

Leçon 15 - Fonctions à la Euler

Leçon 15 - Fonctions à la Euler

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes

 - . Généralités
- 2.1. Définition et représentatio
- 2.2. Operations
- 2.3. Vocabulaire
- 2.4. Bijections et réciproque
- 2.5. Branches infinies

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

1. Problèmes

2. Généralités sur les fonctions

- 2.1. Définition et représentation d'une fonction
- 2.2. Opérations sur les fonctions
- 2.3. Vocabulaire d'analyse sur les fonctions
- 2.4. Bijections et réciproques
- 2.5. Etude des branches infinies en ∞

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

1. Problèmes

- Généralités
- ---
- .2. Opérations
- .3. Vocabulaire
- 2.4. Bijections et réciproques
- 2.5. Branches infinies

⇒ Bijection & Asymptotes

1. Problèmes

4 D > 4 同 > 4 豆 > 4 豆 > 豆 め Q (~

- - **Problème** L'application $x \mapsto \begin{cases} 1 & \text{si } x \leq 1 \\ x^2 & \text{si } x > 1 \end{cases}$ est-elle une
 - fonction?

Problèmes

Problème - L'application $x \mapsto \begin{cases} 1 & \text{si } x \le 1 \\ x^2 & \text{si } x > 1 \end{cases}$ est-elle une fonction?

Problème - Comment calculer π^e ?

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

1. Problèmes

Généralités

2.1. Définition et représentation

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

⇒ Bijection & Asymptotes

1. Problèmes

Généralités

2.1. Définition et représent

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

- **Problème** L'application $x \mapsto \begin{cases} 1 & \text{si } x \le 1 \\ x^2 & \text{si } x > 1 \end{cases}$ est-elle une fonction?
- **Problème** Comment calculer π^e ?
- Problème Interpolation de la suite géométrique

1. Problèmes

2. Generalites

2.1. Définition et représenta

2.2. Operations

2.3. Vocabulaire

2.4. Bijections et réciproques

- **Problème** L'application $x \mapsto \begin{cases} 1 & \text{si } x \le 1 \\ x^2 & \text{si } x > 1 \end{cases}$ est-elle une fonction?
- **Problème** Comment calculer π^e ?
- Problème Interpolation de la suite géométrique
- Problème De la multiplication à l'addition

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

1. Problèmes

2. Généralités sur les fonctions

- 2.1. Définition et représentation d'une fonction
- 2.2 Opérations sur les fonctions
- 2.3. Vocabulaire d'analyse sur les fonctions
- 2.4. Bijections et réciproques
- 2.5 Etude des branches infinies en \infty

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

....

Généralités

2.1. Définition et représentation

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

2.1. Définition et représentation

2.2. Operations
2.3. Vocabulaira

2.4. Bijections et réciproques

2.5. Branches infinies

Définition - Fonction

Une fonction d'une variable réelle, à valeurs réelles, est un "procédé" qui à chaque élément x d'un sous-ensemble $\mathscr D$ de $\mathbb R$ associe un réel f(x) parfaitement déterminé. Une telle fonction est notée

$$f: \mathscr{D} \to \mathbb{R}$$
$$x \mapsto f(x)$$

f(x) est appelé *image* de x par f. Si $y \in \mathbb{R}$, tout élément x de \mathscr{D} vérifiant f(x) = y est appelé un antécédent de y. Définition - Fonction

2.1 Définition et représentation

Une fonction d'une variable réelle, à valeurs réelles, est un

"procédé" qui à chaque élément x d'un sous-ensemble $\mathscr D$ de $\mathbb R$ associe un réel f(x) parfaitement déterminé. Une telle fonction est notée

$$f: \mathscr{D} \to \mathbb{R}$$
$$x \mapsto f(x)$$

f(x) est appelé image de x par f. Si $y \in \mathbb{R}$, tout élément x de \mathcal{D} vérifiant f(x) = y est appelé un antécédent de y.

Remarque Ensemble de définition

2.1. Définition et représentation

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

2.5. Branches infinies

Définition - Graphe d'une fonction

 $\mathscr{C} = \{(x, f(x)); x \in \mathscr{D}_f\}$ s'appelle le *graphe* de f, le plan étant muni d'un repère (O, \vec{i}, \vec{j}) , on appelle *représentation graphique* ou courbe représentative de f la représentation de cet ensemble dans le plan. La courbe représentative a pour équation y = f(x).

Définition - Image de ${\mathscr D}$ par une fonction. Fonction restreinte

Si $\mathscr{D}'\subset \mathscr{D}_f$ (\mathscr{D}' sous ensemble de \mathscr{D}_f), on note $f(\mathscr{D}')$ l'ensemble des images des éléments de \mathscr{D}' : $f(\mathscr{D}')=\{f(x);x\in \mathscr{D}'\}$. $f(\mathscr{D}')$ s'appelle *l'ensemble image (ou image directe)* de \mathscr{D}' par f. Soit $f:\mathscr{D}_f\to\mathbb{R}$ une fonction et I un intervalle inclus dans \mathscr{D}_f . On appelle *restriction* de f à I la fonction g définie sur I par : $\forall x\in I, g(x)=f(x)$. On la note f_{II} .

- . Généralités
- 2.1. Définition et représentation
 - .2. Opérations
- 2.4. Bijections et réciproques
- 2.5. Branches infinies

L. Gerieranies

2.1. Définition et représentation

2.2 Vanabulaira

2.4. Bijections et réciproque

- Définition Ensemble des applications
- Soit I un intervalle de \mathbb{R} , non vide et non réduit à un point. On note $\mathscr{F}(I,\mathbb{R})$ l'ensemble des fonctions définies sur I à valeurs dans \mathbb{R} (on parle aussi d'applications de I dans \mathbb{R})

Soient $f: \mathcal{D}_f \to \mathbb{R}$ et $a \in \mathbb{R}$.

Comment obtient-on les domaines de définition ainsi que les graphes (ou représentations graphiques) des fonctions

$$x \mapsto f(x) + a, x \mapsto f(x+a), x \mapsto f(a-x) \text{ et } x \mapsto af(x)$$
?

- $x \mapsto f(x) + a : \mathcal{D}_1 = \mathcal{D}$ et translation de $a \ j$.
- $x \mapsto f(x+a)$: $\mathcal{D}_2 = \{x \mid x+a \in \mathcal{D}\} = \mathcal{D} a$ et translation de -a \overrightarrow{i} .
- $x \mapsto f(a-x)$: $\mathcal{D}_3 = \{x \mid a-x \in \mathcal{D}\}$ et reflexion (symétrie) d'axe d'équation $x = \frac{a}{2}$.
- $x \mapsto af(x)$: $\mathcal{D}_4 = \mathcal{D}$ et affinité (« homotétie-axiale ») de rapport a et « centre »l'axe des abscisses.

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

-
- Généralités
- 2.1. Définition et représentation
 - 2.2. Opérations
- 2.5. Vocabulane
- 2.5. Propohos infinios

Soient $f: \mathcal{D}_f \to \mathbb{R}$ et $a \in \mathbb{R}$.

Comment obtient-on les domaines de définition ainsi que les graphes (ou représentations graphiques) des fonctions $x \mapsto f(x) + a$, $x \mapsto f(x + a)$, $x \mapsto f(a - x)$ et $x \mapsto af(x)$?

- $x \mapsto f(x) + a, x \mapsto f(x+a), x \mapsto f(a-x) \in x \mapsto af(a)$
- $x \mapsto f(x) + a : \mathcal{D}_1 = \mathcal{D}$ et translation de $a \ j$.
- $x \mapsto f(x+a)$: $\mathcal{D}_2 = \{x \mid x+a \in \mathcal{D}\} = \mathcal{D} a$ et translation de -a \overrightarrow{i} .
- $x\mapsto f(a-x):\mathcal{D}_3=\{x\mid a-x\in\mathcal{D}\}$ et reflexion (symétrie) d'axe d'équation $x=\frac{a}{2}$.
- $x \mapsto af(x)$: $\mathcal{D}_4 = \mathcal{D}$ et affinité (« homotétie-axiale ») de rapport a et « centre »l'axe des abscisses.

Exercice

Montrer qu'une suite (u_n) est également une fonction

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

-
- . Généralités
- 2.1. Définition et représentation
 - 2.2. Opérations
- 2.3. Vocabul
- 2.4. Bijections et réciproques
- 2.5. Branches infinies

1. Problèmes

- 2. Généralités sur les fonctions
 - 2.1. Définition et représentation d'une fonction
 - 2.2. Opérations sur les fonctions
 - 2.3. Vocabulaire d'analyse sur les fonctions
 - 2.4. Bijections et réciproques
 - 2.5 Etude des branches infinies en ∞

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

....

2. Généralités

2.1. Définition et représentation

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

Définition - Opérations classiques

Dans $\mathscr{F}(I,\mathbb{R})$ on définit les opérations suivantes :

- Addition : si $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$, la fonction f+g est définie sur I par : $\forall x \in I$, (f+g)(x) = f(x) + g(x)
- Multiplication par un réel : si $f \in \mathcal{F}(I,\mathbb{R})$ et $\lambda \in \mathbb{R}$, la fonction λf est définie sur I par : $\forall x \in I$, $(\lambda f)(x) = \lambda f(x)$
- Produit de deux fonctions : si $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$, la fonction fg est définie sur I par : $\forall x \in I, (fg)(x) = f(x) \times g(x)$
- ▶ Valeur absolue d'une fonction : si $f \in \mathcal{F}(I,\mathbb{R})$ la fonction |f| est définie sur I par : $\forall x \in I$, |f|(x) = |f(x)|

Définition - Opérations classiques

Dans $\mathcal{F}(I,\mathbb{R})$ on définit les opérations suivantes :

- Addition : si $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$, la fonction f+g est définie sur I par : $\forall x \in I$, (f+g)(x) = f(x) + g(x)
- ► Multiplication par un réel : si $f \in \mathcal{F}(I,\mathbb{R})$ et $\lambda \in \mathbb{R}$, la fonction λf est définie sur I par : $\forall x \in I$, $(\lambda f)(x) = \lambda f(x)$
- ▶ Produit de deux fonctions : si $(f,g) \in \mathcal{F}(I,\mathbb{R})^2$, la fonction fg est définie sur I par : $\forall x \in I$, $(fg)(x) = f(x) \times g(x)$
- ▶ Valeur absolue d'une fonction : si $f \in \mathcal{F}(I,\mathbb{R})$ la fonction |f|est définie sur I par : $\forall x \in I$, |f|(x) = |f(x)|

Remarque Lois internes...

Soient $f:I\to\mathbb{R},\,g:J\to\mathbb{R}$ vérifiant $f(I)\subset J.$ On définit la composée $g\circ f:I\to\mathbb{R}$ par

$$\forall x \in I, (g \circ f)(x) = g(f(x)).$$

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

1. I TODICITICS

2. Généralités

2.2. Opérations

2.3. Vocabulaire

Soient $f:I\to\mathbb{R},\,g:J\to\mathbb{R}$ vérifiant $f(I)\subset J$. On définit la composée $g\circ f:I\to\mathbb{R}$ par

$$\forall x \in I, (g \circ f)(x) = g(f(x)).$$

Attention. Non commutativité

En général, même lorsque les deux fonctions $g\circ f$ et $f\circ g$ ont un sens, elles sont différentes.

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

Généralités

2.1. Définition et représentation 2.2. Opérations

2.3 Vocabulaire

2.4. Bijections et réciproques

Définition - Composée

Soient $f:I\to\mathbb{R},\,g:J\to\mathbb{R}$ vérifiant $f(I)\subset J.$ On définit la composée $g\circ f:I\to\mathbb{R}$ par

$$\forall x \in I, (g \circ f)(x) = g(f(x)).$$

Attention. Non commutativité

En général, même lorsque les deux fonctions $g \circ f$ et $f \circ g$ ont un sens, elles sont différentes.

Exercice

Définir proprement les deux composées (si cela est possible) des fonctions suivantes (ou de leurs restrictions) :

$$f: \quad \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 - 1 \quad \text{et} \quad g: \quad \mathbb{R} \setminus \{0\} \to \mathbb{R} \\ x \mapsto \frac{1}{x}$$

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

2. Généralités

2.1. Definition et representation

2.2. Opérations

.3. Vocabulaire

....

2.4. Bijections et réciproques

1. Problèmes

- 2. Généralités sur les fonctions
 - 2.1. Définition et représentation d'une fonction
 - 2.2 Opérations sur les fonctions
 - 2.3. Vocabulaire d'analyse sur les fonctions
 - 2.4. Bijections et réciproques
 - 2.5 Etude des branches infinies en \infty

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

. Généralités

2 Onérations

2.3. Vocabulaire

2.4. Bijections et réciproques

Définition - Vocabulaire (et propriétés)

Soit $f: \mathcal{D}_f \to \mathbb{R}$ une fonction

- On dit que f est paire si $\forall x \in \mathcal{D}_f$, $-x \in \mathcal{D}_f$ et f(-x) = f(x) \mathscr{C}_f est alors symétrique par rapport à Oy
- On dit que f est impaire si $\forall x \in \mathcal{D}_f, -x \in \mathcal{D}_f$ et f(-x) = -f(x) \mathscr{C}_f est alors symétrique par rapport à O.
- $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ est dite *périodique* s'il existe T > 0 tel que $\forall x \in D_f, x + T \in D_f, x - T \in D_f \text{ et } f(x + T) = f(x).$ T est une période de f. \mathscr{C}_f est alors invariante par translation de vecteur Ti.

Définition - Fonction croissante, décroissante et monotone

On dit qu'une fonction f

- est croissante sur I si $\forall (x,y) \in I^2, x \leq y \Rightarrow f(x) \leq f(y)$.
- est décroissante sur I si $\forall (x, y) \in I^2, x \le y \Rightarrow f(x) \ge f(y)$.
- est monotone sur I si elle est croissante sur I ou décroissante sur I.
- est strictement croissante sur I si $\forall (x, y) \in I^2, x < y \Rightarrow f(x) < f(y).$
- est strictement décroissante sur I si $\forall (x, y) \in I^2, x < y \Rightarrow f(x) > f(y).$

0.1 Déficient et -----

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

2.5. Branches infinies

Proposition - Composition et monotonie

La composée de deux applications monotones de même sens de variation (respectivement de sens contraire) est une application croissante (respectivement décroissante).

Démonstration

Proposition - Composition et monotonie

croissante (respectivement décroissante).

La composée de deux applications monotones de même sens de

variation (respectivement de sens contraire) est une application

- 2.3 Vocabulaire

Définition - Fonction convexe, concave

On dit qu'une fonction f

- est convexe sur I si $\forall (x, y) \in I^2, \forall \lambda \in [0, 1] f(\lambda x + (1 - \lambda y) \leq \lambda f(x) + (1 - \lambda) f(y).$
- est strictement convexe sur I si $\forall (x, y) \in I^2, \forall \lambda \in]0, 1[f(\lambda x + (1 - \lambda y) < \lambda f(x) + (1 - \lambda)f(y)]$
- est concave sur I si $\forall (x, y) \in I^2, \forall \lambda \in [0, 1] f(\lambda x + (1 - \lambda y)) \ge \lambda f(x) + (1 - \lambda) f(y).$
- est strictement concave sur I si $\forall (x, y) \in I^2, \forall \lambda \in]0, 1[f(\lambda x + (1 - \lambda y) > \lambda f(x) + (1 - \lambda)f(y)]$

2.3 Vocabulaire

Définition - Fonctions majorées, minorées, bornées

On dit qu'une fonction f:

- \blacktriangleright est majorée s'il existe $M \in \mathbb{R}$ tel que $\forall x \in I, f(x) \leq M$.
- \blacktriangleright est minorée s'il existe $m \in \mathbb{R}$ tel que $\forall x \in I, m \leq f(x)$.
- est bornée si elle est majorée et minorée.

Définition - Fonctions majorées, minorées, bornées

est bornée si elle est majorée et minorée.

est majorée s'il existe M ∈ R tel que ∀x ∈ I, f(x) ≤ M.
est minorée s'il existe m ∈ R tel que ∀x ∈ I, m ≤ f(x).

2. Generalites

2.3. Vocabulaire

2.4. Bijections et réciproque

2.5. Branches infinies

Proposition - Bilan

On dit qu'une fonction f:

Une application $f:I\to\mathbb{R}$ est bornée si et seulement si il existe M>0 tel que $\forall x\in I, |f(x)|\leq M.$

Définition - Fonctions majorées, minorées, bornées

est bornée si elle est majorée et minorée.

est majorée s'il existe M ∈ R tel que ∀x ∈ I, f(x) ≤ M.
est minorée s'il existe m ∈ R tel que ∀x ∈ I, m ≤ f(x).

z. Generalites

2.2 Onáratione

2.3. Vocabulaire

2.4. Bijections et réciproque

2.5. Branches infinies

Proposition - Bilan

On dit qu'une fonction f:

Une application $f:I\to\mathbb{R}$ est bornée si et seulement si il existe M>0 tel que $\forall x\in I, |f(x)|\leq M.$

Démonstration

Définition - Maximum, minimum et extremum

On dit que $M \in \mathbb{R}$ est un maximum sur I de f si

- $\forall x \in I, f(x) \leq M$
- et il existe $a \in I$ tel que f(a) = Mon dit que f présente un maximum en a.

On dit que $m \in \mathbb{R}$ est un minimum sur I de f si

- $\forall x \in I, f(x) \ge m$
- et il existe $a \in I$ tel que f(a) = mon dit que f présente un minimum en a.

On parle d'extremum lorsque l'on a un maximum ou un minimum. On note

$$M = \max_{x \in I} f(x)$$
 et $m = \min_{x \in I} f(x)$

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

2. Généralités

2.1. Définition et représentati

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

Définition - Maximum local

On dit que M = f(a) est un maximum local (maximum ou minimum)

s'il existe $\epsilon > 0$ tel que pour tout $x \in]a - \epsilon, a + \epsilon[\cap D_f, f(x) \le f(a).$

On parle de *maximum strict*, lorsque pour $x \in]a - \epsilon, a + \epsilon[\cap D_f]$ et $x \neq a, f(x) < f(a)$.

2. Generalites

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproque

2.5. Branches infinies

Définition - Maximum local

On dit que M = f(a) est un *maximum local* (maximum ou minimum)

s'il existe $\epsilon > 0$ tel que pour tout $x \in]a - \epsilon, a + \epsilon[\cap D_f, f(x) \leq f(a).$

On parle de *maximum strict*, lorsque pour $x \in]a - \epsilon, a + \epsilon[\cap D_f]$ et $x \neq a, f(x) < f(a)$.

Remarque Voisinage de a (dans \mathbb{R})

Z. Generalites

2.3 Vocabulaire

2.4. Bijections et réciproque

2.5. Branches infinies

4 D > 4 A > 4 B > 4 B > 9 Q P

Définition - Maximum local

On dit que M = f(a) est un maximum local (maximum ou minimum)

s'il existe $\epsilon > 0$ tel que pour tout $x \in]a - \epsilon, a + \epsilon[\cap D_f, f(x) \le f(a).$

On parle de *maximum strict*, lorsque pour $x \in]a - \epsilon, a + \epsilon[\cap D_f]$ et $x \neq a, f(x) < f(a)$.

Remarque Voisinage de a (dans \mathbb{R}) Remarque Extension de définition

1. Problèmes

2. Généralités sur les fonctions

- 2.1. Définition et représentation d'une fonction
- 2.2. Opérations sur les fonctions
- 2.3. Vocabulaire d'analyse sur les fonctions

2.4. Bijections et réciproques

2.5 Etude des branches infinies en \infty

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

2. Généralités

2.2. Opérations

2.4. Bijections et réciproques

Définition - Bijection

Soit f une fonction définie sur un sous-ensemble D de $\mathbb R$ à valeurs dans $\mathbb R$ et $J \subset \mathbb R$.

On dit que f est bijective de D sur J (ou réalise une bijection de D sur J)

- ightharpoonup si tout élément de D a son image dans J
- si tout élément de J admet un unique antécédent par f dans D

Formellement:

$$\forall x \in D, f(x) \in J$$
 et $\forall y \in J, \exists ! x \in D, y = f(x).$

Définition -Bijection

Soit f une fonction définie sur un sous-ensemble D de $\mathbb R$ à valeurs dans $\mathbb R$ et $J \subset \mathbb R$.

On dit que f est bijective de D sur J (ou réalise une bijection de D sur J)

- lacktriangle si tout élément de D a son image dans J
- si tout élément de J admet un unique antécédent par f dans D

Formellement:

$$\forall x \in D, f(x) \in J$$
 et $\forall y \in J, \exists! x \in D, y = f(x).$

Remarque Si, par convention J = f(D)

2.2. Opérations

.3. Vocabulaire

2.4. Bijections et réciproques

5. Branches infinies

Définition -Bijection

Soit f une fonction définie sur un sous-ensemble D de $\mathbb R$ à valeurs dans $\mathbb R$ et $J \subset \mathbb R$.

On dit que f est bijective de D sur J (ou réalise une bijection de D sur J)

- lacktriangle si tout élément de D a son image dans J
- si tout élément de J admet un unique antécédent par f dans D

Formellement:

$$\forall x \in D, f(x) \in J$$
 et $\forall y \in J, \exists ! x \in D, y = f(x).$

Remarque Si, par convention J = f(D)**Exemple** Application exponentielle

2.1. Définition et représentation

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

2.5. Branches infinies

Définition - Application (bijection) réciproque

Si f est bijective de D sur J, on définit une fonction g par

$$g: J \rightarrow D$$

 $y \mapsto x \quad | y = f(x) \text{ (unique antécédent de } y \text{ par } f \text{)}$

Cette fonction g est elle-même bijective et appelée bijection réciproque de f, et notée f^{-1} .

2.4. Bijections et réciproques

Définition - Application (bijection) réciproque

Si f est bijective de D sur J, on définit une fonction g par

$$g: J \rightarrow D$$

 $y \mapsto x \quad | y = f(x) \text{ (unique antécédent de } y \text{ par } f \text{)}$

Cette fonction g est elle-même bijective et appelée bijection réciproque de f, et notée f^{-1} .

Exemple Application logarithmique

2.1 Définition et représentation

2.2. Opérations

2.4. Bijections et réciproques

2.5. Branches infinies

Proposition - Application (sens directe)

Si f est une bijection de D sur J, on a

$$\forall x \in D, (f^{-1} \circ f)(x) = x;$$

$$\forall y \in J, (f \circ f^{-1})(y) = y;$$

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$
.

Théorème - Réciproque et représentation graphique

Soit $f: I \to J$ une bijection et $f^{-1}: J \to I$ sa bijection réciproque. Alors

- dans un repère orthonormé, \mathscr{C}_f et $\mathscr{C}_{f^{-1}}$ sont symétriques par rapport à la première bissectrice (droite d'équation y=x).
- Si f est monotone sur I alors f^{-1} est monotone sur J, de même sens de variations.

Démonstration

Théorème - Réciproque et représentation graphique

Soit $f: I \to J$ une bijection et $f^{-1}: J \to I$ sa bijection réciproque. Alors

- dans un repère orthonormé, \mathscr{C}_f et $\mathscr{C}_{f^{-1}}$ sont symétriques par rapport à la première bissectrice (droite d'équation y=x).
- Si f est monotone sur I alors f^{-1} est monotone sur J, de même sens de variations.

2.4. Bijections et réciproques

On admet les théorèmes qui suivent et qui seront démontrés ultérieurement :

Théorème - Théorème de la bijection

Soit *f* une fonction définie sur *I* , continue, strictement monotone sur I (intervalle de \mathbb{R}),

alors f est bijective de I sur J = f(I).

Sa bijection réciproque f^{-1} est continue sur J.

1. Problèmes

- 2. Généralités sur les fonctions
 - 2.1. Définition et représentation d'une fonction
 - 2.2 Opérations sur les fonctions
 - 2.3. Vocabulaire d'analyse sur les fonctions
 - 2.4. Bijections et réciproques
 - 2.5. Etude des branches infinies en ∞

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

....

. Généralités

.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

2.5. Branches infinies

voisinage de (+ ou -) l'infini.

. Généralités

Définition et représentati

2. Operations

3. Vocabulaire

2.4. Bijections et réciproques

2.5. Branches infinies

Le but est de préciser l'allure de la courbe représentative de f au

Savoir-faire. Etude des branches infinies (et définition)

Soit f une fonction définie au voisinage de $\pm \infty$.

1. si $\lim_{x\to\infty} f(x) = \ell$ avec $\ell \in \mathbb{R}$, la courbe admet une **asymptote** horizontale d'équation $y = \ell$.

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

- 1. Problèmes
- . Generalites
- .2. Opérations
- .2. Operations
- 2.4. Bijections et réciproques
- 2.5. Branches infinies

Le but est de préciser l'allure de la courbe représentative de f au voisinage de (+ ou -) l'infini.

Savoir-faire. Etude des branches infinies (et définition)

Soit f une fonction définie au voisinage de $\pm \infty$.

2. si
$$\lim_{x \to \infty} f(x) = \infty$$
, on calcule $\frac{f(x)}{x}$.

- 2.1. si $\lim_{x\to\infty} \frac{f(x)}{r} = 0$, il y a une branche parabolique **horizontale** (ou de direction Ox).
- 2.2 si $\lim_{x\to\infty}\frac{f(x)}{x}=\infty$, il y a une branche parabolique verticale (ou de direction $O_{\mathcal{V}}$).
- 2.3. $\sin \lim_{x \to \infty} \frac{f(x)}{x} = a, a \in \mathbb{R}^*$, il faut calculer f(x) ax.

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

2.5. Branches infinies

Le but est de préciser l'allure de la courbe représentative de f au voisinage de (+ ou -) l'infini.

Savoir-faire. Etude des branches infinies (et définition)

Soit f une fonction définie au voisinage de $\pm \infty$.

2. si
$$\lim_{x \to \infty} f(x) = \infty$$
, on calcule $\frac{f(x)}{x}$.

2.3. si
$$\lim_{x \to \infty} \frac{f(x)}{x} = a$$
, $a \in \mathbb{R}^*$, il faut calculer $f(x) - ax$.

- 2.3.1. si $\lim_{x\to\infty} f(x) ax = b \in \mathbb{R}$, la courbe admet une **asymptote oblique** d'équation y = ax + b.
- 2.3.2. si $\lim_{x\to\infty} f(x) ax = \infty$ il y a une branche parabolique oblique de direction y = ax.

2.5. Branches infinies

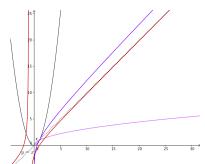
Énoncer des fonctions présentant :

- 1. une asymptote horizontale (on donnera l'équation de cette asymptote)
- 2. une branche parabolique horizontale
- 3. une branche parabolique verticale
- 4. une asymptote oblique (on donnera l'équation de cette asymptote)
- 5. une branche parabolique oblique (on donnera la direction), mais pas d'asymptote oblique

Exemple

Exercice

Indiquer sous chacun des quatre graphiques suivants lesquels présentent des branches paraboliques, des asymptotes...



Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

1. Problèmes

Généralités

0.4 0.75 %

2. Opérations

3. Vocabulaire

2.4. Bijections et réciproques

2.5. Branches infinies

. Généralités

2.1 Définition et représe

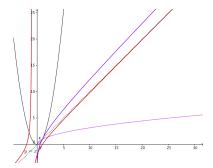
.2. Opérations

2.4 Dijections et régionage

2.5. Branches infinies

Exercice

Indiquer sous chacun des quatre graphiques suivants lesquels présentent des branches paraboliques, des asymptotes...



Remarque Courbe asymptote

Objectifs

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes

Leçon 15 - Fonctions à la Euler

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes
-
- Généralités
- 2.1 Définition et représent
- 2.2 Onérations
 - 3. Vocabulaire
- 2.4. Bijections et réciproques
- 5. Branches infinies

Objectifs

- ⇒ Rappels généraux sur les fonctions
 - Ensemble de définition, ensemble image

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

.....

. Généralités

2.1. Définition et représentation

2.2. Opérations

.3. Vocabulaire

2.4. Bijections et réciproque

2.5. Branches infinies

- ⇒ Rappels généraux sur les fonctions
 - Ensemble de définition, ensemble image
 - Représentation graphique et opérations sur les fonctions

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes
- 1. I TODICITICS
- . Généralités
- 2.1. Définition et représentat
- 2.2. Opérations
- 3. Vocabulaire
- 2.4. Bijections et réciproques
- 2.5. Branches infinies

- ⇒ Rappels généraux sur les fonctions
 - Ensemble de définition, ensemble image
 - Représentation graphique et opérations sur les fonctions
 - Fonction restreinte

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes
-
- . Généralités
- 2.1 Définition et représentat
- 2.2. Opérations
- .3. Vocabulaire
- 2.4. Bijections et réciproques
- 2.5. Branches infinies

- ⇒ Rappels généraux sur les fonctions
 - Ensemble de définition, ensemble image
 - Représentation graphique et opérations sur les fonctions
 - Fonction restreinte
 - Parité, imparité, périodicité

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

. Généralités

2.1. Définition et représentation

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

5. Branches infinies

- ⇒ Rappels généraux sur les fonctions
 - Ensemble de définition, ensemble image
 - Représentation graphique et opérations sur les fonctions
 - Fonction restreinte
 - Parité, imparité, périodicité
 - ► Applications bornées, et monotonie

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

- . Généralités
- 2.1. Définition et représental
- 2.2. Opérations
- 2.3. Vocabulaire
- 2.4. Bijections et réciproques
- 2.5. Branches infinies

Objectifs

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes

Leçon 15 - Fonctions à la Euler

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes
- 2. Généralités
- 2.1 Définition et représent
- 2.2. Opérations
 - 3. Vocabulaire
- 2.4. Bijections et réciproques
- 2.5. Branches infinies

Objectifs

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes
 - ► Fonctions bijectives et réciproque

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

....

. Généralités

2.1. Définition et représenta

2.2. Opérations

3. Vocabulaire

0.5. D----b--- i-fi-i--

Branches infinies

Objectifs

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes
 - Fonctions bijectives et réciproque
 - Etude à l'infini :

Leçon 15 - Fonctions à la Euler

⇒ Rappels généraux sur les fonctions

⇒ Bijection & Asymptotes

. Généralités

2.1. Définition et représents

2.2. Opérations

2.3. Vocabulaire

E December infinite

Branches infinies

Objectifs

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes
 - Fonctions bijectives et réciproque
 - Etude à l'infini :
 - ightharpoonup a. $\lim \frac{f(x)}{x} = \ell$

Objectifs

- ⇒ Rappels généraux sur les fonctions
- ⇒ Bijection & Asymptotes
 - Fonctions bijectives et réciproque
 - Etude à l'infini :
 - ightharpoonup a. $\lim \frac{f(x)}{x} = \ell$
 - b. $\lim_{x \to \infty} f(x) \ell x \dots$

sur les fonctions

⇒ Bijection & Asymptotes

- 2. Généralités
- 2.1. Définition et représents
- 2.2. Opérations
- 2.3. Vocabulaire
- 2.4. Bijections et réciproques
 - J. Diancies illillies

Objectifs

2. Generalite:

2.1. Définition et représ

2.2. Opérations

2.3. Vocabulaire

2.4. Bijections et réciproques

2.5. Branches infinies

Pour la prochaine fois

⇒ Bijection & Asymptotes

Lecture du cours : chapitre 5

⇒ Rappels généraux sur les fonctions

- 3. Fonctions circulaires et réciproques
- 4. Fonctions polynomiales et puissances rationnelles
- Exercice N°142 & 146