

Leçon 6 - Calculs et opérations avec \sum (ou \prod)

Leçon 6 - Calculs et opérations avec ∑ (ou ∏)

⇒ Manipulation autour du coefficient binomial

roblèmes

2. Symboles ∑ et [

. Coefficients

du binôme

3.2 Triangle de Pascal

s.z. mangie de nascai

3.3. Formule du binôme

⇒ Manipulation autour du coefficient binomial

- 3.1 Factorialles et coefficients hinomiauv

- 3. Coefficients binomiaux et formule du binôme
 - 3.1. Factorielles et coefficients binomiaux
 - 3.2. Triangle de Pascal

1. Quelques problèmes

2. Symboles Σ et Π

3.3. Formule du binôme

Lecon 6 - Calculs et opérations avec ∑

- 3.1 Factorialles et coefficients hinomiauv

2. Symboles Σ et Π

1. Quelques problèmes

- 3. Coefficients binomiaux et formule du binôme
 - 3.1. Factorielles et coefficients binomiaux

Définition - Factorielle et coefficient binomial

Pour n et p éléments de \mathbb{N} , $p \leq n$, on pose :

$$0!=1$$
 et pour $n\geqslant 1, n!=n\times (n-1)\times \cdots \times 1$ qui se lit "factorielle n " $\binom{n}{p}=\frac{n(n-1)\dots(n-p+1)}{p!}=\frac{n!}{p!(n-p)!}$ qui se lit « p parmi n »

On généralise la notation à tout $p \in \mathbb{Z}$, si on n'a pas $0 \le p \le n$, alors $\binom{n}{p} = 0$

- problèmes
- 2. Symboles ∑ et ∏
 - . Coefficients inomiaux et formule
- 3.1. Factorielles et coefficients binomiaux
 - .2. Triangle de Pascal
- 3.3. Formule du binôme

3.1 Factorialles et coefficients

hinomiauv

4 D > 4 同 > 4 豆 > 4 豆 > 豆 め Q (~

Définition - Factorielle et coefficient binomial

Pour n et p éléments de \mathbb{N} , $p \leq n$, on pose :

$$0!=1$$
 et pour $n\geqslant 1, n!=n\times (n-1)\times \cdots \times 1$ qui se lit "factorielle n " $\binom{n}{p}=\frac{n(n-1)\dots(n-p+1)}{p!}=\frac{n!}{p!(n-p)!}$ qui se lit « p parmi n »

On généralise la notation à tout $p \in \mathbb{Z}$, si on n'a pas $0 \le p \le n$, alors $\binom{n}{n} = 0$

Remarque Plus tard...

Python Calcul de la factorielle avec une boucle

1. Quelques problèmes

2. Symboles ∑ et ∏

Coefficients nomiaux et formul

du binôme
3.1. Factorielles et coefficients

binomiaux

. Triangle de Pascal

3.3. Formule du binôme

Pour tout nombre $n \in \mathbb{N}$ et $p \in \mathbb{Z}$,

⇒ Manipulation autour du coefficient binomial

- problèmes
- 2. Symboles ∑ et ∏
- binomiaux et formule du binôme
- 3.1. Factorielles et coefficients binomiaux
 - .2. Triangle de Pascal

4 D > 4 A > 4 B > 4 B > B 9 Q C

Proposition - Propriétés

2. Symboles ∑ et ∏

binomiaux et formule du binôme

3.1. Factorielles et coefficients binomiaux

2. Triangle de Pascal

Démonstration

Pour tout nombre $n \in \mathbb{N}$ et $p \in \mathbb{Z}$, $\binom{n}{0} = \binom{n}{n} = 1; \quad \binom{n}{1} = n; \quad \binom{n}{2} = \frac{n(n-1)}{2};$ $\text{pour } p \leqslant n, \quad \binom{n}{p} = \binom{n}{n-p}, \text{ et } \binom{n+1}{p+1} = \frac{n+1}{p+1} \binom{n}{p}$ $\text{pour } 1 \leqslant p \leqslant n-1, \quad \binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$

4□ > 4□ > 4∃ > 4∃ > ∃ 900

 $\binom{n}{0} = \binom{n}{n} = 1; \quad \binom{n}{1} = n; \quad \binom{n}{2} = \frac{n(n-1)}{2};$

pour $1 \le p \le n-1$, $\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$

Proposition - Propriétés

Pour tout nombre $n \in \mathbb{N}$ et $p \in \mathbb{Z}$,

hinomiauv

Démonstration

Exercice

Pour n, p, simplifier $\sum_{k=1}^{n} \binom{k}{p}$. On pourra y « voir »un télescopage

pour $p \le n$, $\binom{n}{p} = \binom{n}{n-p}$, et $\binom{n+1}{p+1} = \frac{n+1}{p+1} \binom{n}{p}$

binomial

3.1 Factorialles et coefficients

- ⇒ Manipulation autour du coefficient binomial
- problèmes
- 2. Symboles ∑ et []
 - 3. Goefficients binomiaux et formule
- 3.1. Factorielles et coeffic
- 3.2. Triangle de Pascal
- 2.2 Formula du binâma
- 3.3. Formule du binôme

- 3. Coefficients binomiaux et formule du binôme
 - 3.1. Factorielles et coefficients binomiaux
 - 3.2. Triangle de Pascal

1. Quelques problèmes

2. Symboles Σ et Π

3.3. Formule du binôme

Construction

De ces propriétés on déduit un moyen simple de calculer les coefficients binomiaux :

Leçon 6 - Calculs et opérations avec \sum (ou \prod)

- ⇒ Manipulation autour du coefficient binomial
- problèmes
- 2. Symboles ∑ et ∏
 - Coefficients
- 3.1. Factorielles et coeffic
- 3.2. Triangle de Pascal
- .3. Formule du binôme

On peut alors construire le triangle de Pascal pour pouvoir calculer facilement (addition et non multiplication) les coefficients binomiaux. On écrit ainsi dans un tableau :

```
2=1+1
^{(5)}
                5
                                                               5
                                                                          10
                                                                                    10
```

⇒ Manipulation autour du coefficient binomial

- problèmes
- z. Symboles Z. et []
 - Coefficients
- du binôme
- binomiaux
- 3.2. Triangle de Pascal

problèmes

2. Symboles 2_ et []

. Goefficients inomiaux et formule

3.1. Factorielles et coefficie

3.2. Triangle de Pascal

3. Formule du binôme

Proposition - Nombres entiers

Pour n et p éléments de \mathbb{N} , $p \le n$, n! et $\binom{n}{p}$ sont des entiers naturels.

1. Quelques problèmes

2. Symboles ∑ et [

Coefficients

du binôme

binomiaux

3.2. Triangle de Pascal

3. Formule du binôme

Proposition - Nombres entiers

Pour n et p éléments de \mathbb{N} , $p \le n$, n! et $\binom{n}{p}$ sont des entiers naturels.

Remarque Convention

Python Triangle de Pascal

```
2. Symboles 2_ et [
```

oinomiaux et formu

3.1. Factorielles et coeffi

3.2. Triangle de Pascal

3. Formule du binôme

```
de créer la n<sup>e</sup>ligne du triangle de Pascal.
      def Pascal(n):
           L = [0] * (n+1)
   2
           for h in range(n+1):
   3
                L[h]=[1]+[0]*n
   4
           print(L)
   5
           for h in range(n):
   6
                for k in range(h+1):
   7
                     L[h+1][k+1]=L[h][k]+L[h][k+1]
   8
           return(L)
   9
```

En exploitant des listes (de listes) en informatique, il est possible

- ⇒ Manipulation autour du coefficient binomial

- 3.3. Formule du binôme

2. Symboles Σ et Π

1. Quelques problèmes

- 3. Coefficients binomiaux et formule du binôme

 - 3.3. Formule du binôme

binomial

Symboles ∑ et [

nomiaux et formule

inomiaux

3.3. Formule du binôme

Proposition - Formule du binôme (de Newton)

Soient $n \in \mathbb{N}$ et a, b deux réels (ou deux complexes). Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Soient $n \in \mathbb{N}$ et a, b deux réels (ou deux complexes). Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Avec a = b = 1:

Corollaire -

$$\sum_{p=0}^{n} \binom{n}{p} = 2^n$$

⇒ Manipulation autour du coefficient binomial

- problèmes
- 2. Symboles ∑ et ∏
 - pinomiaux et formule lu binôme
 - oinomiaux
- 3.2. Triangle de Pascal
 3.3. Formule du binôme

3.3. Formule du binôme

Proposition - Formule du binôme (de Newton)

Soient $n \in \mathbb{N}$ et a, b deux réels (ou deux complexes). Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Avec a = b = 1:

Corollaire -

$$\sum_{p=0}^{n} \binom{n}{p} = 2^n$$

Démonstration

Soient $n \in \mathbb{N}$ et a, b deux réels (ou deux complexes). Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Avec a = b = 1:

Corollaire -

$$\sum_{p=0}^{n} \binom{n}{p} = 2^n$$

Démonstration

Exercice

⇒ Manipulation autour du coefficient binomial

- oroblèmes
- 2. Symboles ∑ et ∏
 - Coeπicients nomiaux et formule ι binôme
 - inomiaux
- 3.2. Triangle de Pascal
 3.3. Formule du binôme

Conclusion

Leçon 6 - Calculs et opérations avec ∑ (ou ∏)

⇒ Manipulation autour du coefficient binomial

- Quelques problèmes
- 2. Symboles ∑ et ∏
 - 3. Coeπicients binomiaux et formule du binôme
 - binomiaux
 - .2. Triangle de Pascal
 - 3.3. Formule du binôme

Objectifs

 \Rightarrow Manipulation autour du coefficient binomial

⇒ Manipulation autour du coefficient binomial

- ⇒ Manipulation autour du coefficient binomial
 - $n! = \prod_{k=1}^{n} k, \text{ et } \binom{n}{k} = \frac{n!}{k!(n-k)!}$

- problèmes
 - z. Symboles Z et []
 - Coefficients
 - du binôme
 - binomiaux
 - Triangle de Pasca

◆ロト 4周ト 4 至 ト 4 至 ト 至 めなべ

⇒ Manipulation autour du coefficient binomial

$$n! = \prod_{k=1}^{n} k, \text{ et } \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Des relations fondamentales : dont la symétrie et la relation de Pascal $\binom{a+1}{b-1} = \binom{a}{b} + \binom{a}{b-1}$

⇒ Manipulation autour du coefficient binomial

- problèmes
- 2. Symboles ∑ et ∏
 - s. Coefficients pinomiaux et formule
- 3.1. Factorielles et coefficients
 - 2. Triangle de Pascal

◆□▶◆□▶◆□▶◆□▶ ● 夕久○

⇒ Manipulation autour du coefficient binomial

$$n! = \prod_{k=1}^{n} k, \text{ et } \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Des relations fondamentales : dont la symétrie et la relation de Pascal $\binom{a+1}{b+1} = \binom{a}{b} + \binom{a}{b+1}$
- Formule du binôme : $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

⇒ Manipulation autour du coefficient binomial

- problèmes
- 2. Symboles ∑ et ∏
 - inomiaux et formule
 - binomiaux
 - .2. Triangle de Pascal
- 3.3. Formule du binôme

- problèmes
- 2. Symboles ∑ et ∏
 - Coefficients
- 3.1 Factorielles et coefficien
- binomiaux
- 3.2. Triangle de Pascal
- 3.3. Formule du binôme

Objectifs

⇒ Manipulation autour du coefficient binomial

Pour la prochaine fois

- Lecture du cours : Chap 10 : Ensembles.
- Exercices 45 & 46