loi conjointe est donnée par le tableau :

$Y \setminus X$	0	1
0	a	b
1	c	d

- 1. Calculer la Cov(X,Y).
- 2. Montrer : (*X*, *Y*) sont indépendantes ssi la matrice est de rang 1.

En déduire que si (X,Y) sont indépendantes, il existe $\lambda, \mu > 0$ tel que $b = \lambda d$, $c = \lambda d$ et $a = \lambda \mu d$. Calculer $\mathbf{Cov}(X,Y)$

3. Montrer que dans ce cas $\mathbf{Cov}(X,Y) = 0$ si et seulement si X et Y sont indépendantes.

1 Problèmes

- 2 Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
- 5.2. Variance
- 5.3. Covariance (de deux variables aléatoires)

Coefficient de corrélation linéaire

Analyse Inégalité de Cauchy-Schwarz.

Leçon 91 - Variables aléatoires

> Espérance

- . Problèmes
- 2 Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1 Espérance
- 5.1. Espérance
- 5.3. Covariance (de deux

Analyse Inégalité de Cauchy-Schwarz.

Définition - Coefficient de corrélation linéaire

Soient X et Y deux v.a. d'écart type non nul. On appelle **coefficient de corrélation linéaire** de X et Y le réel $\mathbf{Cov}(X,Y)$

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$$

- Esporanoe

Covariance

Problèmes

Variable aléatoire

 Couples de variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire

5.1. Espérance

5.2. Varianc

5.3. Covariance (de deux

Définition - Coefficient de corrélation linéaire

Soient X et Y deux v.a. d'écart type non nul. On appelle **coefficient de corrélation linéaire** de X et Y le réel $\rho(X,Y) = \frac{\mathbf{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$

Proposition - Propriétés

$$|\rho(aX+b,cY+d)|=|\rho(X,Y)|.$$

On a toujours $|\rho(X,Y)| \le 1$, c'est-à-dire

$$|\mathbf{Cov}(X,Y)| \le \sigma(X)\sigma(Y)$$
.

Et : $|\rho(X,Y)|=1$ si et seulement si il existe a et b réels tels que Y=aX+b presque sûrement, c'est-à-dire tels que

$$\mathbf{P}(Y = aX + b) = 1.$$

1. Problèmes

2. Variable aléatoire

 Couples de variables aléatoires

4. Indépendance

5. Moments d'une variable aléatoire réelle finie

.1. Espérance

5.2. Varian

5.3. Covariance (de deux variables aléatoires)

Définition - Coefficient de corrélation linéaire

Soient X et Y deux v.a. d'écart type non nul. On appelle **coefficient de corrélation linéaire** de X et Y le réel $\rho(X,Y) = \frac{\mathbf{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$

Proposition - Propriétés

$$|\rho(aX+b,cY+d)|=|\rho(X,Y)|.$$

On a toujours $|\rho(X,Y)| \le 1$, c'est-à-dire

$$|\mathbf{Cov}(X,Y)| \le \sigma(X)\sigma(Y)$$
.

Et : $|\rho(X,Y)| = 1$ si et seulement si il existe a et b réels tels que Y = aX + b presque sûrement, c'est-à-dire tels que

$$P(Y = aX + b) = 1.$$

Démonstration

⇒ Variance &

- Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
- Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - .1. Espérance
- 5.2. Variano
- 5.3. Covariance (de deux variables aléatoires)

Savoir-faire. Tableau récapitulatif

On considère p un réel de l'intervalle]0,1[et on pose q=1-p.

nom	$X(\Omega)$	loi	espérance	variance
v.a constante				
(certaine)	$\{a\}$	P(X=a)=1	a	0
loi uniforme				
$\operatorname{sur}\left\{ 1,2,\cdots n\right\}$	$\{1,2,\cdots n\}$	$P(X=k)=\frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$
\mathscr{U}_n			_	
loi de Bernoulli		P(X=0)=q		
de paramètre p	$\{0, 1\}$	P(X=1)=p	p	pq
\mathscr{B}_p ou $\mathscr{B}(1,p)$				
loi binomiale				
de paramètres n,p	$\{0,1,2,\cdots n\}$	$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	npq
$\mathscr{B}(n,p)$				

Conclusion

Objectifs

- ⇒ Espérance
- ⇒ Variance & Covariance

Leçon 91 - Variables aléatoires

Espérance

- i. Problemes
- 2 Variable aléatoire
- Couples de variables aléatoires
 - 1 Indépendance
 - 5. Moments d'une variable aléatoire
 - 5 4 C--4----
 - o.i. Esperance
 - 2. Variance
 - 5.3. Covariance (de deux variables aléatoires)

Objectifs

- ⇒ Espérance
 - Définition :

$$\mathbf{E}(X) = \sum_{x \in X(\Omega)} x \mathbf{P}(X = x) = \sum_{\omega \in \Omega} X(\omega) \mathbf{P}(\{\omega\}$$

Leçon 91 - Variables aléatoires

Espérance

- 1. Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1 Fenérance
- 5.1. Espérance
- 5.3. Covariance (de deux

⇒ Espérance

Définition :

$$\mathbf{E}(X) = \sum_{x \in X(\Omega)} x \mathbf{P}(X = x) = \sum_{\omega \in \Omega} X(\omega) \mathbf{P}(\{\omega\})$$

Par transfert : $\mathbf{E}(f(X)) = \sum_{x \in X(\Omega)} f(x) \mathbf{P}(X = x)$

Espérand

- 1. Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
- .1. Espérance
- 5.1. **L**opeius
- 5.3. Covariance (de deux

Objectifs ⇒ Espérance

- D46:-:4:---
 - Définition :

$$\mathbf{E}(X) = \sum_{x \in X(\Omega)} x \mathbf{P}(X = x) = \sum_{\omega \in \Omega} X(\omega) \mathbf{P}(\{\omega\})$$

- Par transfert : $\mathbf{E}(f(X)) = \sum_{x \in X(\Omega)} f(x) \mathbf{P}(X = x)$
- Cas classiques : $X \hookrightarrow a$ p.s., alors $\mathbf{E}(X) = a$ $X \hookrightarrow \mathcal{B}(n,p)$ alors $\mathbf{E}(X) = np$

Espérance

> Variance &

- 1. Problèmes
- Variable aléatoire
- Couples de variables aléatoires
 - 4. Indépendance
 - 5. Moments d'une variable aléatoire
 - .1. Espérance
 - 5 0 Variance
 - 5.3. Covariance (de deux

⇒ Espérance

Définition :

$$\mathbf{E}(X) = \sum_{x \in X(\Omega)} x \mathbf{P}(X = x) = \sum_{\omega \in \Omega} X(\omega) \mathbf{P}(\{\omega\})$$

- Par transfert : $\mathbf{E}(f(X)) = \sum_{x \in X(\Omega)} f(x) \mathbf{P}(X = x)$
- Cas classiques : $X \hookrightarrow a$ p.s., alors $\mathbf{E}(X) = a$ $X \hookrightarrow \mathcal{B}(n,p)$ alors $\mathbf{E}(X) = np$
- Propriétés essentielles :
 - Linéarité : $\mathbf{E}(aX + Y) = a\mathbf{E}(X) + \mathbf{E}(Y)$
 - Produit : $\mathbf{E}(X \times Y) = \mathbf{E}(X)\mathbf{E}(Y)$ si $X \perp \!\!\! \perp Y$.
 - ▶ Inégalités : $X \ge Y$ p.s. alors $\mathbf{E}(X) \ge \mathbf{E}(Y)$ (croissance)
 - ▶ si $X \ge 0$ (p.s.), $\mathbf{P}(X \ge a) \le \frac{\mathbf{E}(X)}{a}$ (Markov)

Loperanot

- Covariance
- Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - .1. Espérance
- 5.2 Variance
- 5.3. Covariance (de deux

Conclusion

Objectifs

- ⇒ Espérance
- ⇒ Variance & Covariance

Leçon 91 - Variables aléatoires

Espérance

- i. Problemes
- 2 Variable aléatoire
- Couples de variables aléatoires
 - 1 Indépendance
 - 5. Moments d'une variable aléatoire
 - 5 4 C--4----
 - o.i. Esperance
 - 2. Variance
 - 5.3. Covariance (de deux variables aléatoires)

Objectifs

- \Rightarrow Espérance
- ⇒ Variance & Covariance
 - ► $V(X) = E((X E(X))^2) = E(X^2) E(X)^2 & \sigma(X) = \sqrt{V(X)}$

Leçon 91 - Variables aléatoires

Espéranc

- . Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- 5 0 Variance
- 5.3. Covariance (de deux

- ⇒ Espérance
- ⇒ Variance & Covariance
 - ► $V(X) = E((X E(X))^2) = E(X^2) E(X)^2 & \sigma(X) = \sqrt{V(X)}$
 - Propriétés : $\mathbf{V}(aX + b) = a^2\mathbf{V}(X)$ ou $\mathbf{V}(X) = 0$ ssi X = c p.s. .

Esperanc

- Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
- 5.1. Espérance
- 5 0 Variance
- 5.3. Covariance (de deux

Objectifs

- ⇒ Espérance
- ⇒ Variance & Covariance
 - $V(X) = E((X E(X))^2) = E(X^2) E(X)^2 & \sigma(X) = \sqrt{V(X)}$
 - Propriétés : $\mathbf{V}(aX + b) = a^2\mathbf{V}(X)$ ou $\mathbf{V}(X) = 0$ ssi X = c p.s. .
 - Variance d'une binomiale : si $X \hookrightarrow \mathcal{B}(n,p)$, $\mathbf{V}(X) = n p(1-p)$

- 1 Problèmes

- ⇒ Espérance
- ⇒ Variance & Covariance
 - ► $V(X) = E((X E(X))^2) = E(X^2) E(X)^2 & \sigma(X) = \sqrt{V(X)}$
 - Propriétés : $\mathbf{V}(aX + b) = a^2\mathbf{V}(X)$ ou $\mathbf{V}(X) = 0$ ssi X = c p.s. .
 - ▶ Variance d'une binomiale : si $X \hookrightarrow \mathcal{B}(n,p)$, $\mathbf{V}(X) = np(1-p)$
 - ▶ Inégalité de Bienaymé-Tchebychev : $\mathbf{P}(|X \mathbf{E}(X)| > \epsilon) \le \frac{\mathbf{V}(X)}{\epsilon^2}$

· Espéranc

- Problèmes
- 2. Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 1 Espérance
 - 2.1. Loperanio
- 5.3. Covariance (de deux

- ⇒ Variance & Covariance
 - ► $V(X) = E((X E(X))^2) = E(X^2) E(X)^2 & \sigma(X) = \sqrt{V(X)}$
 - Propriétés : $\mathbf{V}(aX + b) = a^2\mathbf{V}(X)$ ou $\mathbf{V}(X) = 0$ ssi X = c p.s. .
 - ▶ Variance d'une binomiale : si $X \hookrightarrow \mathcal{B}(n,p)$, $\mathbf{V}(X) = n p(1-p)$
 - ▶ Inégalité de Bienaymé-Tchebychev : $\mathbf{P}(|X \mathbf{E}(X)| > \epsilon) \leq \frac{\mathbf{V}(X)}{\epsilon^2}$
 - Plusieurs variable aléatoire : $\mathbf{Cov}(X_1, X_2) = \mathbf{E}[(X_1 \mathbf{E}(X_1))(X_2 \mathbf{E}(X_2))] = \mathbf{E}(X_1X_2) \mathbf{E}(X_1)\mathbf{E}(X_2).$

Variance &

- 1. Problèmes
- Variable aléatoire
- 3. Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire
 - 5.1. Espérance
- 5.2. Varia
- 5.3. Covariance (de deux

- ⇒ Espérance
- ⇒ Variance & Covariance
 - ► $V(X) = E((X E(X))^2) = E(X^2) E(X)^2 & \sigma(X) = \sqrt{V(X)}$
 - Propriétés : $\mathbf{V}(aX + b) = a^2\mathbf{V}(X)$ ou $\mathbf{V}(X) = 0$ ssi X = c p.s. .
 - ▶ Variance d'une binomiale : si $X \hookrightarrow \mathcal{B}(n,p)$, $\mathbf{V}(X) = n p(1-p)$
 - ▶ Inégalité de Bienaymé-Tchebychev : $\mathbf{P}(|X \mathbf{E}(X)| > \epsilon) \leq \frac{\mathbf{V}(X)}{\epsilon^2}$
 - Plusieurs variable aléatoire : $\mathbf{Cov}(X_1, X_2) = \mathbf{E}[(X_1 \mathbf{E}(X_1))(X_2 \mathbf{E}(X_2))] = \mathbf{E}(X_1 X_2) \mathbf{E}(X_1)\mathbf{E}(X_2).$
 - Si X_1 et X_2 indépendantes, alors $\mathbf{Cov}(X_1, X_2) = 0$

- 1 Problèmes
- 2. Variable aléatoire
- 3. Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
- 5.2. Varia
- 5.3. Covariance (de deux

Objectifs

- ⇒ Espérance
- ⇒ Variance & Covariance
 - ► $V(X) = E((X E(X))^2) = E(X^2) E(X)^2 & \sigma(X) = \sqrt{V(X)}$
 - Propriétés : $\mathbf{V}(aX + b) = a^2\mathbf{V}(X)$ ou $\mathbf{V}(X) = 0$ ssi X = c p.s. .
 - ▶ Variance d'une binomiale : si $X \hookrightarrow \mathcal{B}(n,p)$, $\mathbf{V}(X) = n p(1-p)$
 - ▶ Inégalité de Bienaymé-Tchebychev : $\mathbf{P}(|X \mathbf{E}(X)| > \epsilon) \leq \frac{\mathbf{V}(X)}{\epsilon^2}$
 - Plusieurs variable aléatoire : $\mathbf{Cov}(X_1, X_2) = \mathbf{E}[(X_1 \mathbf{E}(X_1))(X_2 \mathbf{E}(X_2))] = \mathbf{E}(X_1 X_2) \mathbf{E}(X_1)\mathbf{E}(X_2).$
 - Si X_1 et X_2 indépendantes, alors $\mathbf{Cov}(X_1, X_2) = 0$
 - Alors: $\mathbf{V}(\sum_{i}X_{i}) = \sum_{i,j}\mathbf{Cov}(X_{i},X_{j}) = \sum_{i}\mathbf{V}(X_{i}) + 2\sum_{i< j}\mathbf{Cov}(X_{i},X_{j}).$ (Lien avec les produits scalaires. . .

> Variance &

- Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
 - 5.2. Varian
- 5.3. Covariance (de deux

Objectifs

- ⇒ Espérance
- ⇒ Variance & Covariance
 - ► $V(X) = E((X E(X))^2) = E(X^2) E(X)^2 & \sigma(X) = \sqrt{V(X)}$
 - Propriétés : $\mathbf{V}(aX + b) = a^2\mathbf{V}(X)$ ou $\mathbf{V}(X) = 0$ ssi X = c p.s. .
 - ▶ Variance d'une binomiale : si $X \hookrightarrow \mathcal{B}(n,p)$, $\mathbf{V}(X) = np(1-p)$
 - ▶ Inégalité de Bienaymé-Tchebychev : $\mathbf{P}(|X \mathbf{E}(X)| > \epsilon) \leq \frac{\mathbf{V}(X)}{\epsilon^2}$
 - Plusieurs variable aléatoire : $\mathbf{Cov}(X_1, X_2) = \mathbf{E}[(X_1 \mathbf{E}(X_1))(X_2 \mathbf{E}(X_2))] = \mathbf{E}(X_1 X_2) \mathbf{E}(X_1)\mathbf{E}(X_2).$
 - Si X_1 et X_2 indépendantes, alors $\mathbf{Cov}(X_1, X_2) = 0$
 - Alors: $\mathbf{V}(\sum_{i}X_{i}) = \sum_{i,j}\mathbf{Cov}(X_{i},X_{j}) = \sum_{i}\mathbf{V}(X_{i}) + 2\sum_{i< j}\mathbf{Cov}(X_{i},X_{j}).$ (Lien avec les produits scalaires. . .
 - La corrélation est comprise entre -1 et 1 : $\rho(X,Y) = \frac{\mathbf{Cov}(X_1,X_2)}{\sigma(X_1)\sigma(X_2)}$

Loperance

Covariance

- Problèmes
- Variable aléatoire
- Couples de variables aléatoires
- 4. Indépendance
- 5. Moments d'une variable aléatoire réelle finie
 - 5.1. Espérance
- 5.2. Varian
- 5.3. Covariance (de deu

Conclusion

Objectifs

- ⇒ Espérance
- ⇒ Variance & Covariance

Pour le prochain cours

Exercice n° 762 & 765

Leçon 91 - Variables aléatoires

⇒ Espérance

- Variable aléatoire
- Couples de variables aléatoires
 - 4. Indépendance
 - 5. Moments d'une variable aléatoire
 - celle III lle
 - 5.1. Espérance
 - .2. variance i 3. Covariance (de deux