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Lecon 16 - Fonctions

Cercle trigonométrique 4 a Euler
= Fonctions
trigonométriques et
réciproque

'

bC = Puissance et
polynéme
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tap 6
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3.1. Fonctions circulaires
sin 6
i A
0 cosB 05

On reprend, de maniére analytique (ou le parametre x devient
une variable) les fonctions trigonométriques vues précédemment.



Lecon 16 - Fonctions

Fonctions cosinus et sinus ala Euler

¥ ¥:

_ y=sinx .

y=cosx = Fonctions
. . trigonométriques et
réciproque
—rf2 a2 = Puissance et
- 0 1 * . N 0o A M polynéme
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3.1. Fontions circulaires

Fonctions circulaires

réciproques

4.1. Fonction puissance entiére




Lecon 16 - Fonctions
a la Euler

Fonctions cosinus et sinus

y=sinx ‘
= Fonctions
trigonométriques et

L 1 2
réciproque

y=cosx

= Puissance et
polynéme

Proposition - Aspect analytique

3.1. Fontions circulaires

Les fonctions sinus et cosinus sont 2-périodiques.
sin est une fonction impaire alors que cos est une fonction paire.



Lecon 16 - Fonctions

Fonctions cosinus et sinus ala Euler

y=sinx ‘
y=cosx = Fonctions

trigonométriques et

/ \ '\ ' réciproque
/2 /2 = Puissance et

polynéme

Proposition - Aspect analytique

Les fonctions sinus et cosinus sont 27-périodiques.
sin est une fonction impaire alors que cos est une fonction paire.

Savoir-faire. Transférer un probléme trigonométrique « en
a»vers «en 0 ».

Il faut exploiter les formules trigonométriques

sin(a + h) = sina cosh +cosasinh et

cos(a + h) =cosacosh —sinasinh, a connaitre par coeur.



Inégalité

Analyse Inégalité fondamentale
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Lecon 16 - Fonctions

|néga||té a la Euler
= Fonctions
Analyse Inégalité fondamentale e K

= Puissance et

Proposition - Inégalité polynome
On a pour tout x €] — %,’2—’ ,

. | sin x|
|sinx| < |x| < |tanx| = ——
0S X

3.1. Fontions circulaires

.. .. sinx
Et en particulier lim =1
x—0 X



Lecon 16 - Fonctions

|néga||té a la Euler
= Fonctions
Analyse Inégalité fondamentale e K

= Puissance et

Proposition - Inégalité polynome
On a pour tout x €] — %,’2—’ ,

_ |sinx|

|sinx| < |x| < |tanx]
0SX

3.1. Fontions circulaires

.. .. sinx
Et en particulier lim =1
x—0 X

Démonstration



Lecon 16 - Fonctions

|néga||té a la Euler
= Fonctions
Analyse Inégalité fondamentale e K

= Puissance et

Proposition - Inégalité polynome
T
On a pour tout x €] - 7, Z1,

_ |sinx|

|sinx| < |x| < |tanx]
0SX

3.1. Fontions circulaires

.. .. sinx
Et en particulier lim =1
x—0 X

Démonstration
Exemple Calculatrice. Calculer sin(0,01234)



Lecon 16 - Fonctions

|néga||té a la Euler
= Fonctions
Analyse Inégalité fondamentale e K
e 7 oz Pui t
Proposition - Inégalité ponéme

On a pour tout x €] - 5, 2,

. | sin x|
|sinx| < |x| < |tanx| =
0S X
) . . Sinx 3.1. Fonctions circulaires
Et en particulier lim =1
x—0 Xx

Démonstration
Exemple Calculatrice. Calculer sin(0,01234)
Exercice

En majorant le module de e’ — 1, montrer que pour tout x € R,

sinZx + (cosx — 1) < x2.



Tangente

Proposition - Fonction tangente - Aspect analytique

La fonction tangente est ainsi définie sur R\ {g +kmkeZ) (R
privé des points de la forme § + k& avec k € Z).
tan est impaire, -périodique
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Tangente

Proposition - Fonction tangente - Aspect analytique

La fonction tangente est ainsi définie sur R\ {g +kmkeZ) (R
privé des points de la forme § + k& avec k € Z).

tan est impaire, -périodique

¥
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Lecon 16 - Fonctions
a la Euler

Tangente

= Fonctions

Proposition - Fonction tangente - Aspect analytique e
= Puissance et

polynéme

La fonction tangente est ainsi définie sur R\ {g +kmkeZ) (R
privé des points de la forme § + k& avec k € Z).
tan est impaire, -périodique

¥

|
3.1. Fontions circulaires

Exercice
Etudier et représenter la fonction tan
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Lecon 16 - Fonctions

Fonction arcsin 2l Euler
Définition - Arcsinus = Fonctions
trigonométriques et
réciproque

La fonction sinus est continue et strictement croissante sur _
[-Z,Z] donc réalise une bijection de [~ %, Z] sur [-1,1]. il
La bijection réciproque s’appelle arcsinus,
arcsin:[—1 1]—»[—2,2
Elle est impaire, strictement croissante. On a donc :

t = arcsinx & (sint =g etuell=5% )

3.2. Fonctions circulaires
réciproques



Lecon 16 - Fonctions

Fonction arcsin 41a Elor

Définition - Arcsinus e s et
La fonction sinus est continue et strictement croissante sur reeprodte
[-Z,Z] donc réalise une bijection de [~ %, Z] sur [-1,1]. R
La bijection réciproque s’appelle arcsinus,

arcsin:[—1 1]—»[—2,2

Elle est impaire, strictement croissante. On a donc :

t = arcsinx & (Sil’lt =xette [_%’% )

3.2, Fontions circulaires

Proposition - Rappels
Ona:

> Vxe [—%,%], arcsin(sinx) = x

> Vxel[-1,1], sin(arcsinx) = x

> Vxel[-1,1], cos(aresinx) = V1 —x2

> Vxel-1,1[, tan(arcsinx) = =

1-x2



Lecon 16 - Fonctions

Fonction arcsin 31a Euler

= Fonctions
trigonométriques et
réciproque
= Puissance et
polynéme
1
0.5
: [i] :
-15 -1 -0.5 [} 05 1 15 o
H H 3.2. Fonctions circulaires
H réciproques
-0.5
-1
sance entiére
] y = arcsin(r)
y=-1.57 -15




Fonction arcsin

Analyse Questions
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Fonction arcsin

Analyse Questions

Il faut connaitre les valeurs remarquables suivantes :

1|1 v2[V38 1

¥ 2 2 | 2
. b4 b4 b4 T
rcsin - — - | =
arcsinx 6 4 3 2
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Lecon 16 - Fonctions

Fonction arccos 412 Euler
Définition - Arccosinus  Fonstons
. . . . , . trigonométriques et
La fonction cosinus est continue et strictement décroissante sur réciproque
[0, ] donc réalise une bijection de [0, ] sur [-1,1]. SR
polynéme

La bijection réciproque s’appelle arccosinus,

arccos :[-1,1] — [0, ].

Elle est strictement décroissante et on a donc :
t = arccosx < (cost =xette [0,7‘[])

3.2. Fonctions circulaires
réciproques



Fonction arccos

Définition - Arccosinus

La fonction cosinus est continue et strictement décroissante sur
[0, ] donc réalise une bijection de [0, 7] sur [-1, 1].

La bijection réciproque s’appelle arccosinus,

arccos:[-1,1] — [0, ].

Elle est strictement décroissante et on a donc :
t = arccosx < (cost =xette [0,7‘[])

Proposition - Rappels
Ona:

Vx € [0, 7], arccos(cosx) =x
Vxe[-1,1], cos(arccosx) =x
Vxe[-1,1], sin(arccosx) = V1 —x2
Vxe[-1,1],x #0, tan(arccosx)= ‘/17_7
Vxe[-1,1], arcsinx +arccosx = 3

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

3.2, Fontions circulaires



Fonction arccos

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Fonctions circulaire
3.2. Fonctions circulaires
réciproques



Fonction arccos

Il faut connaitre les valeurs remarquables suivantes :

1] 1 V2| V3
x 0= | —===21|21=2
2| 2 2 2
T T T T
arccosx — — —_ —
2|3 4 6
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= Fonctions
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= Puissance et
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3.2. Fonctions circulaires
réciproques



Fonction arctan

Définition - Arctangente

La fonction tangente est continue et strictement croissante sur

— %, %[ donc réalise une bijection de 1- %, Z[ sur R.

La bijection réciproque s’appelle arctangente,
arctan:R—]- 3, 3[.
Elle est impaire, strictement croissante et on a donc :

t = arctanx < (tant:x et tE]—%,% )

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
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= Puissance et
polynéme

3.2. Fonctions circulaires
réciproques



Fonction arctan

Proposition - Rappels

Ona:
> VYxe]l- %,% , arctan(tanx) = x
> VxeR, tan(arctanx) = x
> =_1
Vx € R, cos(arctanx) Wews
> i =X
Vx €R, sin(arctanx) A
1 % Si x> O
> VxeR, arctanx + arctan | = = .
-3 six<O

Lecon 16 - Fonctions
a la Euler
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3.2. Fonctions circulaires
réciproques



Fonction arctan
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Fonctions circulaires

3.2. Fonctions circulaires
réciproques




Fonction arctan

Il faut connaitre les valeurs remarquables suivantes :

X

0

Sl

]

3

1

V3

arctanx

/4
6

1S

Wl
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Définitions
Définition - Puissance entiére > 0
Soit n € N*, on qualifie de fonction puissance entiére I'application
x— ", i.e. définie par récurrence par x — x x x” 1 et x0 = 1.
Son ensemble de définition est R. C’est une fonction continue.
Cette application est paire si n est pair, et impaire si n est impair.

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
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= Puissance et
polynéme

4.1. Fonction puissance entiére
relative



Définitions
Définition - Puissance entiere > 0

Soit n € N*, on qualifie de fonction puissance entiére I'application
x— ", i.e. définie par récurrence par x — x x x” 1 et x0 = 1.
Son ensemble de définition est R. C’est une fonction continue.
Cette application est paire si n est pair, et impaire si n est impair.

Définition - Puissance entiere < 0
Soit m € Z_, on qualifie de fonction puissance entiere négative

I'application x — x™ = —, e définie par récurrence par
X

1
x— = xxmletxl =1.
X
Son ensemble de définition est R*. C’est une fonction continue

sur R} et sur R*.
Cette application est paire si n est pair, et impaire si n est impair.
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relative



Définitions
Définition - Puissance entiere > 0

Soit n € N*, on qualifie de fonction puissance entiére I'application
x— ", i.e. définie par récurrence par x — x x x” 1 et x0 = 1.
Son ensemble de définition est R. C’est une fonction continue.
Cette application est paire si n est pair, et impaire si n est impair.

Définition - Puissance entiere <0
Soit m € Z_, on qualifie de fonction puissance entiere négative

I'application x — x™ = —, e définie par récurrence par
X

1
x— = xxmletxl =1.
X
Son ensemble de définition est R*. C’est une fonction continue

sur R} et sur R*.
Cette application est paire si n est pair, et impaire si n est impair.

Il faut savoir représenter ces fonctions, en particulier I'hyperbole
€ associé ax— X (m =-1).

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

4.1. Fonction puissance entiére
relative



Lecon 16 - Fonctions
a la Euler

Morphisme

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Proposition - Morphisme

On a pour tout m,n € Z et x € R*, x™ x x™ = x™*",
Vrai égalementen x =0 si m,n > 0.

4.1. Fonction puissance entiére
relative



Lecon 16 - Fonctions
a la Euler

Morphisme

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Proposition - Morphisme

On a pour tout m,n € Z et x € R*, x™ x x™ = x™*",
Vrai également en x =0 si m,n > 0.

Exercice A démontrer

4.1. Fonction puissance entiére
relative



Lecon 16 - Fonctions

Inégalités de croissance aa Evler
= Fonctions
, . . . g trigonométriques et
Pour étudier les limites variées (a l'infini, ou calculer des réciproque
dérivées), on a besoin d’encadrement. = Puissance et
polynéme

4.1. Fonction puissance entiére
relative



Lecon 16 - Fonctions

Inégalités de croissance aa Evler
= Fonctions
, . . . g trigonométriques et
Pour étudier les limites variées (a l'infini, ou calculer des réciproque
dérivées), on a besoin d’encadrement. = Puissance et
polynéme

Fixons n € N. Pour la croissance de x — x", on exploite le
binbme de Newton. Par exemple :

4.1. Fonction puissance entiére
relative



Lecon 16 - Fonctions

Inégalités de croissance aa Evler
= Fonctions
, . . . g trigonométriques et
Pour étudier les limites variées (a l'infini, ou calculer des réciproque
dérivées), on a besoin d’encadrement. = Puissance et
polynéme

Fixons n € N. Pour la croissance de x — x", on exploite le
binbme de Newton. Par exemple :

Proposition - Binbme de Newton. Croissance

n
. n| ,._
Soitn e N. Pourtouta €R, (a+x)" = Y [ |a" *x".
=0 \R
Avec a,x >0, on adonc x < x’ = x™ < (x')", soit la croissance de

x — x" sur R.

4.1. Fonction puissance entiére
relative



Lecon 16 - Fonctions

Inégalités de croissance aa Evler
= Fonctions
, . .. ., g trigonométriques et
Pour étudier les limites variées (a l'infini, ou calculer des réciproque
dérivées), on a besoin d’encadrement. = Puissance et
polynéme

Fixons n € N. Pour la croissance de x — x", on exploite le
binbme de Newton. Par exemple :

Proposition - Binbme de Newton. Croissance

n
. n| ,._
Soitn e N. Pourtouta €R, (a+x)" = Y [ |a" *x".
=0 \R
Avec a,x >0, on adonc x < x’ = x™ < (x')", soit la croissance de

x — x" sur R.

Démonstration 4.1, Fonoton puissance entéra

relative



Lecon 16 - Fonctions

Inégalités de croissance aa Evler
= Fonctions
, . .. ., g trigonométriques et
Pour étudier les limites variées (a l'infini, ou calculer des réciproque
dérivées), on a besoin d’encadrement. = Puissance et

polynéme

Fixons n € N. Pour la croissance de x — x", on exploite le
binbme de Newton. Par exemple :

Proposition - Binbme de Newton. Croissance

n
. n| ,._
Soit n € N. Pour touta €R, (@ +x)" = ) - a™ Rk,
k=0
Avec a,x >0, on adonc x < x’ = x™ < (x')", soit la croissance de

x — x" sur R.

Démonstration

Exercice Faire la démonstration par récurrence.

On fera bien attention aux variables fixées et a celles qui sont
libres.

4.1. Fonction puissance entiére
relative



Lecon 16 - Fonctions
a la Euler

Inégalité de Bernoulli

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Proposition - Inégalités de Bernoulli
Soit x €] — 1, +ool, pour tout n € N, (1+x)" = 1+ nx.

1
Pourxel-1,=1[, (1 +x)" < 1

—nx

4.1. Fonction puissance entiére
relative



Inégalité de Bernoulli

Proposition - Inégalités de Bernoulli

Soit x €] — 1, +ool, pour tout n € N, (1+x)" = 1+ nx.

Pour x €]-1,1[, (1+x)" <
1-nx

Démonstration

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

4.1. Fonction puissance entiére
relative



Inégalité de Bernoulli

Proposition - Inégalités de Bernoulli

Soit x €] — 1, +o0l, pour tout n € N, (1 +x)"* = 1+ nx.

Pour x €]-1,1[, (1+x)" < =
—nx

Démonstration

Lexercice suivant permet de montrer la continuité des fonctions

puissances rationnelles.

Exercice

On fixe n € N.Montrer que lim,_.¢+(1 + x)" = 1, puis la continuité

adroitede t— t" en 1 etentout x € R.

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

4.1. Fonction puissance entiére
relative



= Fonctions trigonométriques et réciproque

= Fonction puissance et polynomiale

1. Problémes
2. Généralités sur les fonctions

3. Fonctions trigonométrique

4. Fonctions polynomiales et puissances rationnelles

4.2. Fonctions polynomiales

Lecon 16 - Fonctions
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= Fonctions
trigonométriques et
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= Puissance et
polynéme

3.1. Fontions circulaires

4.1. Fonction puissance entiére
elative

4.2. Fonctions polynomiales
43.F
ationnelle




Lecon 16 - Fonctions

Déflnltlon a la Euler

= Fonctions
trigonométriques et
I . f réciproque
Définition - Fonction polynomiale _
= Puissance et
polynéme

On appelle fonction polynomiale une fonction de la forme :

f:x-—>0L0+alx+0sz2

n

+otanx =) apx®

k=0
ouV kel0,nl,ar €R (ouC);
Il s’agit d’'une combinaison linéaire finie de puissances entiéres
de la variable x. On parle de polynéme simple ou de polynéme a
une variable.
On dit que f'(x) = b est une équation polynomiale si f est une
fonction polynomiale. 4.2 Foncons pohromiles



Lecon 16 - Fonctions

Déflnltlon a la Euler

= Fonctions
trigonométriques et
I . f réciproque
Définition - Fonction polynomiale _
= Puissance et
polynéme

On appelle fonction polynomiale une fonction de la forme :

f:x-—>0L0+alx+0sz2

n

+otanx =) apx®

k=0
ouV kel0,nl,ar €R (ouC);
Il s’agit d’'une combinaison linéaire finie de puissances entiéres
de la variable x. On parle de polynéme simple ou de polynéme a
une variable.
On dit que f'(x) = b est une équation polynomiale si f est une
fonction polynomiale. 4.2 Foncons pohromiles

Remarque Notations



Stabilité opératoire

Par propriétés calculatoires sur R ou C :

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

4.2. Fonctions polynomiales



Lecon 16 - Fonctions

Stabilité opératoire & e Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Par propriétés calculatoires sur R ou C :
Proposition - Propriété de I'ensemble des fonctions
polynomiales
Si f et g sont deux fonctions polynomiales, alors :
> f + g est une fonction polynomiale
> f x g est une fonction polynomiale
> f og est une fonction polynomiale.

4.2. Fonctions polynomiales



Lecon 16 - Fonctions

Stabilité opératoire & e Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Par propriétés calculatoires sur Rou C :

Proposition - Propriété de I'ensemble des fonctions
polynomiales
Si f et g sont deux fonctions polynomiales, alors :

> f + g est une fonction polynomiale

> f x g est une fonction polynomiale

> f og est une fonction polynomiale.

Démonstration

4.2. Fonctions polynomiales



Factorisation multiple

Rappelons :
Théoréme - Factorisation multiple

Soit f une fonction polynomiale de degré n. Soit p <n
Si x1,%2,...%p, p solutions différentes de I'équation f(x) =0

(racines de f).
Alors il existe g, fonction polynomiale de degré n — p tel que

VrxekK, fx)=(@—-x1)x—x2)...(x—xp)x gp(x)

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

4.2. Fonctions polynomiales



Lecon 16 - Fonctions

Factorisation multiple 4 1a Euler
= Fonctions
trigonométriques et

Rappelons . réciproque
z \ . . 0 = Puissance et
Théoreme - Factorisation multiple polynome

Soit f une fonction polynomiale de degré n. Soit p <n

Si x1,%2,...%p, p solutions différentes de I'équation f(x) =0
(racines de f).

Alors il existe g, fonction polynomiale de degré n — p tel que

VrxekK, fx)=(@—-x1)x—x2)...(x—xp)x gp(x)

Corollaire - Nombre maximal de solution

4.2. Fonctions polynomiales

Une équation polynomiale de degré n admet au plus n solutions
différentes



= Fonctions trigonométriques et réciproque

= Fonction puissance et polynomiale

1. Problémes
2. Généralités sur les fonctions

3. Fonctions trigonométrique

4. Fonctions polynomiales et puissances rationnelles

4.3. Fonction puissance rationnelle

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

4.1. Fonction puissance entiére
elative

4.2. Fonctions polynomiales

4.3. Fonction puissance
rationnelle



Racine

Analyse Bijection de x — x" sur R,

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

4.3. Fonction puissance
rationnelle



Racine

Analyse Bijection de x — x™ sur R,

Définition - Racine n-ieme

n

On note /- la bijection réciproque de x — x".

On adonc:

sinestpar {x= x/7

xl/n
sin estimpair {/x = { |1/n _ )l/n

—|x —(—x

Pour n impair on a donc {/—x = — {/x.

pour x
pour x
pour x

=0
=0
<0

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

4.3. Fonction puissance
rationnelle



Lecon 16 - Fonctions

Puissance fractionnaire ala Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Définition - Puissance rationnelle
Soit r = ;i € Q* (avec q € N*, p € Z), on qualifie de fonction
puissance rationnelle I'application x — x” ou x” vérifie (x")? = x?.

Son ensemble de définition est R, . C’est une fonction croissante
et continue (nous le verrons plus tard).

4.3. Fonction puissance
rationnelle



Lecon 16 - Fonctions

Puissance fractionnaire ala Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Définition - Puissance rationnelle

Soit r = ;i € Q* (avec g € N*, p € Z), on qualifie de fonction
puissance rationnelle I'application x — x” ou x” vérifie (x")? = x?.
Son ensemble de définition est R, . C’est une fonction croissante

et continue (nous le verrons plus tard).

Exemple 523

4.3. Fonction puissance
rationnelle



Inégalités complémentaires

Analyse Image de [0, 1[ et image de 11, +ool par x — x”

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

4.3. Fonction puissance
rationnelle



Lecon 16 - Fonctions

Inégalités complémentaires S

= Fonctions
trigonométriques et
réciproque

Analyse Image de [0, 1[ et image de 11, +ool par x — x” ;;:ésrﬁ:mel
Proposition - Comparaison des fonctions puissances

Soientr<r' € Q.
/ . /
Alors pourtout x> 1, x" <x" . Etsix <1, x” >x"

4.3. Fonction puissance
rationnelle



Lecon 16 - Fonctions

Inégalités complémentaires S

= Fonctions
trigonométriques et
réciproque
. = Pui:
Analyse Image de [0, 1[ et image de 11, +ool par x — x” poly:ésni:ncee'
Proposition - Comparaison des fonctions puissances

Soientr<r' € Q.
/ . /
Alors pourtout x> 1, x" <x" . Etsix <1, x” >x"

Demonstration

4.3. Fonction puissance
rationnelle



Lecon 16 - Fonctions

Inégalités complémentaires S

= Fonctions
trigonométriques et
réciproque

Analyse Image de [0, 1[ et image de 11, +ool par x — x” ;ljnuésri:nceel
Proposition - Comparaison des fonctions puissances

Soientr<r' € Q. ’ /

Alors pourtout x> 1, x" <x" . Etsix <1, x” >x"

Demonstration

Attention. Ne pas confondre les variables x et n

Dés maintenant, on fait bien attention lorsqu’on compare a x fixé
x” et x° et lorsqu’on compare a r fixé : x” et x'".

4.3. Fonction puissance
rationnelle



Lecon 16 - Fonctions
a la Euler

Conclusion

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Objectifs
= Fonctions trigonométriques et réciproque
= Fonctions puissances, fonctions polynomiales

3.1. Fontions circulaires

3.2, Fontions circulaires

réciproques

4.1. Fonction puissance entiére
elative

4.2. Fonctions pc

4.3. Fonction pui

ationnelle



Lecon 16 - Fonctions

Conclusion la Eulr
Objectifs
. . Lyt ;. = Fonctions
= Fonctions trigonométriques et réciproque trigonométriques et
réciproque
> Petit point sur les fonctions a valeurs complexes et en particulier s Ul

t— eit polynéme



Conclusion
Objectifs
= Fonctions trigonométriques et réciproque
> Petit point sur les fonctions a valeurs complexes et en particulier
t— el

> Partie réelle : cos et partie imaginaire : sin.

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme



Conclusion
Objectifs
= Fonctions trigonométriques et réciproque
> Petit point sur les fonctions a valeurs complexes et en particulier
£ ot
> Partie réelle : cos et partie imaginaire : sin.

> Propriétés trigonométriques a bien connaitre ! ! (cf TD précédent)

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme



Lecon 16 - Fonctions

Conclusion la Eulr
Objectifs
. . Lyt ;. = Fonctions
= Fonctions trigonométriques et réciproque trigonométriques et
réciproque
> Petit point sur les fonctions a valeurs complexes et en particulier s Ul
t— e” polynéme

Partie réelle : cos et partie imaginaire : sin.
Propriétés trigonométriques a bien connaitre ! ! (cf TD précédent)

Fonction tangente



Lecon 16 - Fonctions

Conclusion S
Objectifs
X i L. L. = Fonctions
= Fonctions trigonométriques et réciproque trigonométriques et
réciproque
> Petit point sur les fonctions a valeurs complexes et en particulier NS
t— e” polynéme
> Partie réelle : cos et partie imaginaire : sin.
> Propriétés trigonométriques a bien connaitre ! ! (cf TD précédent)
> Fonction tangente
> Inégalité fondamentale : pour x € [0, £], sinx < x < tanx (et

imparité)



Lecon 16 - Fonctions
a la Euler

Conclusion

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Objectifs
= Fonctions trigonométriques et réciproque

4.1. Fonction puissance entiére




Lecon 16 - Fonctions
a la Euler

Conclusion

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Objectifs
= Fonctions trigonométriques et réciproque

4.1. Fonction puissance entiére




Lecon 16 - Fonctions
a la Euler

Conclusion

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Objectifs
= Fonctions trigonométriques et réciproque

4.1. Fonction puissance entiére




Lecon 16 - Fonctions
a la Euler

Conclusion

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

Objectifs
= Fonctions trigonométriques et réciproque
= Fonctions puissances, fonctions polynomiales

3.1. Fontions circulaires

3.2, Fontions circulaires

réciproques

4.1. Fonction puissance entiére
elative

4.2. Fonctions pc

4.3. Fonction pui

ationnelle



Lecon 16 - Fonctions

Conclusion ala Evler
Objectifs -
= Fonctions trigonométriques et réciproque trigonométriques et

. . ) . réciproque
= Fonctions puissances, fonctions polynomiales .
= Puissance et
Z T _ 1 polynéme
» Par récurrence, on définit x — x" etx — x™ " = —

xm

ction puissance entiére




Conclusion
Objectifs
= Fonctions trigonométriques et réciproque

= Fonctions puissances, fonctions polynomiales
A Afini n -m 1
> Par récurrence, on définit x — x™ et x — x™" = —
X

> Par bijectivité de x — x" sur R, on définit x — &) t=xm"

X

S|

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme

EEEERIETE
3.2. Fonctions




Lecon 16 - Fonctions

Conclusion ala Euer
Objectifs
. . L. L. = Fonctions
= Fonctions trigonométriques et réciproque trigonométriques et
. . . . réciproque
= Fonctions puissances, fonctions polynomiales
= Puissance et
1 polynéme

» Par récurrence, on définit x — x™ et x — x™ ™" = —
X

S|

> Par bijectivité de x — x" sur R, on définit x — @) l=x"=g

> On note alors pour x >0 etr = IE) €Q,x" = (xP)Va,




Lecon 16 - Fonctions

Conclusion 4 a Euler
Objectifs
. . L. L. = Fonctions
= Fonctions trigonométriques et réciproque trigonométriques et
. . . . réciproque
= Fonctions puissances, fonctions polynomiales
= Puissance et
3 o _ 1 polynéme
> Par récurrence, on définit x — x" et x —x™ " = ——
X
- _ _ 1
> Par bijectivité de x — x™ sur Ry, on définit x — (x*) 1 =x ™" = x=n
> On note alors pour x >0 et r = § €Q,x" =@xP)a.
> |application x — x” est continue.



Lecon 16 - Fonctions

Conclusion ala Euer
Objectifs
. . L. L. = Fonctions
= Fonctions trigonométriques et réciproque trigonométriques et
. . . . réciproque
= Fonctions puissances, fonctions polynomiales
= Puissance et
Z T _ 1 polynéme
> Par récurrence, on définit x — x" et x —x™ " = ——
X

S|

Par bijectivité de x — x™ sur R, on définit x — @) l=x"=g

>
> On note alors pour x >0 etr = § €Q, x" = (xP)Va.
> Lapplication x — x” est continue.

>

. . /! . !
Sir<r'.Six>1, alorsx” <x",six<1,alors x” >x".



Lecon 16 - Fonctions

Conclusion ala Evler
Objectifs -
= Fonctions trigonométriques et réciproque trigonométriques et

= Fonctions puissances, fonctions polynomiales

>

vV v v v Y

réciproque

= Puissance et
P L n -m 1 polynéme

Par récurrence, on définit x — x™ et x — x™" = ——

X

S|

Par bijectivité de x — x™ sur R, on définit x — @) l=x"=g
On note alors pour x >0 etr = § €Q, x" = (xP)Va.

Lapplication x — x” est continue.

Sir<r'.Six>1, alorsx” <x”,six<1,alors x" >x" .

Polynémes : Stabilité par addition, multiplication et composition
des fonctions polynomiales



Lecon 16 - Fonctions

Conclusion 31a Euler

Objectifs

= Fonctions

= Fonctions trigonométriques et réciproque trigonométriques et

= Fonctions puissances, fonctions polynomiales

>

vV v v v Y

réciproque

= Puissance et
P L n -m 1 polynéme

Par récurrence, on définit x — x™ et x — x™" = ——

X

S|

Par bijectivité de x — x™ sur R, on définit x — @) l=x"=g
On note alors pour x >0 etr = § €Q, x" = (xP)Va.

Lapplication x — x” est continue.

Sir<r'.Six>1, alorsx” <x”,six<1,alors x" >x" .

Polynémes : Stabilité par addition, multiplication et composition
des fonctions polynomiales

Polynémes (rappels) : factorisation et nombre maximale de
racines.



Lecon 16 - Fonctions

Conclusion ala Evler
Objectifs
= Fonctions trigonométriques et réciproque trigonométriques et

= Fonctions puissances, fonctions polynomiales

>

vV v v v Y

= Fonctions
réciproque

= Puissance et
P L n -m 1 polynéme
Par récurrence, on définit x — x™ et x — x™" = ——
X

S|

Par bijectivité de x — x™ sur R, on définit x — @) l=x"=g
On note alors pour x >0 etr = § €Q, x" = (xP)Va.

Lapplication x — x” est continue.

Sir<r'.Six>1, alorsx” <x”,six<1,alors x" >x" .

Polynémes : Stabilité par addition, multiplication et composition
des fonctions polynomiales

Polynémes (rappels) : factorisation et nombre maximale de
racines.

Inégalités : pour n € N et pour x €]—1,+ool, (1 +x)" <1+nx

et pourxe]—l,%[, Q+x)" =
1-nx



Conclusion

Objectifs
= Fonctions trigonométriques et réciproque
= Fonctions puissances, fonctions polynomiales

Pour la prochaine fois
» Lecture du cours : chapitre 3. Fonctions a la Euler
5. Fonctions exponentielles (et logarithmes)

» Exercice N°152 & 155

Lecon 16 - Fonctions
a la Euler

= Fonctions
trigonométriques et
réciproque

= Puissance et
polynéme
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