

Leçon 3 - Equations polynomiales

- ⇒ Méthode analytique
- Problèmes
- 2. Algèbre & Géo.
- 3 . Opérer avec de
- 4. Equation polynomiale et analyse
- 4.1. La meilleure méthode
- 4.2. Retro-contrôle
- 4.3 Máthada da la cáranta
- 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

⇒ Méthode analytique

- 1. Quelques problèmes
- 2. Equation polynomiale : algèbre et géométrie
- 3 . Opérer avec des polynômes
- 4. Equation polynomiale et analyse
 - 4.1. La meilleure méthode : l'essai/erreur
 - 4.2. Retro-contrôle
 - 4.3. Méthode de la sécante
 - 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

Leçon 3 - Equations polynomiales

⇒ Méthode analytique

. Problèmes

2. Algèbre & Gé

polynômes

polynomiale et analyse

4.1. La meilleure méthode : l'essai/erreur

4.2. Retro-contrôle

4.3. Méthode de la sécante

 .4. Vers la dérivation. Méthode le la tangente

5. Bilan

⇒ Méthode analytique

⇒ Méthode analytique

- 4.1. La meilleure méthode : l'essai/erreur

- 1. Quelques problèmes
- 2. Equation polynomiale : algèbre et géométrie
- 3. Opérer avec des polynômes
- 4. Equation polynomiale et analyse
 - 4.1. La meilleure méthode : l'essai/erreur
 - 4.2. Retro-contrôle
 - 4.3. Méthode de la sécante
 - 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

2. Algebre & Geo

4. Equation

analyse

4.1. La meilleure méthode : l'essai/erreur

4.2. Retro-contröle

4.3. Méthode de la sécante

 Vers la dérivation. Méthode la tangente

5 Rilan

Heuristique. La meilleure solution

Si l'on veut résoudre un problème, dont on ne sait rien excepté ses réalisations pour certains réalisations des variables. Alors la solution naturelle consiste à faire des essais/erreurs. Concrètement, pour résoudre f=0, on prend une première valeur pour x. On essaye $f(x_1)$. Est-il égal à 0? Si non, on essaye une autre valeur. . .

2. Algèbre & Géo.

4. Equation

analyse
4.1. La meilleure méthode :

l'essai/erreur

4.2. Netro-controle

4.3. Méthode de la sécante

.4. Vers la dérivation. Méthod le la tangente

5. Bilan

Heuristique. La meilleure solution

Si l'on veut résoudre un problème, dont on ne sait rien excepté ses réalisations pour certains réalisations des variables. Alors la solution naturelle consiste à faire des essais/erreurs. Concrètement, pour résoudre f=0, on prend une première valeur pour x. On essaye $f(x_1)$. Est-il égal à 0? Si non, on essaye une autre valeur. . .

Est-il possible d'apprendre de nos essais/erreurs?

Principe

Une méthode classique en ingénierie (mais aussi en biologie) est d'exploiter le retro-contrôle ou une retro-action positive.

- ⇒ Méthode analytique
- I. Problèmes
- 2. Algébre & Géo
- . Opérer avec d
- polynomiale et analyse
- 1.1. La meilleure méthode :
- 4.2. Retro-contrôle
- 4.3. Méthode de la sécante
- Vers la dérivation. Méthode de la tangente
- 5. Bilan

Une méthode classique en ingénierie (mais aussi en biologie) est d'exploiter le retro-contrôle ou une retro-action positive.

Truc & Astuce - Exploiter le retro-contrôle

Réinjecter les résultats obtenus dans la formule initiale.

Mais si le résultat n'est pas juste, alors tout n'est pas perdu : il ne faut pas repartir de 0.

Et le second résultat ne doit pas être trop éloigné du premier résultat (plus grand si la fonction est croissante...).

Principe : on crée une suite (x_n) qui converge vers x, la vraie valeur que l'on cherche.

A chaque étape, on prend $x_{n+1} = x_n + y_n$, meilleure approximation de x que x_n , et donc y_n est une suite telle que :

- \triangleright y_n est beaucoup plus petit que x_n , négligeable face à x_n
- $(\gamma_n) \to 0$
- ▶ pour $k \in N$, $k \ge 2$, y_n^k est toujours beaucoup plus petit que y_n , négligeable face à y_n^k .

- ⇒ Méthode analytique

- 4.2. Retro-contrôle

Exemple

Nous allons expliquer la méthode à partir d'un exercice.

⇒ Méthode analytique

- Problèmes
- 2. Algèbre & Géo
- 3. Opérer avec d
- 4. Equation polynomiale et
- 4.1. La meilleure méthode :
- 4.2. Retro-contrôle
- 1.3 Máthada da la sácanta
- 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

Exemple

Leçon 3 - Equations polynomiales

⇒ Méthode analytique

I. Problemes

2. Algébre & Géo

4 Faustion

analyse

4.1. La meilleure méthode :

4.2. Retro-contrôle

1.3. Méthode de la sécante

 Vers la dérivation. Méthode de la tangente

5. Bilan

Nous allons expliquer la méthode à partir d'un exercice.

Exercice

On cherche à donner une valeur approchée de $\sqrt{8}$. Donner une valeur approchée (à deux chiffres), par rétro-contrôle

⇒ Méthode analytique

⇒ Méthode analytique

- Problèmes
- Algébre & Géo.
- polynômes
- polynomiale et analyse
- 4.1. La meilleure méthode : l'essai/erreur
- .2. Retro-contrôle
- 4.3. Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

- 1. Quelques problèmes
- 2. Equation polynomiale : algèbre et géométrie
- 3 . Opérer avec des polynômes
- 4. Equation polynomiale et analyse
 - 4.1. La meilleure méthode : l'essai/erreur
 - 4.2. Retro-contrôle
 - 4.3. Méthode de la sécante
 - 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

Méthode du dictionnaire

Analyse Principe

Leçon 3 - Equations polynomiales

⇒ Méthode analytique

- . Problèmes
- 2. Algèbre & Géo
- 3 . Opérer avec d
- oolynomiale et
- .1. La meilleure méthode :
- 2. Retro-contrôle
- 4.3. Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5 Bilan

4. Equation polynomiale et

4.1. La meilleure méthode

l'essai/erreur

.2. Hetro-contröle

4.3. Méthode de la sécante

4.4. Vers la dérivation. Méthode de la tangente

5 Rilan

Analyse Principe

Définition - Algorithme de la sécante

Considérons la fonction polynomiale $f(x)=\sum_{k=0}^n a_k x^k$. On considère deux nombres $a,b\in\mathbb{R}$, puis la suite (u_n) définie par :

$$u_0 = a, u_1 = b \ \forall \ n \in \mathbb{N}, u_{n+2} = u_{n+1} - \frac{u_{n+1} - u_n}{f(u_{n+1}) - f(u_n)} f(u_{n+1})$$

La suite ainsi définie suit l'algorithme de la sécante

⇒ Méthode analytique

- Problèmes
- 2. Algébre & Géo.
- 4. Equation
- analyse
- l'essai/erreur
 - 2. Retro-contrôle
- 4.3. Méthode de la sécante
- 4.4. Vers la dérivation. Méthod de la tangente
- 5. Bilan

Analyse Principe

Définition - Algorithme de la sécante

Considérons la fonction polynomiale $f(x) = \sum_{k=0}^n a_k x^k$. On considère deux nombres $a,b \in \mathbb{R}$, puis la suite (u_n) définie par :

$$u_0 = a, u_1 = b \ \forall \ n \in \mathbb{N}, u_{n+2} = u_{n+1} - \frac{u_{n+1} - u_n}{f(u_{n+1}) - f(u_n)} f(u_{n+1})$$

La suite ainsi définie suit l'algorithme de la sécante

Sous certaines conditions, relativement robuste, la suite (u_n) converge vers une racine de f

- ⇒ Méthode analytique

- 4.4. Vers la dérivation. Méthode de la tangente

- 1. Quelques problèmes
- 2. Equation polynomiale : algèbre et géométrie
- 3. Opérer avec des polynômes
- 4. Equation polynomiale et analyse
 - 4.1. La meilleure méthode : l'essai/erreur
 - 4.2. Retro-contrôle
 - 4.3. Méthode de la sécante
 - 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

Nombre dérivée

Analyse Quand 0 s'invite

- ⇒ Méthode analytique
 - . Problèmes
- 2. Algèbre & Géo
- 3 . Opérer avec de oolynômes
- polynomiale et analyse
- 4.1. La meilleure méthode l'essai/erreur
- .2. Retro-contrôle
- 3. Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

Nombre dérivée

Analyse Quand 0 s'invite

Heuristique. Toute forme indéterminée $\frac{0}{0}$...

...peut se voir comme un calcul de dérivée, avec la formule de L'HOSPITAL.

- ⇒ Méthode analytique
- 1. Problèmes
- 2. Algèbre & Géo
 - olynômes
- 4. Equation colynomiale et analyse
- I.1. La meilleure méthode :
- .2. Retro-contrôle
- 3. Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5 Rilan

Heuristique. Toute forme indéterminée $\frac{0}{0}$...

...peut se voir comme un calcul de dérivée, avec la formule de L'HOSPITAL.

Définition - Nombre dérivée

Soit f une fonction (polynomiale), on appelle dérivée de f en x_0 , le nombre :

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

On note ce nombre $f'(x_0)$, selon la notation de Lagrange (1797).

⇒ Méthode analytique

- Problèmes
- Algèbre & Géo.
- oolynômes
- 4. Equation
 polynomiale et
 analyse
- 4.1. La meilleure méthode : l'essai/erreur
- 2. Retro-contrôle
- 4.3. Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

Dérivation de polynôme

Exemple Monôme et polynôme. Dérivation

Leçon 3 - Equations polynomiales

⇒ Méthode analytique

- I. Problemes
- 2. Algèbre & Géo
- 3 . Opérer avec d
- I. Equation colynomiale et
- 4.1. La meilleure méthode
- 2 Retro-contrôle
- 4.3. Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

Dérivation de polynôme

Exemple Monôme et polynôme. Dérivation **Analyse** Méthode de la tangente

- ⇒ Méthode analytique
 - . Problèmes
- 2. Algèbre & Géo
- B . Opérer avec d
- 4. Equation polynomiale et
- 4.1. La meilleure méthode
- essa/erreur
- 1.2. Retro-contröle
- 4.4. Vers la dérivation. Méthode
- de la tangente

2. Algèbre & Géo

polynömes 4. Equation

- analyse
- l'essai/erreur
- 4.2. Retro-contröle
- 4.3. Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan

Définition - Algorithme de la tangente

Considérons la fonction polynomiale $f(x) = \sum_{k=0}^{n} a_k x^k$. On considère deux nombres $a \in \mathbb{R}$, puis la suite (u_n) définie par :

$$v_0 = a, : \forall n \in \mathbb{N}, v_{n+1} = v_n - \frac{1}{f'(v_n)} f(v_n)$$

La suite ainsi définie suit l'algorithme de la tangente

4. Equation

analyse
4.1. La meilleure méthode

l'essai/erreur

4.2. Retro-contrôle

4.3. Méthode de la sécante

 4.4. Vers la dérivation. Méthode de la tangente

5. Bilan

Définition - Algorithme de la tangente

Considérons la fonction polynomiale $f(x) = \sum_{k=0}^n a_k x^k$. On considère deux nombres $a \in \mathbb{R}$, puis la suite (u_n) définie par :

$$v_0 = a, : \forall n \in \mathbb{N}, v_{n+1} = v_n - \frac{1}{f'(v_n)} f(v_n)$$

La suite ainsi définie suit l'algorithme de la tangente

Sous certaines conditions, relativement robuste, la suite (v_n) converge vers une racine de f

Conclusion

Leçon 3 - Equations polynomiales

⇒ Méthode analytique

- Problèmes
- 2. Algèbre & Géo
- 3 . Opérer avec de: polynômes
- polynomiale et analyse
- 4.1. La meilleure méthode :
- .2. Retro-contrôle
- 3. Méthode de la sécante
- Vers la dérivation. Méthode de la tangente
- 5. Bilan

Objectifs

 \Rightarrow Méthodes analytiques

Conclusion

Leçon 3 - Equations polynomiales

Objectifs

- ⇒ Méthodes analytiques
 - Retro-contrôle

⇒ Méthode analytique

- Problèmes
- 2. Algèbre & Géo.
- 3 . Opérer avec de
- Equation olynomiale et
- 4.1. La meilleure méthode :
- 2. Retro-contrôle
- 0.000
- 4.4. Vers la dérivation. Méthode de la tangente
- 5 Rilan

- 1. Problémes
- 2. Algèbre
- 3 . Opérer avec de
- 4. Equation polynomiale et
- 4.1. La meilleure méthode
- 2. Retro-contrôle
- 3. Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5 Rilan

Objectifs

- ⇒ Méthodes analytiques
 - Retro-contrôle
 - Encadrement : méthode de la sécante

- Problèmes
- 2. Algèbre & Géo.
- polynômes
- 4. Equation polynomiale et analyse
- 4.1. La meilleure méthode
- 2. Retro-contrôle
- 4.3 Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5 Rilan

- **Objectifs**
- ⇒ Méthodes analytiques
 - Retro-contrôle
 - ► Encadrement : méthode de la sécante
 - Accélération : méthode de la tangente (Newton)

- ⇒ Méthode analytique
- Problèmes
- 2. Algébre & Géo.
- 4. Equation
- polynomiale et analyse
- 4.1. La meilleure méthode :
- 4.2. Retro-contrôle
- 4.3 Méthode de la sécante
- 4.4. Vers la dérivation. Méthode de la tangente
- 5. Bilan
- ------

Objectifs

⇒ Méthodes analytiques

Pour la prochaine fois

- ► Lecture du cours : chap 7. Sommes et produit
- Exercices N° 22 & 24