

Leçon 17 - Fonctions à la Euler

Leçon 17 - Fonctions à la Euler

- \Rightarrow Fonctions exponentielles
- Problèmes
- Généralités sur les fonctions
 - 3. Fonctions trigonométrique
 - a. Fonctions

 oolynomiales el

 ouissances

 rationnelles
 - Exponentielles et logarithmes
 - 5.1. ExponentielleS
 - 5.2. LA fonction exponentielle

Généralités sur les fonctions.

3. Fonctions trigonométrique

Problèmes

- Problèmes
- Généralités sur les fonctions
- 3. Fonctions trigonométrique
- I. Fonctions
 polynomiales e
 puissances
 ationnelles
- 5. Exponentielles et logarithmes
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

- 5. Exponentielles et logarithmes
 - 5.1. ExponentielleS
 - 5.2. LA fonction exponentielle

4. Fonctions polynomiales et puissances rationnelles

⇒ Fonctions exponentielles

- Problèmes
- Généralités sur les fonctions
- 3. Fonctions trigonométrique
- 4. Fonctions polynomiales et puissances rationnelles
- 5. Exponentielles et logarithmes

 - 5.2. LA fonction exponentielle

Lecon 17 - Fonctions à la Euler

- 5. Exponentielles et logarithmes

3. Fonctions trigonométrique

polynomiales e puissances rationnelles

Exponentielles et logarithmes

5.1. ExponentielleS

5.2. LA fonction exponentielle

Heuristique - Histoire

Les mathématiciens ont d'abord rencontrer les fonctions logarithmiques (STEVIN, BRIGGS, NEPER) au XVIeme siècle. Ils cherchaient un processus pour transformer multiplication (complexe) en addition (plus simple).

Il s'agissait d'interpoler la réciproque des suites géométriques : $n \mapsto a^n$, vérifiant $a^{n+m} = a^n \times a^m$.

Pour faciliter les démonstrations du cours, nous remonterons l'histoire (d'abord exponentielles avant logarithmes).

⇒ Fonctions exponentielles

- 1. Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- 4. Fonctions polynomiales et puissances rationnelles
- 5. Exponentielles et logarithmes
 - 5.1. ExponentielleS
 - 5.2. LA fonction exponentielle

Leçon 17 - Fonctions à la Euler

- Problèmes
- Généralités sur les fonctions
- 3. Fonctions trigonométrique
- Fonctions
 Solynomiales e
 uissances
 sationnelles
- 5. Exponentielles et
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

Heuristique. Equation fonctionnelle

Soit $a \in \mathbb{R}$, si $n, m \in \mathbb{N}$, $a^{n+m} = a^n \times a^m$.

Cette relation est centrale si l'on s'intéresse à $x \mapsto a^x$.

Considérons donc $f: \mathbb{R} \to \mathbb{R}$ vérifiant pour tous nombres réels $x, y \in \mathbb{R}$: $f(x + y) = f(x) \times f(y)$.

Est-ce qu'une telle relation est suffisante pour définir parfaitement aucune (non car $t \mapsto 2^t$ semble bien aller, au moins pour $t \in \mathbb{Q}$), une fonction f, ou plusieurs? Et dans ce cas, que rajouter pour différencier ces différentes fonctions?

Définition - Fonctions exponentielles

On qualifie de fonctions exponentielles les applications non nulles $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

$$\forall x, y \in \mathbb{R} : f(x+y) = f(x) \times f(y).$$

- ⇒ Fonctions exponentielles

- 5.1. ExponentielleS

On notera le pluriel :

Définition - Fonctions exponentielles

On qualifie de fonctions exponentielles les applications non nulles $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

$$\forall x, y \in \mathbb{R} : f(x+y) = f(x) \times f(y).$$

Proposition - Exponentielle de rationnels

Si f est une fonction vérifiant $f(x + y) = f(x) \times f(y)$, alors f est à valeurs dans \mathbb{R}^+ .

Puis : ou bien $f: x \mapsto 0$, ou bien f(0) = 1.

Donc une fonction exponentielle est à valeurs dans \mathbb{R}_+ et f(0) = 1.

⇒ Fonctions exponentielles

5.1. ExponentielleS

Définition - Fonctions exponentielles

On qualifie de fonctions exponentielles les applications non nulles $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

$$\forall x, y \in \mathbb{R} : f(x+y) = f(x) \times f(y).$$

Proposition - Exponentielle de rationnels

Si f est une fonction vérifiant $f(x + y) = f(x) \times f(y)$, alors f est à valeurs dans \mathbb{R}^+ .

Puis : ou bien $f: x \mapsto 0$, ou bien f(0) = 1.

Donc une fonction exponentielle est à valeurs dans \mathbb{R}_+ et f(0) = 1.

Démonstration

⇒ Fonctions exponentielles

5.1. ExponentielleS

- 1. Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- 4. Fonctions polynomiales e puissances
- 5. Exponentielles et
- 5.1. ExponentielleS
- 5.2. LA fonction exponentiell

Proposition - Base

Si f est une fonction exponentielle non nulle, alors il existe un nombre $a \in \mathbb{R}_+$ tel que pour tout $x \in \mathbb{Q}$, $f(x) = a^x$.

Extension sur \mathbb{Q} (et \mathbb{R} ?)

Proposition - Base

Si f est une fonction exponentielle non nulle, alors il existe un nombre $a \in \mathbb{R}_+$ tel que pour tout $x \in \mathbb{Q}$, $f(x) = a^x$.

Savoir-faire. Etude d'une équation fonctionnelle de $\mathbb N$ à $\mathbb R$

L'étude d'une équation fonctionnelle se fait souvent de la façon suivante :

- 1. Par récurrence, en étudiant f(sn) pour $n \in \mathbb{N}$ et s quelconque.
- 2. Par imparité/parité (ou autre symétrie), on étudie f(sm) pour $m \in \mathbb{Z}$.
- 3. On retrouve ensuite le résultat pour $m \in \mathbb{Q}$.
- 4. Ensuite, on exploitera (plus tard) un argument de continuité ou bien un argument de croissance

- Problèmes
- Généralités sur les fonctions
- 3. Fonctions trigonométrique
- polynomiales e
- 5. Exponentielles et logarithmes
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

Extension sur \mathbb{Q} (et \mathbb{R} ?)

Proposition - Base

Si f est une fonction exponentielle non nulle, alors il existe un nombre $a \in \mathbb{R}_+$ tel que pour tout $x \in \mathbb{Q}$, $f(x) = a^x$.

Savoir-faire. Etude d'une équation fonctionnelle de $\mathbb N$ à $\mathbb R$

L'étude d'une équation fonctionnelle se fait souvent de la façon suivante :

- 1. Par récurrence, en étudiant f(sn) pour $n \in \mathbb{N}$ et s quelconque.
- 2. Par imparité/parité (ou autre symétrie), on étudie f(sm) pour $m \in \mathbb{Z}$.
- 3. On retrouve ensuite le résultat pour $m \in \mathbb{Q}$.
- 4. Ensuite, on exploitera (plus tard) un argument de continuité ou bien un argument de croissance

⇒ Fonctions exponentielles

- . Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- polynomiales e puissances
- 5. Exponentielles et logarithmes
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

Démonstration

5.1. ExponentielleS

Proposition - Variations

Soit *f* une fonction exponentielle non nulle.

f est strictement croissante sur \mathbb{R} si f(1)(=a) > 1.

f est strictement décroissante sur \mathbb{R} si f(1)(=a) < 1.

5.1. ExponentielleS

Proposition - Variations

Soit *f* une fonction exponentielle non nulle.

f est strictement croissante sur \mathbb{R} si f(1)(=a) > 1.

f est strictement décroissante sur \mathbb{R} si f(1)(=a) < 1.

Démonstration

5.1. ExponentielleS

4 D > 4 同 > 4 豆 > 4 豆 > 豆 め Q (~

Proposition - Variations

Soit *f* une fonction exponentielle non nulle.

f est strictement croissante sur \mathbb{R} si f(1)(=a) > 1.

f est strictement décroissante sur \mathbb{R} si f(1)(=a) < 1.

Démonstration

Analyse Comment définir f(x) pour $x \in \mathbb{R}$.

Variations

Proposition - Variations

Soit *f* une fonction exponentielle non nulle.

f est strictement croissante sur \mathbb{R} si f(1)(=a) > 1.

f est strictement décroissante sur \mathbb{R} si f(1)(=a) < 1.

Démonstration

Analyse Comment définir f(x) pour $x \in \mathbb{R}$.

Exercice

On note a = f(1). Montrer que pour tout $x \in \mathbb{R}$, $r \in \mathbb{Q}$,

$$f(rx) = (f(x))^r.$$

Quelle formule obtient-on concernant les puissances de a?

Théorème - Fonctions exponentielles. Bilan

Les fonctions exponentielles non nulles sont continues.

Elles vérifient : f(0) = 1 et pour tout $x, y \in \mathbb{R}$,

$$f(x+y) = f(x) \times f(y)$$
 et $f(x \times y) = f(x)^y$.

Il existe $a = f(1) \in \mathbb{R}$ tel que $f(x) = a^x$ (par définition de a^x si $x \in \mathbb{R} \setminus \mathbb{Q}$).

Si a>1, alors f est strictement croissante sur \mathbb{R} , avec $\lim_{-\infty}f=0$ et $\lim_{-\infty}f=+\infty$.

Si a<1, alors f est strictement décroissante sur $\mathbb R$, avec $\lim_{-\infty}f=+\infty$ et $\lim_{+\infty}f=0$.

- 1. Problèmes
- fonctions
- 3. Fonctions trigonométrique
- polynomiales et puissances rationnelles
- 5. Exponentielles et logarithmes
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

⇒ Fonctions exponentielles

- 1. Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- 4. Fonctions polynomiales et puissances rationnelles
- 5. Exponentielles et logarithmes
 - 5.1 ExponentielleS
 - 5.2. LA fonction exponentielle

Leçon 17 - Fonctions à la Euler

- Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- Fonctions
 Solynomiales e
 uissances
 sationnelles
- 5. Exponentielles et
- 5.1 ExponentielleS
- 5.2. LA fonction exponentielle

Naturelle?

Nous verrons que ces fonctions sont dérivables. L'une a la propriété essentielle de vérifier f'(0) = 1. C'est LA fonction exponentielle avec a = e (LE « e »).

Leçon 17 - Fonctions à la Euler

- 1. Problèmes
- Généralités sur les fonctions
- 3. Fonctions trigonométrique
- I. Fonctions polynomiales e puissances ationnelles
- 5. Exponentielles et
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

5.2. LA fonction exponentielle

Nous verrons que ces fonctions sont dérivables. L'une a la propriété essentielle de vérifier f'(0) = 1. C'est LA fonction exponentielle avec a = e (LE « e »). Prenons un autre définition.

Définition - La fonction exponentielle naturelle

Soit $x \in \mathbb{R}$. La suite $(x_n) = ((1 + \frac{x}{n})^n)$ est croissante, majorée à partir d'un certain rang, donc convergente. Notons $\exp(x)$ la limite de (x_n) .

2. Généralités sur les fonctions

3. Fonctions trigonométrique

polynomiale: puissances

5. Exponentielles e logarithmes

5.1. ExponentielleS

5.2. LA fonction exponentielle

Nous verrons que ces fonctions sont dérivables. L'une a la propriété essentielle de vérifier f'(0) = 1. C'est LA fonction exponentielle avec a = e (LE « e »).

Prenons un autre définition.

Définition - La fonction exponentielle naturelle

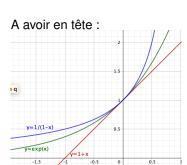
Soit $x \in \mathbb{R}$. La suite $(x_n) = ((1 + \frac{x}{n})^n)$ est croissante, majorée à partir d'un certain rang, donc convergente.

Notons $\exp(x)$ la limite de (x_n) .

Il faut démontrer la convergence de la suite :

Démonstration

Image mentale : inégalités



Leçon 17 - Fonctions à la Euler

- 1. Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- 4. Fonctions colynomiales e cuissances cationnelles
- 5. Exponentielles et
- 5.1. Exponer
- 5.2. LA fonction exponentielle

- 1. Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- 4. Fonctions polynomiales e puissances
- 5. Exponentielles et
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

Proposition - Inégalités

On a pour tout $x \in]-1, 1[, 1+x \le \exp x \le \frac{1}{1-x}.$

- 1. Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- 4. Fonctions polynomiales e puissances
- 5. Exponentielles et
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

Proposition - Inégalités

On a pour tout
$$x \in]-1,1[, 1+x \le \exp x \le \frac{1}{1-x}.$$

Remarque Elargissement de l'intervalle

- 1. Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- 4. Fonctions polynomiales e puissances
- 5. Exponentielles et
- 5.1. Exponentielle
- 5.2. LA fonction exponentielle

Proposition - Inégalités

On a pour tout
$$x \in]-1,1[, 1+x \le \exp x \le \frac{1}{1-x}.$$

Remarque Elargissement de l'intervalle Démonstration La fonction $x \mapsto \exp x$ est une fonction exponentielle appellée LA fonction exponentielle.

On a donc pour tout $x \in \mathbb{R}$, $\exp(x) = e^x$ où

$$e = \exp(1) = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n.$$

Elle vérifie donc : $\forall x, y \in \mathbb{R}$,

$$\exp(x+y) = e^{x+y} = e^x e^y = \exp(x) \times \exp(y) \text{ et}$$

$$\exp(x \times y) = e^{xy} = (e^x)^y = (\exp(x))^y.$$

Leçon 17 - Fonctions à la Euler

⇒ Fonctions exponentielles

1. Problèmes

z. Generalités sur les fonctions

3. Fonctions trigonométrique

4. Fonctions

polynomiales el

puissances

rationnelles

5. Exponentielles et logarithmes

5.1. ExponentielleS

5.2. LA fonction exponentielle

La fonction $x\mapsto \exp x$ est une fonction exponentielle appellée LA fonction exponentielle.

On a donc pour tout $x \in \mathbb{R}$, $\exp(x) = e^x$ où

$$e = \exp(1) = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n.$$

Elle vérifie donc : $\forall x, y \in \mathbb{R}$,

$$\exp(x+y) = e^{x+y} = e^x e^y = \exp(x) \times \exp(y)$$
 et

$$\exp(x \times y) = e^{xy} = (e^x)^y = (\exp(x))^y.$$

Démonstration

- . Problèmes
- fonctions
 - 3. Fonctions trigonométrique
 - 4. Fonctions

 polynomiales el

 puissances

 rationnelles
- 5. Exponentielles et logarithmes
 - 5.1. ExponentielleS
 - 5.2. LA fonction exponentielle

La fonction $x \mapsto \exp x$ est une fonction exponentielle appellée LA fonction exponentielle.

On a donc pour tout $x \in \mathbb{R}$, $\exp(x) = e^x$ où

$$e = \exp(1) = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n.$$

Elle vérifie donc : $\forall x, y \in \mathbb{R}$,

$$\exp(x+y) = e^{x+y} = e^x e^y = \exp(x) \times \exp(y)$$
 et

$$\exp(x \times y) = e^{xy} = (e^x)^y = (\exp(x))^y.$$

Démonstration

Application Evaluation approchée de $(1 + \frac{1}{30})^{100}$

- . Problèmes
- fonctions
 - 3. Fonctions trigonométrique
 - polynomiales e puissances rationnelles
- 5. Exponentielles et logarithmes
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

Théorème - exp est une fonction exponentielle.

La fonction $x\mapsto \exp x$ est une fonction exponentielle appellée LA fonction exponentielle.

On a donc pour tout $x \in \mathbb{R}$, $\exp(x) = e^x$ où

$$e = \exp(1) = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n.$$

Elle vérifie donc : $\forall x, y \in \mathbb{R}$,

$$\exp(x + y) = e^{x+y} = e^x e^y = \exp(x) \times \exp(y)$$
 et $\exp(x \times y) = e^{xy} = (e^x)^y = (\exp(x))^y$.

Démonstration

Application Evaluation approchée de $(1 + \frac{1}{30})^{100}$

Proposition - Formules d'Euler (1746)

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = \sum_{k=0}^{+\infty} \frac{1}{k!}$$

Et pour tout
$$x \in \mathbb{R}$$
, $e^x = \lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$

- . Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions trigonométrique
- polynomiales et puissances rationnelles
- 5. Exponentielles et logarithmes
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

Conclusion

Objectifs

⇒ Fonctions exponentielles

Leçon 17 - Fonctions à la Euler

- Problèmes
- Généralités sur les fonctions
- 3. Fonctions trigonométrique
 - . Fonctions olynomiales et uissances
- 5. Exponentielles et
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

2. Généralités sur les fonctions

3. Fonctions trigonométrique

 Fonctions olynomiales et uissances ationnelles

5. Exponentielles et logarithmes

5.1. ExponentielleS

5.2. LA fonction exponentiel

Objectifs

- ⇒ Fonctions exponentielles
 - ► $f(x+y) = f(x) \times f(y) \Rightarrow \exists \ a(=f(1)) \text{ tel que } f: x \mapsto a^x$, continue

Objectifs

- ⇒ Fonctions exponentielles
 - $f(x+y) = f(x) \times f(y) \Rightarrow \exists a (= f(1)) \text{ tel que } f: x \mapsto a^x, \text{ continue}$
 - Cas particulier de LA fonction exponentielle où $a = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ (de dérivée égale à 1 en 1)

Objectifs

- ⇒ Fonctions exponentielles
 - ► $f(x+y) = f(x) \times f(y) \Rightarrow \exists \ a (= f(1)) \text{ tel que } f: x \mapsto a^x$, continue
 - Cas particulier de LA fonction exponentielle où $a = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ (de dérivée égale à 1 en 1)
 - Inégalités : pour $x \in]-1,1[, 1+x \le \exp x \le \frac{1}{1-x}]$

- 1. Problèmes
- fonctions
- 3. Fonctions trigonométrique
- 4. Fonctions
 colynomiales el
 cuissances
 rationnelles
- 5. Exponentielles et logarithmes
- 5.1. ExponentielleS
- 5.2. LA fonction exponentielle

- Problèmes
- 2. Généralités sur les fonctions
- 3. Fonctions
- olynomiales e
- 5. Exponentielles et
- 5.1. ExponentielleS
- 5.1. Exponentielles

 5.2 | A fonction exponentielle

Objectifs

⇒ Fonctions exponentielles

Pour la prochaine fois

- Lecture du cours : chapitre 3. Fonctions à la Euler Fin du cours
- Exercice n°149 & 161