Leçon 89 - Variables aléatoires



Leçon 89 - Variables aléatoires

30 avril 2025

Problème Variable aléatoire

Problème Variable aléatoire

Problème Lois de probabilités fréquemment rencontrées

Problème Variable aléatoire

Problème Lois de probabilités fréquemment rencontrées

Problème Espérance, variance...

### Problème Citation de Poincaré

« Vous me demandez de vous prédire les phénomènes qui vont se produire. Si, par malheur, je connaissais les lois de ces phénomènes, je ne pourrais y arriver que par des calculs inextricables et je devrais renoncer à vous répondre; mais, comme j'ai la chance de les ignorer, je vais vous répondre tout de suite. Et, ce qu'il y a de plus extraordinaire, c'est que ma réponse sera juste. »

#### Problème Citation de Poincaré

« Vous me demandez de vous prédire les phénomènes qui vont se produire. Si, par malheur, je connaissais les lois de ces phénomènes, je ne pourrais y arriver que par des calculs inextricables et je devrais renoncer à vous répondre; mais, comme j'ai la chance de les ignorer, je vais vous répondre tout de suite. Et, ce qu'il y a de plus extraordinaire, c'est que ma réponse sera juste. »

Problème Deux variables aléatoires

### Problème Citation de Poincaré

« Vous me demandez de vous prédire les phénomènes qui vont se produire. Si, par malheur, je connaissais les lois de ces phénomènes, je ne pourrais y arriver que par des calculs inextricables et je devrais renoncer à vous répondre; mais, comme j'ai la chance de les ignorer, je vais vous répondre tout de suite. Et, ce qu'il y a de plus extraordinaire, c'est que ma réponse sera juste. »

Problème Deux variables aléatoires

Problème Produit scalaire

### **Définition**

Soit  $\Omega$  un univers fini lié à une expérience aléatoire.

### Définition - Variable aléatoire

On appelle variable aléatoire (v.a.) sur  $\Omega$  toute application

 $X:\Omega \to E$ , où E est un ensemble. Dans le cas où  $E=\mathbb{R}$ , on parle de variable aléatoire réelle.

 $X(\Omega)$  désigne donc l'ensemble image, c'est-à-dire les valeurs que prend l'application X. Cet ensemble est ici fini (car  $\Omega$  fini), on dit alors que X est une v.a. discrète finie.

### Stabilité

La stabilité linéaires des applications permet d'affirmer :

## Proposition - Stabilité linéaire

Soient X,Y deux variables aléatoires réelles sur  $\Omega, \lambda \in \mathbb{R}$ . Alors X+Y,XY et  $\lambda X$  sont des variables aléatoires sur  $\Omega$ .

## Stabilité

La stabilité linéaires des applications permet d'affirmer :

## Proposition - Stabilité linéaire

Soient X,Y deux variables aléatoires réelles sur  $\Omega$ ,  $\lambda \in \mathbb{R}$ . Alors X+Y,XY et  $\lambda X$  sont des variables aléatoires sur  $\Omega$ .

### **Proposition - Composition**

Soit X une v.a. sur  $\Omega$  et g une application définie sur  $X(\Omega)$ , à valeurs dans un ensemble E', alors  $g \circ X$  est une v.a. sur  $\Omega$ , notée g(X):

$$g(X): \Omega \to E'$$
 $\omega \mapsto g(X(\omega))$ 

## Stabilité

La stabilité linéaires des applications permet d'affirmer :

## Proposition - Stabilité linéaire

Soient X,Y deux variables aléatoires réelles sur  $\Omega$ ,  $\lambda \in \mathbb{R}$ . Alors X+Y,XY et  $\lambda X$  sont des variables aléatoires sur  $\Omega$ .

## **Proposition - Composition**

Soit X une v.a. sur  $\Omega$  et g une application définie sur  $X(\Omega)$ , à valeurs dans un ensemble E', alors  $g \circ X$  est une v.a. sur  $\Omega$ , notée g(X):

$$g(X): \Omega \to E'$$
 $\omega \mapsto g(X(\omega))$ 

#### Démonstration



### **Notations**

### Définition - variable aléatoire constante ou certaine

Si X est une application constante sur  $\Omega$ , on dit que c'est une variable aléatoire constante ou certaine.

### **Notations**

### Définition - variable aléatoire constante ou certaine

Si X est une application constante sur  $\Omega$ , on dit que c'est une variable aléatoire constante ou certaine.

### **Définition - Notations**

Soit  $X : \Omega \to E$  une variable aléatoire sur  $\Omega$ .

Alors, pour  $A \subset E$ ,  $X^{-1}(A)$  est un événement (car

$$X^{-1}(A) \in \mathscr{P}(\Omega)$$
) noté

$$(X \in A) \text{ ou } \{X \in A\} \quad (= X^{-1}(A) = \{\omega \in \Omega \, | \, X(\omega) \in A\}).$$

Dans le cas d'une variable aléatoire réelle, pour  $x \in \mathbb{R}$ , on note :

$$(X \leqslant x) = X^{-1}(] - \infty, x]) = \{\omega \in \Omega \mid X(\omega \leqslant x),$$

$$(X < x) = X^{-1}(] - \infty, x[),$$

$$(X = x) = X^{-1}(\{x\})$$

de même pour  $(X \ge x), (X > x), (a \le X \le b)...$ 

## Points de vue sur les v.a.

# Heuristique. Deux points de vue sur $X^{-1}$

De manière générale, ce que l'on a c'est une famille d'événement paramétrée par une variable réelle et pour laquelle on cherche des probabilités de réalisation.

Par exemple, on s'intéresse à l'évolution de la température (moyenne ou sur un point du globe) sur 10 ans. On note H, la variable qui indique cette évolution. On sait que  $H \in \mathbb{R}$  (même si toutes les valeurs réelles ne sont pas réalistes).

Ce que l'on cherche : la probabilité d'une hausse  $\geq$  à 2° :  $\mathbf{P}(H \geq 2)$ .

Il faut donc que l'ensemble  $H^{-1}([2,+\infty[)$  soit un événement mesurable en probabilité.

Donc ce qui nous intéresse, dans la pratique, c'est plutôt  $H^{-1}(I)$ , comme élément de  $\Omega$  et dont on cherche une probabilité.

On fera bien attention à la manière de lire les expressions mathématiques du type  $\mathbf{P}(H=0)$ 

## Points de vue sur les v.a.

# Heuristique. Deux points de vue sur $X^{-1}$

On a alors deux points de vue

- ▶ H est une application et  $H^{-1}$  est une application réciproque, en règle générale non bijective, donc une application de l'ensemble des parties de E (ou de  $\mathbb R$  pour une var) sur l'ensemble des parties de  $\Omega$  (ou une tribu de  $\Omega$ ). C'est le point de vue choisi dans le cours.
- $ightharpoonup H^{-1}$  fait la partition de Ω en classes d'équivalence.

$$\omega \mathcal{R}_H \omega' \iff H(\omega) = H(\omega')$$

De ce point de vue, le théorème suivant sur le système complet d'événements est trivial.

# Définition de la loi de probabilité

On se place désormais sur un espace probabilisé fini  $(\Omega, \mathbf{P})$ .

Définition - Loi (de probabilité) d'une variable aléatoire

Soit X une v.a. sur  $\Omega$ . Alors l'application

$$\mathbf{P}_X: \quad X(\Omega) \quad \to [0,1]$$
$$x \quad \mapsto \mathbf{P}(X=x)$$

s'appelle la loi (de probabilité) de X.

# Définition de la loi de probabilité

On se place désormais sur un espace probabilisé fini  $(\Omega, \mathbf{P})$ .

# Définition - Loi (de probabilité) d'une variable aléatoire

Soit X une v.a. sur  $\Omega$ . Alors l'application

$$\mathbf{P}_X: \quad X(\Omega) \quad \to [0,1]$$
$$x \quad \mapsto \mathbf{P}(X=x)$$

s'appelle la loi (de probabilité) de X.

### Savoir-faire. Définir la loi d'une variable aléatoire

Définir la loi de probabilité d'une v.a. X finie, c'est donc donner  $X(\Omega)$  ainsi que les probabilités  $\mathbf{P}(X=x)$  pour  $x \in X(\Omega)$ .

# Définition de la loi de probabilité

On se place désormais sur un espace probabilisé fini  $(\Omega, \mathbf{P})$ .

# Définition - Loi (de probabilité) d'une variable aléatoire

Soit X une v.a. sur  $\Omega$ . Alors l'application

$$\mathbf{P}_X: \quad X(\Omega) \quad \to [0,1]$$

$$x \qquad \mapsto \mathbf{P}(X=x)$$

s'appelle la loi (de probabilité) de X.

### Savoir-faire. Définir la loi d'une variable aléatoire

Définir la loi de probabilité d'une v.a. X finie, c'est donc donner  $X(\Omega)$  ainsi que les probabilités  $\mathbf{P}(X=x)$  pour  $x \in X(\Omega)$ .

### **Remarque** Notation

# (X = k) comme système complet d'événements

# Proposition - Variable aléatoire et système complet d'événements

Soit X une variable aléatoire définie sur  $\Omega$ . Alors la famille  $\Big((X=x)\Big)_{x\in X(\Omega)}$  est un système complet d'événements, appelé système complet d'événements associé à X. En particulier,

$$\sum_{x \in X(\Omega)} \mathbf{P}(X = x) = 1.$$

# (X = k) comme système complet d'événements

# Proposition - Variable aléatoire et système complet d'événements

Soit X une variable aléatoire définie sur  $\Omega$ . Alors la famille  $\Big((X=x)\Big)_{x\in X(\Omega)}$  est un système complet d'événements, appelé système complet d'événements associé à X. En particulier,

$$\sum_{x \in X(\Omega)} \mathbf{P}(X = x) = 1.$$

### **Démonstration**

## Existence d'une v.a. sous contrainte

### Proposition - Existence d'une v.a. a priori

Soient E un ensemble fini,  $E=\{x_1,\ldots,x_n\}$  et  $p_1,\ldots,p_n$  des réels positifs tels que  $\sum_{i=1}^n p_i=1$ .

Alors, si  $\Omega$  est un ensemble fini tel que  $\mathrm{Card}\Omega \geqslant n$ , il existe une probabilité  $\mathbf P$  sur  $\Omega$  et une v.a. X définie sur  $\Omega$  vérifiant :

$$\forall i \in [1, n], \mathbf{P}(X = x_i) = p_i$$

## Existence d'une v.a. sous contrainte

### Proposition - Existence d'une v.a. a priori

Soient E un ensemble fini,  $E=\{x_1,\ldots,x_n\}$  et  $p_1,\ldots,p_n$  des réels positifs tels que  $\sum_{i=1}^n p_i=1$ .

Alors, si  $\Omega$  est un ensemble fini tel que  $\mathrm{Card}\Omega \geqslant n$ , il existe une probabilité  $\mathbf P$  sur  $\Omega$  et une v.a. X définie sur  $\Omega$  vérifiant :

$$\forall i \in [1, n], \mathbf{P}(X = x_i) = p_i$$

### Démonstration

# Composition

### Proposition - Loi d'une fonction de X

Soient X v.a. sur  $\Omega$  et g une fonction définie sur  $X(\Omega)$ . Alors la loi de probabilité de Y=g(X) est donnée par  $Y(\Omega)=g(X(\Omega))$  et

$$\forall y \in Y(\Omega), \mathbf{P}(Y=y) = \sum_{x \in g^{-1}(\{y\})} \mathbf{P}(X=x) = \sum_{x \mid g(x)=y} \mathbf{P}(X=x)$$

# Composition

## Proposition - Loi d'une fonction de X

Soient X v.a. sur  $\Omega$  et g une fonction définie sur  $X(\Omega)$ . Alors la loi de probabilité de Y=g(X) est donnée par  $Y(\Omega)=g(X(\Omega))$  et

$$\forall y \in Y(\Omega), \, \mathbf{P}(Y = y) = \sum_{x \in g^{-1}(\{y\})} \mathbf{P}(X = x) = \sum_{x \mid g(x) = y} \mathbf{P}(X = x)$$

### Démonstration

# Fonction de répartition

## Définition - Fonction de répartition

```
Soit X une v.a.r sur \Omega. L'application F_X: \quad \mathbb{R} \quad \to [0,1] x \mapsto \mathbf{P}(X \leqslant x) s'appelle la fonction de répartition de X; si X(\Omega) = \{x_1, x_2, \dots, x_n\}, alors \forall x \in \mathbb{R}, F_X(x) = \sum_{i \mid x_i \leqslant x} \mathbf{P}(X = x_i).
```

# Fonction de répartition

## Définition - Fonction de répartition

Soit 
$$X$$
 une v.a.r sur  $\Omega$ . L'application 
$$F_X: \quad \mathbb{R} \quad \to [0,1]$$
  $x \mapsto \mathbf{P}(X \leqslant x)$  s'appelle la fonction de répartition de  $X$ ; si  $X(\Omega) = \{x_1, x_2, \dots, x_n\}$ , alors 
$$\forall x \in \mathbb{R}, F_X(x) = \sum_{i \mid x_i \leqslant x} \mathbf{P}(X = x_i).$$

**Exemple** Fonction de répartition du max

# Fonction de répartition

## Définition - Fonction de répartition

Soit 
$$X$$
 une v.a.r sur  $\Omega$ . L'application  $F_X: \mathbb{R} \to [0,1]$   $x \mapsto \mathbf{P}(X \leqslant x)$  s'appelle la fonction de répartition de  $X$ ; si  $X(\Omega) = \{x_1, x_2, \dots, x_n\}$ , alors

$$\forall x \in \mathbb{R}, F_X(x) = \sum_{i \mid x_i \leq x} \mathbf{P}(X = x_i).$$

## Exemple Fonction de répartition du max

### **Exercice**

On lance deux dés à six faces parfaitement équilibrés. Soit X la variable aléatoire égale à la somme des points obtenus. Donner la loi de X, sa fonction de répartition ainsi que la loi de Y = |X - 7|.

### Loi uniforme

 $(\Omega, \mathbf{P})$  désigne un espace probabilisé fini.

### Définition - Loi uniforme

On dit qu'une v.a. X suit une loi uniforme sur  $X(\Omega)$  si

$$\forall x \in X(\Omega), \mathbf{P}(X = x) = \frac{1}{\operatorname{Card}(X(\Omega))}.$$

Dans le cas particulier où  $X(\Omega)=[\![1,n]\!]$ , on note  $X\hookrightarrow \mathcal{U}_n$  et on a

$$\forall k \in [1, n], \mathbf{P}(X = k) = \frac{1}{n}.$$

### Loi uniforme

 $(\Omega, \mathbf{P})$  désigne un espace probabilisé fini.

### Définition - Loi uniforme

On dit qu'une v.a. X suit une loi uniforme sur  $X(\Omega)$  si

$$\forall x \in X(\Omega), \mathbf{P}(X = x) = \frac{1}{\operatorname{Card}(X(\Omega))}.$$

Dans le cas particulier où  $X(\Omega)=[\![1,n]\!]$ , on note  $X\hookrightarrow \mathcal{U}_n$  et on a

$$\forall k \in [1, n], \mathbf{P}(X = k) = \frac{1}{n}.$$

**Remarque** Modèle pour la loi uniforme  $\mathcal{U}_n$ 

### Loi de Bernoulli

### Définition - Loi de Bernoulli

Soit  $p \in [0,1]$ . On dit qu'une v.a.r. X suit une loi de Bernoulli de paramètre p si  $X(\Omega) = \{0,1\}$  et  $\mathbf{P}(X=1) = p$ , et donc  $\mathbf{P}(X=0) = 1 - p$ .

On note  $X \hookrightarrow \mathcal{B}(p)$ .

### Loi de Bernoulli

### Définition - Loi de Bernoulli

Soit  $p \in [0,1]$ . On dit qu'une v.a.r. X suit une loi de Bernoulli de paramètre p si  $X(\Omega) = \{0,1\}$  et  $\mathbf{P}(X=1) = p$ , et donc  $\mathbf{P}(X=0) = 1 - p$ .

On note  $X \hookrightarrow \mathcal{B}(p)$ .

**Remarque** Modèle pour la loi de Bernoulli  $\mathcal{B}(p)$ 

## Loi de Bernoulli

### Définition - Loi de Bernoulli

Soit  $p \in [0,1]$ . On dit qu'une v.a.r. X suit une loi de Bernoulli de paramètre p si  $X(\Omega) = \{0,1\}$  et  $\mathbf{P}(X=1) = p$ , et donc  $\mathbf{P}(X=0) = 1 - p$ . On note  $X \hookrightarrow \mathcal{B}(p)$ .

**Remarque** Modèle pour la loi de Bernoulli  $\mathcal{B}(p)$ 

### Savoir-faire. Exploitation d'indicatrice (1)

Très souvent, on associera à l'événement  $A\subset\Omega$ , la variable aléatoire  $X=\mathbb{I}_A:\omega\mapsto \left\{ \begin{array}{ll} 1 & \mathrm{si}\ \omega\in A \\ 0 & \mathrm{si}\ \omega\notin A \end{array} \right.$ 

# Loi binomiale

#### Définition - Loi binomiale

Soient  $n\in\mathbb{N}^*$  et  $p\in[0,1]$ . On dit qu'une v.a.r. suit une loi binomiale de paramètres n et p si  $X(\Omega)=\llbracket 0,n \rrbracket$  et

$$\forall k \in [0, n], \mathbf{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

On note  $X \hookrightarrow \mathcal{B}(n,p)$ .

# Loi binomiale

#### Définition - Loi binomiale

Soient  $n\in\mathbb{N}^*$  et  $p\in[0,1]$ . On dit qu'une v.a.r. suit une loi binomiale de paramètres n et p si  $X(\Omega)=\llbracket 0,n \rrbracket$  et

$$\forall k \in [0, n], \mathbf{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

On note  $X \hookrightarrow \mathcal{B}(n,p)$ .

**Remarque** Modèle pour la loi binomiale  $\mathcal{B}(n,p)$ 

# Définition du couple ou 2-uplet

Soit  $(\Omega, \mathbf{P})$  un espace probabilisé fini. On a déjà rencontré cette situation dans le cas du lancer de dés.

# Définition - Couple de variables aléatoires

Soient X et Y deux variables aléatoires sur  $\Omega$ , à valeurs respectivement dans les ensembles E et F.

L'application

$$Z: \Omega \to E \times F$$
 $\omega \mapsto (X(\omega), Y(\omega))$ 

est appelée couple de variables aléatoires, c'est donc une v.a. à valeurs dans  $E \times F$ . On note Z = (X, Y).

On a 
$$Z(\Omega) \subset X(\Omega) \times Y(\Omega)$$
.

Si X et Y sont des v.a.r. on parle de couple de v.a.r.

# Loi conjointe, lois marginales

# Définition - Loi conjointe, lois marginales

On appelle loi conjointe de X et Y la loi du couple Z=(X,Y), c'est-à-dire l'application

$$\mathbf{P}_{(X,Y)}: \quad Z(\Omega) \rightarrow [0,1]$$
$$(x,y) \mapsto \mathbf{P}\Big((X,Y) = (x,y)\Big) = \mathbf{P}\Big((X=x) \cap (Y=y)\Big)$$

On appelle lois marginales du couple (X,Y) les deux lois de probabilité, respectivement de X et Y.

On a 
$$\mathbf{P}_X : x \mapsto \sum_{Y=y} \mathbf{P}((X,Y) = (x,y))$$
 (et de même pour  $P_Y$ ).

# Loi conjointe, lois marginales

### Définition - Loi conjointe, lois marginales

On appelle loi conjointe de X et Y la loi du couple Z=(X,Y), c'est-à-dire l'application

$$\mathbf{P}_{(X,Y)}: \quad Z(\Omega) \rightarrow [0,1]$$
$$(x,y) \mapsto \mathbf{P}\Big((X,Y) = (x,y)\Big) = \mathbf{P}\Big((X=x) \cap (Y=y)\Big)$$

On appelle lois marginales du couple (X,Y) les deux lois de probabilité, respectivement de X et Y.

On a 
$$\mathbf{P}_X : x \mapsto \sum_{Y=y} \mathbf{P}((X,Y) = (x,y))$$
 (et de même pour  $P_Y$ ).

#### Attention. Lien entre les deux lois

A partir de la loi conjointe d'un couple de v.a. on peut déterminer les lois marginales. La réciproque est fausse.

#### Loi conditionnelle

#### Définition - Loi conditionnelle

Soit (X,Y) un couple de variables aléatoires. Pour  $x \in X(\Omega)$  fixé tel que  $\mathbf{P}(X=x) \neq 0$ , on appelle loi conditionnelle de Y sachant (X=x) la loi de Y pour la probabilité  $\mathbf{P}_{(X=x)}$ , c'est-à-dire l'application :

$$Y(\Omega) \rightarrow [0,1]$$
  
 $y \mapsto \mathbf{P}(Y = y|X = x)$ 

De même on peut définir, pour  $y \in Y(\Omega)$  tel que  $\mathbf{P}(Y = y) \neq 0$ , la loi conditionnelle de X sachant (Y = y).

#### **Exercices**

#### Exercice

On lance trois fois de suite une pièce équilibrée. Soient  $X_1$  la v.a. qui vaut 1 si le premier jet donne "pile" et 0 sinon, et  $X_2$  la v.a. égale au nombre de "face" obtenu.

Déterminer la loi conjointe et les lois marginales du couple  $(X_1, X_2)$ .

Déterminer la loi conditionnelle de  $X_1$  sachant ( $X_2 = 1$ ).

### **Exercices**

#### Exercice

Un sac contient 4 boules numérotées de 1 à 4. On tire deux boules avec remise et on note  $X_1$  et  $X_2$  les numéros obtenus. On pose  $X=X_1$  et  $Y=\max(X_1,X_2)$ .

Déterminer la loi conjointe ainsi que les lois marginales du couple  $(X_1, X_2)$ . Déterminer la loi conjointe ainsi que les lois marginales du couple (X, Y). Déterminer la loi conditionnelle de Y sachant (X=2).

# Condition nécessaire et suffisante de loi de couple

# Proposition - Caractérisation de loi de couple de v.a.

Soient E et F deux ensembles.

$$\left\{\left((x_i,y_j),p_{ij}\right)\in (E\times F)\times \mathbb{R}\,\middle|\, 1\leqslant i\leqslant r, 1\leqslant j\leqslant s\right\} \text{ est la loi d'un couple de v.a. si et seulement si}$$

$$\forall (i,j) \in [\![1,r]\!] \times [\![1,s]\!], p_{ij} \geqslant 0 \text{ et } \sum_{i=1}^r \sum_{j=1}^s p_{ij} = 1.$$

# Condition nécessaire et suffisante de loi de couple

# Proposition - Caractérisation de loi de couple de v.a.

Soient E et F deux ensembles.

$$\left\{\left((x_i,y_j),p_{ij}\right)\in (E\times F)\times \mathbb{R}\,\middle|\, 1\leqslant i\leqslant r, 1\leqslant j\leqslant s\right\} \text{ est la loi d'un couple de v.a. si et seulement si}$$

$$\forall (i,j) \in [\![1,r]\!] \times [\![1,s]\!], p_{ij} \geqslant 0 \text{ et } \sum_{i=1}^r \sum_{j=1}^s p_{ij} = 1.$$

#### **Démonstration**

# Généralisation à des n-uplets

Les définitions peuvent se généraliser à des n-uplets de v.a.

# Proposition - Vecteur aléatoire

Soient  $n \in \mathbb{N}^*$ ,  $E_1, \ldots, E_n$  des ensembles et  $X_1, \ldots, X_n$  n v.a. sur  $\Omega$ . La variable aléatoire à valeurs dans  $E_1 \times \cdots \times E_n$ 

$$X: \quad \Omega \quad \to E \times \cdots \times E_n$$
  
 $\omega \quad \mapsto (X_1(\omega), \dots, X_n(\omega))$ 

est appelée n-uplet de variables aléatoires noté

$$X=(X_1,\ldots,X_n).$$

On a 
$$X(\Omega) \subset X_1(\Omega) \times \cdots \times X_n(\Omega)$$
.

Si les  $X_i$  sont des v.a.r. on parle de n-uplet de v.a.r. ou de vecteur aléatoire à valeur dans  $\mathbb{R}^n$ .

La loi conjointe de  $X_1,\ldots,X_n$  est la loi du n-uplet  $X=(X_1,\ldots,X_n)$  Les lois marginales de  $X=(X_1,\ldots,X_n)$  sont les n lois de probabilité des v.a.  $X_1,\ldots,X_n$ , elles peuvent se déduire de la loi conjointe.

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
- ⇒ Couple de variables aléatoires

- ⇒ Variables aléatoires
  - Une variable aléatoire est un « nombre potentiel »!

- ⇒ Variables aléatoires
  - Une variable aléatoire est un « nombre potentiel »!
  - Deux points de vue

- ⇒ Variables aléatoires
  - Une variable aléatoire est un « nombre potentiel »!
  - Deux points de vue :
    - $X:\Omega \to \mathbb{R}$  et on s'intéresse aux événements  $[X=k]=X^{-1}(\{k\})$  image réciproque de  $\{k\}\subset \mathbb{R}$  par X

- ⇒ Variables aléatoires
  - Une variable aléatoire est un « nombre potentiel »!
  - Deux points de vue :
    - $X:\Omega \to \mathbb{R}$  et on s'intéresse aux événements  $[X=k]=X^{-1}(\{k\})$  image réciproque de  $\{k\}\subset \mathbb{R}$  par X
    - lacktriangledown X crée une partition de  $\Omega$

- ⇒ Variables aléatoires
  - Une variable aléatoire est un « nombre potentiel »!
  - Deux points de vue :
    - $X:\Omega \to \mathbb{R}$  et on s'intéresse aux événements  $[X=k]=X^{-1}(\{k\})$  image réciproque de  $\{k\}\subset \mathbb{R}$  par X
    - ightharpoonup X crée une partition de  $\Omega$
  - Les variables aléatoires peuvent être composée avec des fonctions réelles

- ⇒ Variables aléatoires
  - Une variable aléatoire est un « nombre potentiel »!
  - Deux points de vue
  - Les variables aléatoires peuvent être composée avec des fonctions réelles
  - La loi de X est la donnée des  $\mathbf{P}(X = k)$ , pour  $k \in X(\Omega)$ .

- ⇒ Variables aléatoires
  - Une variable aléatoire est un « nombre potentiel »!
  - Deux points de vue
  - Les variables aléatoires peuvent être composée avec des fonctions réelles
  - La loi de X est la donnée des  $\mathbf{P}(X = k)$ , pour  $k \in X(\Omega)$ .
  - $([X = k])_{k \in X(\Omega)}$  est un système complet d'événements

- ⇒ Variables aléatoires
  - Une variable aléatoire est un « nombre potentiel »!
  - Deux points de vue
  - Les variables aléatoires peuvent être composée avec des fonctions réelles
  - La loi de X est la donnée des  $\mathbf{P}(X = k)$ , pour  $k \in X(\Omega)$ .
  - $([X = k])_{k \in X(\Omega)}$  est un système complet d'événements

Si 
$$Y = g(X)$$
 alors  $\mathbf{P}(Y = k) = \sum_{h \mid g(h) = k} \mathbf{P}(X = h)$ 

- ⇒ Variables aléatoires
  - Une variable aléatoire est un « nombre potentiel »!
  - Deux points de vue
  - Les variables aléatoires peuvent être composée avec des fonctions réelles
  - La loi de X est la donnée des  $\mathbf{P}(X = k)$ , pour  $k \in X(\Omega)$ .
  - $([X = k])_{k \in X(\Omega)}$  est un système complet d'événements
  - Si Y = g(X) alors  $\mathbf{P}(Y = k) = \sum_{h \mid g(h) = k} \mathbf{P}(X = h)$
  - Fonctions de répartitions :  $F_X : t \mapsto \mathbf{P}(X \le t)$

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
- ⇒ Couple de variables aléatoires

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
  - Si toutes las valeurs prises par X sont équiprobables, on dit que X suit une loi uniforme :  $X \hookrightarrow \mathcal{U}([1,\#(X(\Omega))])$ .

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
  - Si toutes las valeurs prises par X sont équiprobables, on dit que X suit une loi uniforme :  $X \hookrightarrow \mathcal{U}([1,\#(X(\Omega))])$ .
  - Si  $X(\Omega) = \{0,1\}$  (seulement deux issues vues par X), en notant  $p = \mathbf{P}(X = 1)$ , on dit que X suit une loi de Bernoulli de paramètre  $p: X \hookrightarrow \mathcal{B}(p)$ .

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
  - Si toutes las valeurs prises par X sont équiprobables, on dit que X suit une loi uniforme :  $X \hookrightarrow \mathcal{U}([1,\#(X(\Omega))])$ .
  - Si  $X(\Omega) = \{0,1\}$  (seulement deux issues vues par X), en notant  $p = \mathbf{P}(X=1)$ , on dit que X suit une loi de Bernoulli de paramètre  $p: X \hookrightarrow \mathcal{B}(p)$ .
  - Si X est la somme de n variables de Bernoulli indépendantes ou X compte le nombre de succès lorsqu'on répète n fois de façon indépendante une même opération élémentaires de probabilité de succès p, on dit que X suit une loi binomiale de paramètre (n,p):  $X \hookrightarrow \mathcal{B}(n,p)$

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
- ⇒ Couple de variables aléatoires

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
- ⇒ Couple de variables aléatoires
  - Définition :  $Z(\omega) = (X(\omega), Y(\omega))$

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
- ⇒ Couple de variables aléatoires
  - ▶ Définition :  $Z(\omega) = (X(\omega), Y(\omega))$
  - Loi conjointe : loi de Z (représentée dans un tableau). Lois marginales : lois de X et Y (on exploite souvent la FPT)

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
- ⇒ Couple de variables aléatoires
  - ▶ Définition :  $Z(\omega) = (X(\omega), Y(\omega))$
  - Loi conjointe : loi de Z (représentée dans un tableau). Lois marginales : lois de X et Y (on exploite souvent la FPT)
  - Lois conditionnelles :  $\mathbf{P}_{(X=x)}(Y=y)$ ...

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
- ⇒ Couple de variables aléatoires
  - ▶ Définition :  $Z(\omega) = (X(\omega), Y(\omega))$
  - Loi conjointe : loi de Z (représentée dans un tableau). Lois marginales : lois de X et Y (on exploite souvent la FPT)
  - Lois conditionnelles :  $\mathbf{P}_{(X=x)}(Y=y)$ ...
  - Généralisation à un vecteur de toute taille...

# **Objectifs**

- ⇒ Variables aléatoires
- ⇒ Exemple classique de loi de variables aléatoires
- ⇒ Couple de variables aléatoires

#### Pour le prochain cours

- Lecture : 3. Indépendance
- Exercice n°770 & 778