

Leçon 19 - Nombres complexes

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

Problèmes

2. EULER :

Manipulateur des nombres du diable

.1. Racine de polynômes

.2. Calcul algébrique

2.3. Représentation graphiqu

2.4. Inégalités

B. GAUSS

3.2. Formules d'Euler et de d

Moivre

3.3. Argument, fo trigonométrique

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication

- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

Leçon 19 - Nombres complexes

 \Rightarrow Corps ($\mathbb{C}, +, \times$)

⇒ Interprétation dans le plan

⇒ Interprétation centré

1. Problèmes

. EULER :

Manipulateur des nombres du diable

I. Racine de polynômes

O L L L C L

Représentation graphic

. Inégalités

GAUSS

. U

3.2. Formules d'Euler et de de Moivre

8.3. Argument, for rigonométrique

1. Problèmes

2. EULER: Manipulateur des nombres du diable

- 2.1. Racine de polynômes
- 2.2. Calcul algébrique
- 2.3. Représentation graphique
- 2.4. Inégalités

3. Le visionnaire : GAUSS et la multiplication complexe

- 3.1. Les complexes de module 1
- 3.2. Formules d'Euler et de de Moivre
- 3.3. Argument, forme trigonométrique

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

1. Problèmes

2. EULER

Manipulateur des

- 1 Racine de polynômes
- . Hacine de polynome
- Poprágostation graphique
- 4. Inánolitáe

GALISS

2. Formules d'Euler et de e

Moivre

3.3. Argument, forme

3.3. Argument, forn trigonométrique

Problème - Multiplication de nombres

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

1. Problèmes

2 FILLER

Manipulateur des nombres du diable

- 1 Racina da nolvoômas
- i. nacine de polynomi
- 2.4. Inánalitás

. GAUSS

- . .
- i.2. Formules d'Euler et de de Moivre
- 3.3. Argument, forme trigonométrique

Problème - Multiplication de nombres

Problème - Théorème de Napoléon

Leçon 19 - Nombres complexes

- $\Rightarrow \mathsf{Corps} \; (\mathbb{C},+,\times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

1. Problèmes

- 2 FILLER
- Manipulateur des
 - Bacine de polynômes
 - i. nacine de polynomi

 - 4 Inámalitáe
- . GAUSS
- . GAUSS
- 2. Formules d'Euler et de de
- 3.3. Argument, form trigonométrique

Problème - Multiplication de nombres

Problème - Théorème de Napoléon

Problème - Transformation du plan

Leçon 19 - Nombres complexes

 $\Rightarrow \mathsf{Corps}\; (\mathbb{C},+,\times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

1. Problèmes

2 FILLER

Manipulateur des

1 Racine de nolvoômes

. nacine de polynome

Poprágontation graphique

.4. Inégalités

CALLOS

. Gauss

1. U

Formules d'Euler et de de oivre

3.3. Argument, formi rigonométrique

Problème - Multiplication de nombres

Problème - Théorème de Napoléon

Problème - Transformation du plan

Problème - Application en physique

Leçon 19 - Nombres complexes

 $\Rightarrow \mathsf{Corps} \; (\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

1. Problèmes

2 FILLER

Manipulateur des

Racine de polynôme

i. nacine de polynom

Poprágontation graphique

4. Inégalités

GALLOO

GAUSS

1. U

 Formules d'Euler et de de loivre

 Argument, forme gonométrique ⇒ Points de vue géométrique (distance, angle) & multiplication

1. Problèmes

- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

Problèmes

2. EULER :

Manipulateur des nombres du diable

2.1. Racine de polynômes

Racine de polynômes

3. Représentation graphique

4. Inégalités

3. Gauss

.1. U .2. Formules d'Euler et de

foivre

3.3. Argument, forn trigonométrique

Historique

Analyse Problème de Cardan (1545)

Lecon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

- 2.1. Racine de polynômes

Historique

Analyse Problème de Cardan (1545)

Les règles de calcul sont données par Raphël Bombelli dans son algebra (1572).

Pendant deux siècles, les mathématiciens se querellent quant à leur existence et leurs emplois.

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

1. Problèmes

2. EULER :

Manipulateur des

2.1. Racine de polynômes

- .1. Racine de polynôme
- 2.3. Représentation graphique
- 2.4. Inégalités

. GAUSS

- U
- 2. Formules d'Euler et de de loivre
- 3.3. Argument, form trigonométrique

⇒ Interprétation centré

. Problèmes

EULER:

Manipulateur des

2.1. Racine de polynômes

- 2.2 Calaul alaábriana
- 2.3. Représentation graphiqu
- 2.4. Inégalités

3. GAUS

3.1. U

3.2. Formules d'Euler et de

3.3. Argument, forme

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Analyse Problème de Cardan (1545)

Les règles de calcul sont données par Raphël Bombelli dans son algebra (1572).

Pendant deux siècles, les mathématiciens se querellent quant à leur existence et leurs emplois.

Exercice

On reprend un exercice historique de Bombelli.

En reprenant les règles classiques de calcul, évaluer $(2 + \sqrt{-1})^3$. En employant les formules de Cardan, trouver les racines de $x^3 = 15x + 4$

1. Problèmes

2. EULER: Manipulateur des nombres du diable

2.1. Racine de polynômes

2.2. Calcul algébrique

- 2.3. Représentation graphique
- 2.4. Inégalités

3. Le visionnaire : GAUSS et la multiplication complexe

- 3.1. Les complexes de module 1
- 3.2. Formules d'Euler et de de Moivre
- 3.3. Argument, forme trigonométrique

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

. Problèmes

2. EULER :

Manipulateur des nombres du diable

. Racine de polynômes

2.2. Calcul algébrique

Représentation graphique

.... illegalites

3. GAUSS

.1. U I.2. Formules d'Euler et de

i.2. Formules d'Euler et de d Moivre

3.3. Argument, form trigonométrique

Notation

Euler invente la notation i bien pratique et les manipule avec précision. Il écrit à Diderot : « $e^{i\pi}=-1$ donc Dieu existe ».

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- 1. Problème
- 2. EULER
- Manipulateur des nombres du diable
 - Racine de polynômes
- 2.2. Calcul algébrique
- 2.3. Hepresentation graphique
- . GAUSS
- GAUSS
- 2. Formules d'Euler et de de
- 3.3. Argument, form trigonométrique

Notation

Euler invente la notation i bien pratique et les manipule avec précision. Il écrit à Diderot : « $e^{i\pi}=-1$ donc Dieu existe ».

Remarque Unicité

Un complexe est un « nombre » z qui s'écrit z=a+ib où $i^2=-1$

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- Problèmes
- 2. EULER :
- Manipulateur des
 - Racine de polynômes
- 2.2. Calcul algébrique
- 2.3. Hepresentation graphiqu
- GALLOS
- GAUSS
- 3.2. Formules d'Euler et de de
- 3.3. Argument, form trigonométrique

Euler invente la notation i bien pratique et les manipule avec précision. Il écrit à Diderot : « $e^{i\pi} = -1$ donc Dieu existe ».

Remarque Unicité

Un complexe est un « nombre » z qui s'écrit z = a + ib où $i^2 = -1$

Définition - Notation de nombre complexe

Soit z = a + ib un complexe (a et b sont des réels).

 $a = \operatorname{Re} z$ s'appelle la partie réelle de z.

 $b = \operatorname{Im} z$ s'appelle la partie imaginaire de z;

z est dit imaginaire pur $(z \in i\mathbb{R})$ si sa partie réelle est nulle.

 $\overline{z} = a - ib$ s'appelle le **conjugué** de z = a + ib.

 $|z| = \sqrt{a^2 + b^2}$ s'appelle le **module** de z.

Proposition - C est un corps

Pour tout $(z, z') \in \mathbb{C}^2$, $\lambda, \lambda' \in \mathbb{R}$,

- ▶ $\mathbf{Re}(\lambda z + \lambda' z') = \lambda \mathbf{Re}(z) + \lambda' \mathbf{Re}(z')$ (la partie réelle est \mathbb{R} -linéaire sur \mathbb{C})
- ► $\mathbf{Im}(\lambda z + \lambda' z') = \lambda \mathbf{Im}(z) + \lambda' \mathbf{Im}(z')$ (la partie imaginaire est \mathbb{R} -linéaire sur \mathbb{C})
- ► si z = a + ib et z' = a' + ib', alors $z \times z' = (aa' - bb') + i(ab' + a'b)$ En particuliar $z \times \overline{z} = a^2 + b^2 - |z|^2 - |\overline{z}|^2$
 - En particulier $z \times \overline{z} = a^2 + b^2 = |z|^2 = |\overline{z}|^2$, donc $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

- $\Rightarrow \mathsf{Corps} \; (\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- Problème
- 2. EULER:
- Manipulateur des nombres du diable
 - Hacine de polynome
- 2.2. Calcul algébrique
 - 4. Inégalités
- 3. Gaus
- 3.1 IJ
- 3.2. Formules d'Euler et de d Moivre
- 3.3. Argument, form trigonométrique

définitions ici...).

Proposition - C est un corps Pour tout $(z, z') \in \mathbb{C}^2$, $\lambda, \lambda' \in \mathbb{R}$,

- ► $\mathbf{Re}(\lambda z + \lambda' z') = \lambda \mathbf{Re}(z) + \lambda' \mathbf{Re}(z')$ (la partie réelle est \mathbb{R} -linéaire sur \mathbb{C})
- ► $\mathbf{Im}(\lambda z + \lambda' z') = \lambda \mathbf{Im}(z) + \lambda' \mathbf{Im}(z')$ (la partie imaginaire est \mathbb{R} -linéaire sur \mathbb{C})
- ightharpoonup si z = a + ib et z' = a' + ib', alors $z \times z' = (aa' - bb') + i(ab' + a'b)$ En particulier $z \times \overline{z} = a^2 + b^2 = |z|^2 = |\overline{z}|^2$, donc $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

Remarque Importance du conjugué

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

2.2. Calcul algébrique

Proposition - C est un corps

Pour tout $(z, z') \in \mathbb{C}^2$, $\lambda, \lambda' \in \mathbb{R}$,

- ▶ $\mathbf{Re}(\lambda z + \lambda' z') = \lambda \mathbf{Re}(z) + \lambda' \mathbf{Re}(z')$ (la partie réelle est \mathbb{R} -linéaire sur \mathbb{C})
- ► $\mathbf{Im}(\lambda z + \lambda' z') = \lambda \mathbf{Im}(z) + \lambda' \mathbf{Im}(z')$ (la partie imaginaire est \mathbb{R} -linéaire sur \mathbb{C})
- si z=a+ib et z'=a'+ib', alors $z\times z'=(aa'-bb')+i(ab'+a'b)$ En particulier $z\times \overline{z}=a^2+b^2=|z|^2=|\overline{z}|^2$, donc $\frac{1}{z}=\frac{\overline{z}}{|z|^2}$.

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

. Problème:

2. EULER :

nombres du diable

Hacine de polynome

2.2. Calcul algébrique 2.3. Représentation grant

4. Inégalités

3. GAUSS

3.1. U

3.2. Formules d'Euler et de d Moivre

3.3. Argument, forme

3.3. Argument, forr trigonométrique

Remarque Importance du conjugué

Démonstration

⇒ Interprétation centré

Problèmes

2. EULER :

Manipulateur des nombres du diable

Racine de polynôm

2.2. Calcul algébrique

2.3. Représentation graphique

2.4. Inégalités

9 1 11

3.2. Formules d'Euler et de d

3.3. Argument, forme

Proposition - Conjugaison

On a les propriétés du conjugué :

$$\forall (z, z') \in \mathbb{C}^2, \forall a \in \mathbb{R}, \quad \overline{\overline{z}} = z \qquad \overline{z + z'} = \overline{z} + \overline{z'}$$

$$\overline{zz'} = \overline{z}\overline{z'} \Rightarrow \overline{az} = a\overline{z} \qquad \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$

$$\mathbf{Re} z = \frac{z + \overline{z}}{2} \qquad \mathbf{Im} z = \frac{z - \overline{z}}{2i}$$

⇒ Interprétation centré

Problèmes

2. EULER

Manipulateur des nombres du diable

2.1. Racine de polynômes

2.2. Calcul algébrique

2.3. Représentation graphique

2.3. Representation graphique

2.4. Inégalités

3. GAUSS

3.1. U

2. Formules d'Euler et de de

3.3. Argument, forme trigonométrique

Proposition - Conjugaison

On a les propriétés du conjugué :

$$\forall (z, z') \in \mathbb{C}^2, \forall a \in \mathbb{R}, \quad \overline{\overline{z}} = z \qquad \overline{z + z'} = \overline{z} + \overline{z'}$$

$$\overline{zz'} = \overline{z}\overline{z'} \Rightarrow \overline{az} = a\overline{z} \qquad \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$

$$\mathbf{Re} z = \frac{z + \overline{z}}{2} \qquad \mathbf{Im} z = \frac{z - \overline{z}}{2i}$$

Démonstration

2. EULER:

Manipulateur des nombres du diable

. Racine de polynôme:

2.2. Calcul algébrique
2.3. Représentation graphique

2.3. Hepresentation grapnique 2.4. Inégalités

3. GAL

3.1. U

3.2. Formules d'Euler et de di Moivre

3.3. Argument, forme trigonométrique

Proposition - Puissance et conjugaison

On définit les puissances d'un nombre complexe par

$$\left\{ \begin{array}{l} z^0=1 \\ \forall n\in \mathbb{N}, z^{n+1}=z^nz \end{array} \right.$$

On a alors $\forall n \in \mathbb{N}, \overline{z^n} = \overline{z}^n$.

Pour $z \neq 0$ et $n \in \mathbb{N}$, on pose $z^{-n} = \frac{1}{z^n} = (z^n)^{-1}$, on a alors $\forall n \in \mathbb{Z}, \overline{z^n} = \overline{z}^n$.

⇒ Interprétation centré

Problème

2. EULER :

Manipulateur des nombres du diable

. Racine de polynôme

2.2. Calcul algébrique

2.3. Representation graphique

2.4. Inégalités

9 1 11

3.2. Formules d'Euler et de d Moivre

3.3. Argument, forme trigonométrique

Proposition - Puissance et conjugaison

On définit les puissances d'un nombre complexe par

$$\begin{cases} z^0 = 1 \\ \forall n \in \mathbb{N}, z^{n+1} = z^n z \end{cases}$$

On a alors $\forall n \in \mathbb{N}, \overline{z^n} = \overline{z}^n$.

Pour $z \neq 0$ et $n \in \mathbb{N}$, on pose $z^{-n} = \frac{1}{z^n} = (z^n)^{-1}$, on a alors $\forall n \in \mathbb{Z}, \overline{z^n} = \overline{z}^n$.

Exercice Faire la démonstration

⇒ Interprétation centré

Problèmes

. EULER :

Manipulateur des nombres du diable

2.1. Racine de polynôr

2.2. Calcul algébrique

2.4. Inégalités

CALLOC

GAUSS

2. Formules d'Euler et de de

3.3. Argument, form

Propriété - Propriétés du module

On a les propriétés du module :

$$\forall (z, z') \in \mathbb{C}^2, \forall \ a \in \mathbb{R} \quad |z| = \sqrt{z\overline{z}}$$

$$|zz'| = |z| |z'| \Rightarrow |az| = a|z|$$

$$|z| = |\overline{z}| = |-z|$$

$$\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \text{ (si } z' \neq 0\text{)}$$

Propriété - Propriétés du module

On a les propriétés du module :

$$\forall (z, z') \in \mathbb{C}^2, \forall \ a \in \mathbb{R} \quad |z| = \sqrt{z\overline{z}}$$

$$|zz'| = |z| |z'| \Rightarrow |az| = a|z|$$

$$|z| = |\overline{z}| = |-z|$$
 $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} (\operatorname{si} z' \neq 0)$

Démonstration

Propriété - Propriétés du module

On a les propriétés du module :

$$\forall (z, z') \in \mathbb{C}^2, \forall \ a \in \mathbb{R} \quad |z| = \sqrt{z\overline{z}} \qquad |zz'| = |z| |z'| \Rightarrow |az| = a|z|$$
$$|z| = |\overline{z}| = |-z| \qquad \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|} (\operatorname{si} z' \neq 0)$$

Démonstration

Remarque Valeur absolue et module

1. Problèmes

- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

Problèmes

2. EULER :

Manipulateur des nombres du diable

1. Racine de polynômes

. ridding de polynom

2.3. Représentation graphique

4. Inégalités

CALLOC

. GAUSS

3.2. Formules d'Euler et de

3.3. Argument, formi

Affixe

On munit le plan d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$. Le point M de coordonnées (a,b) caractérisé par $\vec{OM} = a\vec{u} + b\vec{v}$, peut alors être représenté par le complexe z = a + ib.

Leçon 19 - Nombres complexes

- $\Rightarrow \mathsf{Corps}\; (\mathbb{C},+,\times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

1. Problème

2. EULER

Manipulateur des nombres du diable

- Racine de polynômes
- . Calcul algébrique
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

- U
 Formules d'Euler et de c
- 3.3. Argument, forme

⇒ Interprétation centré

 \Rightarrow Corps ($\mathbb{C}, +, \times$)

1. Problème

2. EULER

Manipulateur des nombres du diable

2.1. Racine de polynômes

2.2. Calcul algebrique

2.3. Représentation graphique

.4. Inégalités

_

3.1 IJ

3.2. Formules d'Euler et de e

3.3. Argument, forme

On munit le plan d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$. Le point M de coordonnées (a,b) caractérisé par $\vec{OM} = a\vec{u} + b\vec{v}$, peut alors être représenté par le complexe z = a + ib.

Définition - Affixe d'un point. Affixe d'un vecteur

z = a + ib est alors appelé **affixe** du point M(a,b), on peut noter $z = \mathrm{Aff}(M)$.

Réciproquement, le point M est appelé (point) image de z. De même, si \vec{w} est un vecteur de coordonnées (a,b), a+ib est appelé affixe de \vec{w} (noté $\mathrm{Aff}(\vec{w})$), lui-même appelé (vecteur) image du complexe a+ib.

⇒ Interprétation dans le plan

⇒ Interprétation centré

1. Problème

2. EULER:

Manipulateur des nombres du diable

2.1. Racine de polynômes

2.3. Représentation graphique

4. Inégalités

....

3.1. U

3.2. Formules d'Euler et de « Moivre

3.3. Argument, forme

domarque Avec

On munit le plan d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$. Le point M de coordonnées (a,b) caractérisé par $\vec{OM} = a\vec{u} + b\vec{v}$, peut alors être représenté par le complexe z = a + ib.

Définition - Affixe d'un point. Affixe d'un vecteur

z = a + ib est alors appelé **affixe** du point M(a,b), on peut noter $z = \mathrm{Aff}(M)$.

Réciproquement, le point M est appelé (point) image de z. De même, si \vec{w} est un vecteur de coordonnées (a,b), a+ib est appelé affixe de \vec{w} (noté $\mathrm{Aff}(\vec{w})$), lui-même appelé (vecteur) image du complexe a+ib.

Remarque Axes

⇒ Interprétation centré

Problèmes

2. EULER : Manipulateur des

nombres du diable

2.1. Racine de polynomes
2.2 Calcul algébrique

2.2. Calcul algébrique

2.3. Représentation graphique

2.4. Inémolitée

2.4. Inégalités

3 GAUSS

3.1. U

2. Formules d'Euler et de de

3.3. Argument, form

Proposition - Opération complexe et correspondance sur le plan géométrique

Si z est l'affixe de M alors \overline{z} est l'affixe du symétrique de M par rapport à l'axe des abscisses.

Si z = Aff(M) alors |z| est égal à la distance OM.

Si z = Aff(M) et $z_0 = \text{Aff}(M_0)$, alors $\text{Aff}(\vec{M_0 M}) = z - z_0$ et

 $|z-z_0|=M_0M$

1. Problèmes

- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : Gauss et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

. Problème:

2. EULER :

Manipulateur des nombres du diable

. Racine de polynômes

Calcul algábrigue

Représentation graphi

2.4. Inégalités

3. Gauss

0 4 51

.2. Formules d'Euler et de d foivre

3.3. Argument, form trigonométrique

Théorème - Inégalités

Pour $(z,z') \in \mathbb{C}^2$, on a les inégalités suivantes :

 $\operatorname{Re} z (\leq |\operatorname{Re} z|) \leq |z|$ avec égalité si et seulement si $z \in \mathbb{R}^+$

 $\mathbf{Im} z (\leq |\mathbf{Im} z|) \leq |z|$ avec égalité si et seulement si $z \in i\mathbb{R}^+$

$$|z| - |z'|$$
 $\leq |z + z'| \leq |z| + |z'|$ (Inégalité triangulaire)

Avec égalité dans l'inégalité de droite si et seulement si

z'=0 ou il existe $\lambda \in \mathbb{R}^+$ tel que $z=\lambda z'$ (z,z' positivement liés).

Lecon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

- 2.4. Inégalités

Pour $(z,z')\in\mathbb{C}^2$, on a les inégalités suivantes :

 $\operatorname{\mathbf{Re}} z (\leq |\operatorname{\mathbf{Re}} z|) \leq |z|$ avec égalité si et seulement si $z \in \mathbb{R}^+$

 $\mathbf{Im} z (\leq |\mathbf{Im} z|) \leq |z|$ avec égalité si et seulement si $z \in i\mathbb{R}^+$

$$|z| - |z'|$$
 $\leq |z + z'| \leq |z| + |z'|$ (Inégalité triangulaire)

Avec égalité dans l'inégalité de droite si et seulement si

z'=0 ou il existe $\lambda \in \mathbb{R}^+$ tel que $z=\lambda z'$ (z,z' positivement liés).

Attention. Module ou valeur absolue?

Il y a des modules et des valeurs absolues partout ici!

- $\Rightarrow \mathsf{Corps} \; (\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- Problèmes
- 2. EULER:
- Manipulateur des nombres du diable
 - Racine de polynômes
 - .2. Calcul algébrique
 - Représentation graphique
- 2.4. Inégalités
- Causon
- .1. U
- .2. Formules d'Euler et de de foivre
- 3.3. Argument, forme trigonométrique

Théorème - Inégalités

Pour $(z,z') \in \mathbb{C}^2$, on a les inégalités suivantes :

 $\operatorname{Re} z (\leq |\operatorname{Re} z|) \leq |z|$ avec égalité si et seulement si $z \in \mathbb{R}^+$

 $\mathbf{Im} z (\leq |\mathbf{Im} z|) \leq |z|$ avec égalité si et seulement si $z \in i\mathbb{R}^+$

$$|z| - |z'|$$
 $\leq |z + z'| \leq |z| + |z'|$ (Inégalité triangulaire)

Avec égalité dans l'inégalité de droite si et seulement si

z'=0 ou il existe $\lambda \in \mathbb{R}^+$ tel que $z=\lambda z'$ (z,z' positivement liés).

Attention. Module ou valeur absolue?

Il y a des modules et des valeurs absolues partout ici!

Analyse Interprétation de l'inégalité triangulaire

Lecon 19 - Nombres complexes

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

- 2.4. Inégalités

Pour $(z,z') \in \mathbb{C}^2$, on a les inégalités suivantes :

 $\operatorname{\mathbf{Re}} z (\leq |\operatorname{\mathbf{Re}} z|) \leq |z|$ avec égalité si et seulement si $z \in \mathbb{R}^+$

 $\mathbf{Im} z (\leq |\mathbf{Im} z|) \leq |z|$ avec égalité si et seulement si $z \in i\mathbb{R}^+$

$$|z| - |z'|$$
 $\leq |z + z'| \leq |z| + |z'|$ (Inégalité triangulaire)

Avec égalité dans l'inégalité de droite si et seulement si

z'=0 ou il existe $\lambda \in \mathbb{R}^+$ tel que $z=\lambda z'$ (z,z' positivement liés).

Attention. Module ou valeur absolue?

Il y a des modules et des valeurs absolues partout ici!

Analyse Interprétation de l'inégalité triangulaire Démonstration

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
 - . Problèmes
- . Euler :
- nanipulateur des nombres du diable
 - Racine de polynômes
- 2. Calcul algébrique
- Représentation graphiq
- 2.4. Inégalités
- Causon
- 1. U
- Formules d'Euler et de de pivre
- 3.3. Argument, forme trigonométrique

Inégalités

Par récurrence :

Proposition - Inégalités

Pour n complexes z_1, \ldots, z_n on a

$$|z_1+\cdots+z_n| \leq |z_1|+\cdots+|z_n|.$$

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- Problèmes
- 2. EULER :
- Manipulateur des
 - · Davis de colonia
 - Hacine de polynomi
 - Renrésentation granhique
- 2.4. Inégalités
- . GAUSS
- 1 11
- 2. Formules d'Euler et de de
- 3.3. Argument, form trigonométrique

Proposition - Inégalités

Pour n complexes z_1, \ldots, z_n on a

$$|z_1+\cdots+z_n| \leq |z_1|+\cdots+|z_n|.$$

Proposition - Caractérisation des complexes remarquables

$$z = 0 \Leftrightarrow |z| = 0 \Leftrightarrow \mathbf{Re} z = \mathbf{Im} z = 0$$
$$z \in \mathbb{R} \Leftrightarrow \mathbf{Im} z = 0 \Leftrightarrow \overline{z} = z \Leftrightarrow |z|^2 = (\mathbf{Re} z)^2$$
$$z \in i\mathbb{R} \Leftrightarrow \mathbf{Re} z = 0 \Leftrightarrow \overline{z} = -z \Leftrightarrow |z|^2 = (\mathbf{Im} z)^2$$

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- Problèmes
- 2. EULER :
- Manipulateur des nombres du diable
 - Racine de polynômes
 - 2. Calcul algébrique
 - nepresentation grapm
- 2.4. Inégalités
- 0 041100
- 9 1 11
- 3.1. U
- 3.2. Formules d'Euler et de de Moivre
- 3.3. Argument, for trigonométrique

⇒ Points de vue géométrique (distance, angle) & multiplication

1. Problèmes

- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

Problèmes

2. EULER :

Manipulateur des nombres du diable

. Racine de polynômes

Colcul alnáhrinua

I. Représentation graphiqu

Inégalités

3. GAUS

31 II

2. Formules d'Euler et de de loivre

3.3. Argument, forr trigonométrique

Groupe unitaire

En 1800, les mathématiciens manipulent les nombres complexes, mais ces nombres manquent de légitimité.

C'est Gauss qui les justifie géométriquement sur \mathbb{R}^2 (Argand et Wessel semblent, chacun de leur côté, avoir eu la même idée).

Leçon 19 - Nombres complexes

 \Rightarrow Corps ($\mathbb{C}, +, \times$)

⇒ Interprétation dans le plan

⇒ Interprétation centré

1. Problèmes

. EULER :

Manipulateur des combres du diable

Racine de polynômes

Colcul alnáhrinua

Représentation graphique

Inégalités

.

3.1. U

i.2. Formules d'Euler et de de Moivre

3.3. Argument, form trigonométrique

C'est Gauss qui les justifie géométriquement sur \mathbb{R}^2 (Argand et Wessel semblent, chacun de leur côté, avoir eu la même idée).

Définition - Groupe unitaire

On note $\mathbb U$ l'ensemble des complexes de module 1, c'est aussi le cercle unité de $\mathbb C$, ensemble des affixes des points du cercle trigonométrique

$$\mathbb{U} = \{ z \in \mathbb{C} \mid , |z| = 1 \}.$$

Leçon 19 - Nombres complexes

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
 - . Problème
 - EULER:

Manipulateur des nombres du diable

- .1. Racine de polynôme
- 2. Calcul algébrique
- Représentation graphique
- .4. Inégalités
- 3. Gauss
- 3.1. U
 - 2. Formules d'Euler et de de
- 3.3. Argument, form trigonométrique

 \Rightarrow Corps ($\mathbb{C}, +, \times$) ⇒ Interprétation dans le plan

C'est Gauss qui les justifie géométriquement sur \mathbb{R}^2 (Argand et Wessel semblent, chacun de leur côté, avoir eu la même idée).

⇒ Interprétation

Définition - Groupe unitaire

centré

On note U l'ensemble des complexes de module 1, c'est aussi le cercle unité de C, ensemble des affixes des points du cercle trigonométrique

 $\mathbb{U} = \{ z \in \mathbb{C} \mid , |z| = 1 \}.$

31 IJ

Proposition - Conjugaison sur U

 $\forall (z,z') \in \mathbb{U}^2, zz' \in \mathbb{U}, \qquad \forall z \in \mathbb{U}, \overline{z} = \frac{1}{z} \in \mathbb{U}.$

On dit que l'ensemble U muni de l'opération multiplication est un groupe commutatif.

⇒ Corps $(\mathbb{C}, +, \times)$ ⇒ Interprétation dans le plan

C'est Gauss qui les justifie géométriquement sur \mathbb{R}^2 (Argand et Wessel semblent, chacun de leur côté, avoir eu la même idée).

⇒ Interprétation centré

Définition - Groupe unitaire

On note $\mathbb U$ l'ensemble des complexes de module 1, c'est aussi le cercle unité de $\mathbb C$, ensemble des affixes des points du cercle trigonométrique

$$\mathbb{U} = \{ z \in \mathbb{C} \mid , |z| = 1 \}.$$

Proposition - Conjugaison sur $\ensuremath{\mathbb{U}}$

$$\forall (z, z') \in \mathbb{U}^2, zz' \in \mathbb{U}, \qquad \forall z \in \mathbb{U}, \overline{z} = \frac{1}{z} \in \mathbb{U}.$$

On dit que l'ensemble $\mathbb U$ muni de l'opération multiplication est un groupe commutatif.

. Problème

EULER :

Manipulateur des nombres du diable

- Racine de polynômes
- 2. Calcul algébrique
- I. Inégalités

31 U

3.1. U

- 3.2. Formules d'Euler et de de Moivre
- 3.3. Argument, forme trigonométrique

Démonstration

Interprétation géométrique du calcul $u \times z$ pour $u \in \mathbb{U}$ et $z \in \mathbb{C}$

Analyse Géométrique

Soit $u \in \mathbb{U} \setminus \{1\}$ et $z \in \mathbb{C}$. Considérons les 4 points du plan A(1), $B(u) \neq A$, C(z) et $D(u \times z)$.

Alors AC = |z - 1| et $BD = |uz - u| = |u| \times |z - 1| = AC$.

Leçon 19 - Nombres complexes

- $\Rightarrow \mathsf{Corps}\; (\mathbb{C},+,\times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

Problèmes

. EULER :

Manipulateur des nombres du diable

- . Racine de polynôme:
- n. raune de polynom
- 3. Représentation graphique
- 2.4. Inégalités

3. GAUSS

- 3.1. U
 3.2. Formules d'Euler et de
- Moivre

Interprétation géométrique du calcul $u \times z$ pour $u \in \mathbb{U}$ et $z \in \mathbb{C}$

Analyse Géométrique

Soit $u \in \mathbb{U} \setminus \{1\}$ et $z \in \mathbb{C}$. Considérons les 4 points du plan A(1), $B(u) \neq A$, C(z) et $D(u \times z)$.

Alors AC = |z - 1| et $BD = |uz - u| = |u| \times |z - 1| = AC$.

Définition - Argument de $u \in \mathbb{U}$, de $z \in \mathbb{C}$

Soit $u \in \mathbb{U}$. On note I, le point du plan d'affixe 1 et M celui d'affixe u.

On appelle argument de $u \in \mathbb{U}$ noté $\arg(u)$, l'angle (principal) (\vec{OI}, \vec{OM}) .

Dans un premier temps, on note $\measuredangle\theta$ ce nombre complexe de module 1 et d'argument θ .

On a alors $u = \cos \theta + i \sin \theta$, pour $\theta \equiv \text{Arg}(u)$.

Leçon 19 - Nombres complexes

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

1. Problème

. EULER :

Manipulateur des nombres du diable

- . Racine de polynôme:
- 2. Calcul algébrique
- .3. Représentation graphique
- 2.4. Inégalités

3. Gaus

3.1. U

3.2. Formules d'Euler et de de Moivre

3.3. Argument, forme trigonométrique

Extension pour $\theta \notin [0, \frac{\pi}{2}]$

Remarque

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
 - Problème:
- 2 FILLER

Manipulateur des nombres du diable

- Bacine de polynômes
- 2.1. Hacine de polynon
- 2.3 Renrésentation granhique
- 2.4. Inégalités
- GALISS
- 3.1. U
- 3.2. Formules d'Euler et de de
- 3.3. Argument, form trigonométrique

Extension pour $\theta \notin [0, \frac{\pi}{2}]$

Remarque Démonstration

Leçon 19 - Nombres complexes

- $\Rightarrow \mathsf{Corps}\; (\mathbb{C},+,\times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

. Problème

2 FILLER

Manipulateur des

- Bacine de polynômer
- 2.1. Hacine de polynon
- 3 Ronrásantation granhique
- 2.4. Inénalités

GALISS

- 3.1. U
 3.2. Formules d'Euler et de
- .2. Formules d'Euler et de de foivre
- 3.3. Argument, forn trigonométrique

Extension pour $\theta \notin [0, \frac{\pi}{2}]$

Remarque Démonstration

Proposition - Multiplication par $u \in \mathbb{U}$

Soit $z \in \mathbb{C}$ et $u \in \mathbb{U} \setminus \{1\}$.

Notons $\theta = \arg(u)$.

Alors $u \times z$ est l'affixe du point obtenu par rotation de centre 0 et d'angle θ , à partir du point d'affixe z

La démonstration dans l'analyse

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- I. Problèmes
- . EULER :

Manipulateur des

- I. Racine de polynômes
- 2. Calcul algébrique
- Représentation graphique
- 2.4. Inégalités
-
- 3.1. U
- i.2. Formules d'Euler et de de Moivre
- 3.3. Argument, form trigonométrique

Proposition - Multiplication par $u \in \mathbb{U}$

Soit $z \in \mathbb{C}$ et $u \in \mathbb{U} \setminus \{1\}$.

Notons $\theta = \arg(u)$.

Alors $u \times z$ est l'affixe du point obtenu par rotation de centre 0 et d'angle θ , à partir du point d'affixe z

La démonstration dans l'analyse

Attention. Mauvaise définition de l'argument

La définition donnée ici est peu satisfaisante; avec un argument principal, on n'a pas nécessairement ${\rm Arg}zz'={\rm Arg}z+{\rm Arg}z',$ mais seulement des congruences.

⇒ Interprétation centré

. Problèmes

EULER:

Manipulateur des nombres du diable

- .1. Racine de polynôme
- .2. Calcul algébrique
- 4. Inágalitás
- 2.4. Inegalites

. . . .

3.1. U

- 3.2. Formules d'Euler et de de Moivre
- 3.3. Argument, forme rigonométrique

Notation exponentielle

Corollaire - Propriété de e^i

Pour tout $\theta, \theta' \in \mathbb{R}$, $\angle \theta \times \angle \theta' = \angle (\theta + \theta')$.

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

. Problème

2. EULER :

Manipulateur des nombres du diable

Racine de polynômes

Calcul alaábriana

2.3. Représentation graphiqu

2.4. Inégalités

. GAUSS

3.1. U

Moivre

3.3. Argument, forr trigonométrique

Notation exponentielle

Corollaire - Propriété de e^i

Pour tout $\theta, \theta' \in \mathbb{R}$, $\angle \theta \times \angle \theta' = \angle (\theta + \theta')$.

Démonstration

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

I. Problèmes

2. EULER :

Manipulateur des nombres du diable

- . Racine de polynômes
- z. r. riacine de polynom
- 2.3. Représentation graphique
- 2.4. Inégalités

3. Gauss

- 3.1. U
 3.2. Formules d'Euler et de de
- 3.3. Argument, forme trigonométrique

Notation exponentielle

Corollaire - Propriété de e^i

Pour tout $\theta, \theta' \in \mathbb{R}$, $\angle \theta \times \angle \theta' = \angle (\theta + \theta')$.

Démonstration

Analyse - Non injectivité

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

. Problèmes

2. EULER :

Manipulateur des nombres du diable

- . Racine de polynômes
-
- .3. Représentation graphiqu
- 2.4. Inégalités

. Gauss

- 3.1. U
 3.2. Formules d'Euler et de
- 3.3. Argument, forme trigonométrique

⇒ Interprétation centré

. Problèmes

. EULER :

nombres du diable

- i. Hacine de polynomes
- 3. Représentation gra
- 2.4. Inégalités
- 2.4. Inegalites

3. GAUS

3.1. U

3.2. Formules d'Euler et de d Moivre

3.3. Argument, forme trigonométrique

Corollaire - Propriété de e^i

Pour tout $\theta, \theta' \in \mathbb{R}$, $\angle \theta \times \angle \theta' = \angle (\theta + \theta')$.

Démonstration

Analyse - Non injectivité

Définition - Notation d'Euler

Nous verrons/avons vu que dans le cas réel, on appelle exponentielle les fonctions qui vérifient $f(a+b)=f(a)\times f(b)$. Elles s'écrivent (dans le cas réel) sous la forme $x\mapsto A^x$ où A=f(1).

Par uniformité de notation, suivant L. Euler, on notera maintenant $e^{i\theta} = \angle \theta = \cos \theta + i \sin \theta$

Propriétés

On a alors, plus globalement:

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

Problèmes

2 FILLER

Manipulateur des nombres du diable

- Racine de polynômes
- ... nacine de polynom
- 2 Poprácontation graphicus
- 2.4 Inámolitás
- _

3. GAUSS

- 3.1. U
 3.2. Formules d'Euler et de d
- 3.3. Argument, forme trigonométrique

⇒ Interprétation centré

31 IJ

On a alors, plus globalement:

Théorème - Propriétés

Soient $(\theta, \theta') \in \mathbb{R}^2$. On a :

$$e^{i(\theta+\theta')} = e^{i\theta}e^{i\theta'}$$
 $e^{i\frac{\pi}{2}} = i$

$$\overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}}$$

$$e^{i\pi} = -1$$

$$e^{i\theta} = e^{i\theta'} \Leftrightarrow \theta \equiv \theta'[2\pi]$$

31 IJ

On a alors, plus globalement:

Théorème - Propriétés

Soient $(\theta, \theta') \in \mathbb{R}^2$. On a :

$$\begin{split} e^{i(\theta+\theta')} &= e^{i\theta} e^{i\theta'} \\ e^{i\frac{\pi}{2}} &= i \\ e^{i\theta} &= 1 \Leftrightarrow \theta \equiv 0[2\pi] \Leftrightarrow \theta \in 2\pi\mathbb{Z} \end{split}$$

$$\overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}}$$

$$e^{i\pi} = -1$$

$$e^{i\theta} = e^{i\theta'} \Leftrightarrow \theta \equiv \theta'[2\pi]$$

Démonstration

⇒ Interprétation dans le plan

⇒ Interprétation centré

Corollaire - Formule d'additions trigonométriques

Soient $a, b \in \mathbb{R}$.

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

et $\sin(a+b) = \sin a \cos b + \cos a \sin b$

1. Problème

2. EULER :

Manipulateur des nombres du diable

. Racine de polynôme:

Calant alaébaiana

3. Représentation graphique

2.4. Inégalités

. Gauss

3.1. U
3.2. Formules d'Euler et de d

Moivre

3.3. Argument, forme trigonométrique

⇒ Interprétation centré

Corollaire - Formule d'additions trigonométriques

Soient $a, b \in \mathbb{R}$.

$$cos(a+b) = cos a cos b - sin a sin b$$
et
$$sin(a+b) = sin a cos b + cos a sin$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

Démonstration

31 IJ

⇒ Interprétation dans le plan

⇒ Interprétation centré

Corollaire - Formule d'additions trigonométriques

Soient $a, b \in \mathbb{R}$.

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

et $\sin(a+b) = \sin a \cos b + \cos a \sin b$

Démonstration

Exercice

En déduire les formules donnant cos(a - b) et sin(a - b).

Problème

. EULER:

Manipulateur des nombres du diable

- . Racine de polynôme
- 2. Calcul algébriqu
- 3. Représentation graph
- .4. Inégalités

3. Gauss

3.1. U

- 3.2. Formules d'Euler et de de Moivre
- 3.3. Argument, forme trigonométrique

- ⇒ Interprétation dans le plan & addition
- ⇒ Points de vue géométrique (distance, angle) & multiplication
- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable

 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe

 - 3.2. Formules d'Euler et de de Moivre

Lecon 19 - Nombres complexes

 \Rightarrow Corps ($\mathbb{C}, +, \times$)

⇒ Interprétation dans le plan

⇒ Interprétation centré

3.2. Formules d'Euler et de de Moivre

⇒ Interprétation centré

1. Problèmes

2. EULER :

Manipulateur des nombres du diable

- . Racine de polynômes
- 2.2. Calcul algébrique
- 2.3. Représentation graphique
- 2.4. Inégalités

GAUSS

3.2. Formules d'Euler et de de Moivre

3.3. Argument, forme

Proposition - Formules d'Euler

$$\cos\theta = \mathbf{Re}(e^{i\theta}) = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad , \quad \sin\theta = \mathbf{Im}(e^{i\theta}) = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

⇒ Interprétation centré

. Problème

. EULER :

Manipulateur des nombres du diable

- . Racine de polynômes
- 2.2. Calcul algebrio
- 2.3. Représentation graphique
- 2.4. Inégalités

GAUSS

. . . .

3.2. Formules d'Euler et de de Moivre

3.3. Argument, forme trigonométrique

Proposition - Formules d'Euler

$$\cos \theta = \mathbf{Re}(e^{i\theta}) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
, $\sin \theta = \mathbf{Im}(e^{i\theta}) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

Exercice

Calculer $\frac{1}{3} + \frac{1}{4}$, en déduire une expression de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Formule de (de) Moivre

Proposition - Formule de Moivre

$$\forall n \in \mathbb{Z}, (e^{i\theta})^n = e^{in\theta}$$

$$\forall n \in \mathbb{Z}, (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Leçon 19 - Nombres complexes

 $\Rightarrow \mathsf{Corps}\; (\mathbb{C},+,\times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

1. Problèmes

2. EULER:

Manipulateur des nombres du diable

Racine de polynômes

2 Colcul alnábrique

2.3. Représentation graphique

L.-v. mogamos

GAUSS

3.2. Formules d'Euler et de de Moivre

3.3. Argument, forme trigonométrique

⇒ Interprétation centré

Proposition - Formule de Moivre

$$\forall n \in \mathbb{Z}, (e^{i\theta})^n = e^{in\theta}$$

 $\forall n \in \mathbb{Z}, (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

Démonstration

. Problèmes

. EULER : lanipulateur des

Racine de polynômes

Calant alaébaiana

3. Représentation graphique

2.4. Inégalités

GAUSS

3.2. Formules d'Euler et de de Moivre

3.3. Argument, forme trigonométrique

Factorisation

Trucs et astuces pour le calcul. Factorisation de l'angle moitié

Lorsqu'on rencontre un expression de la forme $e^{i}a \pm e^{i}b$ (a, b réels), il faut toujours penser à factoriser par la moitié :

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
 , $b = \frac{a+b}{2} - \frac{a-b}{2}$

 $\text{Cela donne}: \qquad e^{ia} \pm e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} \pm e^{-i\frac{a-b}{2}} \right)$ Et on applique les formules d'Euler

Lecon 19 - Nombres complexes

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

- 3.2. Formules d'Euler et de de Moivre

Lorsqu'on rencontre un expression de la forme $e^{i}a \pm e^{i}b$ (a, b réels), il faut toujours penser à factoriser par la moitié :

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
 , $b = \frac{a+b}{2} - \frac{a-b}{2}$

Cela donne : $e^{ia} \pm e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} \pm e^{-i\frac{a-b}{2}} \right)$ Et on applique les formules d'Euler

Exercice

Factoriser $1 + e^{i\theta}$ et $1 - e^{i\theta}$. Retrouver les formules donnant $1 + \cos\theta$

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

- 3.2 Formules d'Euler et de de Moivre

Lorsqu'on rencontre un expression de la forme $e^ia \pm e^ib$ (a,b réels), il faut toujours penser à factoriser par la moitié :

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
 , $b = \frac{a+b}{2} - \frac{a-b}{2}$

Cela donne : $e^{ia} \pm e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} \pm e^{-i\frac{a-b}{2}} \right)$ Et on applique les formules d'Euler

Exercice

Factoriser $1+e^{i\theta}$ et $1-e^{i\theta}$. Retrouver les formules donnant $1\pm\cos\theta$

Exercice

Nouveau calcul de $\sum_{k=0}^{n} \cos kt$ et $\sum_{k=0}^{n} \sin kt$

 \Rightarrow Corps ($\mathbb{C}, +, \times$)

⇒ Interprétation dans le plan

⇒ Interprétation centré

. Problème

EULER:

Manipulateur des nombres du diable

Racine de polynômes

2. Calcul algébrique

l. Representation graphic

2.4. Inégalités

GAUSS

3.2. Formules d'Euler et de de

3.3. Argument, forme trigonométrique

Il s'agit d'exprimer $\cos^n \theta$ ou $\sin^n \theta$ sous forme d'une somme de $\cos k\theta$ ou $\sin k\theta$

(il ne doit plus y avoir de puissances ni de produits de cosinus ou sinus).

- Ecrire $\cos^n \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^n$.
- Développer avec la formule du binôme.
- Regrouper les termes conjugués pour faire apparaître des cosinus ou des sinus.

Si il n'y a pas de faute de calculs, vous devez obtenir un nombre réel : donc simplification des $i \dots$

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

- 3.2. Formules d'Euler et de de Moivre

(il ne doit plus y avoir de puissances ni de produits de cosinus ou sinus).

- Ecrire $\cos^n \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^n$.
- Développer avec la formule du binôme.
- Regrouper les termes conjugués pour faire apparaître des cosinus ou des sinus.

Si il n'y a pas de faute de calculs, vous devez obtenir un nombre réel : donc simplification des $i \dots$

Exercice

Linéariser $\cos^3 \theta$. $\sin^4 \theta$.

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

- 3.2. Formules d'Euler et de de
- Moivre

- Ecrire $cos(nt) = \mathbf{Re}(e^{int}) = \mathbf{Re}[(e^{it})^n]$ ou $sin(nt) = \mathbf{Im}[(e^{it})^n]$.
- Utiliser la formule du binôme pour calculer $(e^{it})^n = (\cos t + i \sin t)^n$.
- Récupérer la partie réelle (ou imaginaire) en séparant les indices pairs des indices impairs.

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- Problèmes
- . EULER:
- Manipulateur des nombres du diable
 - Racine de polynômes
- .2. Calcul algébrique
- Représentation graphique
- 2.4. Inégalités
- . Gaus

3.1. U

3.2. Formules d'Euler et de de

Moivre
3.3. Argument, forme

- Ecrire $\cos(nt) = \mathbf{Re}(e^{int}) = \mathbf{Re}[(e^{it})^n]$ ou $\sin(nt) = \mathbf{Im}[(e^{it})^n].$
- Utiliser la formule du binôme pour calculer $(e^{it})^n = (\cos t + i\sin t)^n$.
- Récupérer la partie réelle (ou imaginaire) en séparant les indices pairs des indices impairs.

Exercice

Ecrire $\cos 3t$ en fonction des puissances de $\cos t$, $\sin 3t$ comme le produit de $\sin t$ et d'une expression contenant des puissances de $\cos t$. Faire de même avec $\cos 5t$ et $\sin 5t$.

Lecon 19 - Nombres complexes

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

3.2. Formules d'Euler et de de Moivre

1. Problèmes

- 2. EULER: Manipulateur des nombres du diable
 - 2.1. Racine de polynômes
 - 2.2. Calcul algébrique
 - 2.3. Représentation graphique
 - 2.4. Inégalités
- 3. Le visionnaire : GAUSS et la multiplication complexe
 - 3.1. Les complexes de module 1
 - 3.2. Formules d'Euler et de de Moivre
 - 3.3. Argument, forme trigonométrique

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

Problèmes

2. EULER:

Manipulateur des nombres du diable

Racine de polynômes

Colcul alnáhrinua

Représentation graph

. Inégalités

. Gauss

1. U

i.2. Formules d'Euler et de d Moivre

3.3. Argument, forme trigonométrique

2. EULER :

Manipulateur des nombres du diable

.1. Racine de polynôme

2.2. Calcul algébrique

2.3. Représentation graphiqu

2.4. Inégalités

4.11

2. Formules d'Euler et de

Moivre

3.3. Argument, forme trigonométrique

Définition - Argument

Soit $z\in\mathbb{C},\,z\neq0$, on a $\frac{z}{|z|}\in\mathbb{U}$ donc il existe $\theta\in\mathbb{R}$ tel que

$$\frac{z}{|z|} = e^{i\theta}.$$

On dit que θ est un argument de z. On note $\theta = \arg z$.

L'écriture $z=re^{i\theta}$ où r=|z| est appelée forme trigonométrique de z.

3.3. Argument, forme trigonométrique

Définition - Argument

Soit $z \in \mathbb{C}$, $z \neq 0$, on a $\frac{z}{|z|} \in \mathbb{U}$ donc il existe $\theta \in \mathbb{R}$ tel que

$$\frac{z}{|z|} = e^{i\theta}.$$

On dit que θ est un argument de z. On note $\theta = \arg z$.

L'écriture $z = re^{i\theta}$ où r = |z| est appelée forme trigonométrique de z.

L'argument est une fonction logarithmique (qui vérifie $f(a \times b) = f(a) + f(b)$ mais multivariée (à plusieurs valeurs).

Si
$$(z,z') \in (\mathbb{C}^*)^2$$
, on a

$$arg\overline{z} \equiv -argz[2\pi]$$

$$\arg \frac{1}{z} \equiv -\arg z[2\pi]$$

$$arg(zz') \equiv (argz + argz')[2\pi]$$

$$\arg\left(\frac{z}{z'}\right) \equiv (\arg z - \arg z')[2\pi]$$

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- Problèmes
- 2. EULER :
- Manipulateur des nombres du diable
 - . Racine de polynômes
- 2.2. Calcul algébrique
- 2.3. Représentation graphique
- 2.4. Inégalités
- 3. Gaus
- 3.1. U
- 3.2. Formules d'Euler et de de Moivre
- 3.3. Argument, forme trigonométrique

Si
$$(z,z') \in (\mathbb{C}^*)^2$$
, on a

$$\arg \overline{z} \equiv -\arg z[2\pi]$$

$$\arg \frac{1}{z} \equiv -\arg z[2\pi]$$

$$\arg(zz') \equiv (\arg z + \arg z')[2\pi]$$

$$\arg\left(\frac{z}{z'}\right) \equiv (\arg z - \arg z')[2\pi]$$

Attention Pas d'unicité.

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- Problèmes
- 2. EULER:
- Manipulateur des nombres du diable
 - . Racine de polynômes
- .2. Calcul algébrique
- 2.3. Représentation graphique
- 2.4. Inégalités
- 3. Gaus
- 3.1. U
- 3.2. Formules d'Euler et de de Moivre
- 3.3. Argument, forme trigonométrique

Si
$$(z,z') \in (\mathbb{C}^*)^2$$
, on a

$$\arg \overline{z} \equiv -\arg z[2\pi]$$

$$\arg \frac{1}{z} \equiv -\arg z[2\pi]$$

$$\arg(zz') \equiv (\arg z + \arg z')[2\pi]$$

$$\arg\left(\frac{z}{z'}\right) \equiv (\arg z - \arg z')[2\pi]$$

Attention Pas d'unicité.

Remarque Géométriquement

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
- Problèmes
- 2. EULER :
- Manipulateur des nombres du diable
 - . Racine de polynômes
 - .2. Calcul algébrique
- 2.3. Représentation graphique
- 2.4. Inégalités
- 3. Gaus
- 3.1. U
 - .2. Formules d'Euler et de d
- 3.3. Argument, forme trigonométrique

⇒ Interprétation centré

Problèmes

2. EULER

Manipulateur des nombres du diable

Racine de polynômes

2.2. Calcul algébrique

2.3. Représentation graphique

2.4. Inégalités

3.1 IJ

8.2. Formules d'Euler et de de Moivre

3.3. Argument, forme trigonométrique

Proposition - Relation arg et arctan

Soit $x \in \mathbb{R}$, alors $\arg(1+ix) \equiv \arctan x[2\pi]/$ Soit $z \in \mathbb{C}$, alors $\arg z = \arctan \frac{\mathbf{Im}z}{\mathbf{Re}z}[\pi]$. Précisément : $\begin{cases} & \operatorname{arctan} \frac{\mathbf{Im}z}{\mathbf{Re}z} & \operatorname{si} \mathbf{Re}z > 0 \end{cases}$

 $\arg z = \begin{cases} \arctan \frac{\mathbf{Im}z}{\mathbf{Re}z} & \text{si } \mathbf{Re}z > 0\\ \frac{\mathbf{Im}z}{\mathbf{Re}z} + \pi & \text{si } \mathbf{Re}z < 0 \end{cases}$

⇒ Interprétation centré

1. Problèmes

2. EULER :

Manipulateur des nombres du diable

Racine de polynômes

2.2. Calcul algébrique

Représentation graphi

2.4. Inégalités

_

3.1. U

3.2. Formules d'Euler et de de

3.3. Argument, forme trigonométrique

Proposition - Relation arg et arctan

Soit $x \in \mathbb{R}$, alors $\arg(1+ix) \equiv \arctan x[2\pi]/$ Soit $z \in \mathbb{C}$, alors $\arg z = \arctan \frac{\operatorname{Im} z}{\operatorname{Re} z}[\pi]$. Précisément : $\arg z = \begin{cases} \operatorname{arctan} \frac{\operatorname{Im} z}{\operatorname{Re} z} & \operatorname{si} \operatorname{Re} z > 0\\ \operatorname{arctan} \frac{\operatorname{Im} z}{\operatorname{Re} z} + \pi & \operatorname{si} \operatorname{Re} z < 0 \end{cases}$

Démonstration

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

. Problème

EULER:

Manipulateur des

- Racine de polynôme
-
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

- .1. 0 .2. Formules d'Euler et de d
- Moivre

 3.3 Argument forme
- 3.3. Argument, form trigonométrique

Objectifs

- ⇒ Calculs simples dans le corps ℂ
 - Définition algébrique : $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}\$ et $i^2 = -1$

Lecon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
 - ▶ Définition algébrique : $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$ et $i^2 = -1$
 - L'addition est naturelle. La multiplication est commutative, distributive.

Leçon 19 - Nombres complexes

 $\Rightarrow \mathsf{Corps} \; (\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

. Problème:

2. EULER

Manipulateur des nombres du diable

Racine de polynômes

. naune de polynome

Représentation graphique

2.4. Inégalités

3. Gauss

.2. Formules d'Euler et de d

3.3. Argument, forme trigonométrique

Objectifs

- ⇒ Calculs simples dans le corps ℂ
 - Définition algébrique : $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}\$ et $i^2 = -1$
 - L'addition est naturelle. La multiplication est commutative, distributive.
 - Intéressant : le module de $z=\sqrt{a^2+b^2}$. z inversible ssi $|z|\neq 0$. Et $z^{-1}=\frac{1}{z}=\frac{\overline{z}}{|z|^2}$, d'où la conjugaison

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

Objectifs

\Rightarrow Calculs simples dans le corps $\mathbb C$

- ▶ Définition algébrique : $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$ et $i^2 = -1$
- L'addition est naturelle. La multiplication est commutative, distributive.
- Intéressant : le module de $z=\sqrt{a^2+b^2}$. z inversible ssi $|z|\neq 0$. Et $z^{-1}=\frac{1}{z}=\frac{\overline{z}}{|z|^2}$, d'où la conjugaison
- Inégalité triangulaire et série d'inégalités.

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré
 - Problèmes
- 2. EULER : Manipulateur des
- Racine de polynôme
- .2. Calcul algébrique
- Représentation graphique
- GALISS
- i.1. IU i.2. Formules d'Euler et de d
- 3.3. Argument, forme

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

. Problème

EULER:

Manipulateur des

- Racine de polynôme
-
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

- .1. 0 .2. Formules d'Euler et de d
- Moivre

 3.3 Argument forme
- 3.3. Argument, form trigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
 - Somme : translation de vecteur

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

Problèmes

2. EULER:

Manipulateur des nombres du diable

1. Racine de polynômes

-

.3. Représentation graphiqu

.4. Inégalités

. Gauss

3.2. Formules d'Euler et de

3.3. Argument, forme trigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
 - Somme : translation de vecteur
 - Le module : norme du vecteur.

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

 \Rightarrow Interprétation dans le plan

⇒ Interprétation centré

Problèmes

2. EULER :

Manipulateur des nombres du diable

Racine de polynômes

. ridding de polynom

.3. Représentation graphiqu

.4. Inégalités

. Gauss

.1. U .2. Formules d'Euler et de d

3.3. Argument, forme trigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
 - Somme : translation de vecteur
 - Le module : norme du vecteur.
 - Comment interpréter le produit ?

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

. Problème

2. EULER :

Manipulateur des nombres du diable

I. Racine de polynômes

n. raune de polynom

.3. Représentation graphiqu

.4. Inégalités

B. GAUSS

.2. Formules d'Euler et de d

3.3. Argument, forn trigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication

Leçon 19 - Nombres complexes

- \Rightarrow Corps $(\mathbb{C}, +, \times)$
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

. Problème

EULER:

Manipulateur des

- Racine de polynôme
-
- 2.3. Représentation graphique
- 2.4. Inégalités

. Gauss

- .1. 0 .2. Formules d'Euler et de d
- Moivre

 3.3 Argument forme
- 3.3. Argument, form trigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - $\blacktriangleright \ \ \, {\rm D\'efinir} \ {\rm le} \ {\rm groupe} \ \mathbb{U}, \ {\rm de} \ {\rm nombres} \ {\rm complexes} \ {\rm de} \ {\rm module} \ 1.$

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

Problèmes

2. EULER :

Manipulateur des nombres du diable

Racine de polynômes

O L L L CL

.3. Représentation graphiqu

2.4. Inégalités

. Gauss

i.2. Formules d'Euler et de d

3.3. Argument, form

Objectifs

- ⇒ Calculs simples dans le corps ℂ
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - Définir le groupe \mathbb{U} , de nombres complexes de module 1.
 - Notation complexe trigonométrique : $z = \rho e^{i\theta}$.

Lecon 19 - Nombres complexes

 \Rightarrow Corps ($\mathbb{C}, +, \times$)

⇒ Interprétation dans le plan

⇒ Interprétation centré

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - lacktriangle Définir le groupe $\mathbb U$, de nombres complexes de module 1.
 - Notation complexe trigonométrique : $z = \rho e^{i\theta}$.
 - Généralisation à la notion d'arguments.

Leçon 19 - Nombres complexes

 \Rightarrow Corps ($\mathbb{C}, +, \times$)

⇒ Interprétation dans le plan

⇒ Interprétation centré

Problèmes

2. EULER:

Manipulateur des nombres du diable

. Racine de polynôme:

Colcul algébrique

3. Représentation graphique

.4. Inégalités

B. GAUSS

.2. Formules d'Euler et de d

3.3. Argument, form trigonométrique

Objectifs

- \Rightarrow Calculs simples dans le corps $\mathbb C$
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - lacktriangle Définir le groupe \mathbb{U} , de nombres complexes de module 1.
 - Notation complexe trigonométrique : $z = \rho e^{i\theta}$.
 - Généralisation à la notion d'arguments.
 - Représentation graphique : multiplication comme homothétie et rotation

Leçon 19 - Nombres complexes

 \Rightarrow Corps $(\mathbb{C}, +, \times)$

⇒ Interprétation dans le plan

⇒ Interprétation centré

Problèmes

. EULER :

lanipulateur des

. Racine de polynômes

2. Calcul algébrique

3. Représentation graphique

.4. Inégalités

. Gauss

.1. U .2. Formules d'Euler et de

oivre

3.3. Argument, form trigonométrique

- ⇒ Calculs simples dans le corps C
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication
 - Définir le groupe \mathbb{U} , de nombres complexes de module 1.
 - Notation complexe trigonométrique : $z = \rho e^{i\theta}$.
 - Généralisation à la notion d'arguments.
 - Représentation graphique : multiplication comme homothétie et rotation
 - Nombreux savoir-faire qui donnent les formules trigonométriques.

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

- \Rightarrow Corps ($\mathbb{C}, +, \times$)
- ⇒ Interprétation dans le plan
- ⇒ Interprétation centré

Objectifs

- ⇒ Calculs simples dans le corps C
- ⇒ Interprétation dans le plan & addition
- ⇒ Interprétation centrée & multiplication

Pour la prochaine fois

- Lecture 4. Racines & 5. Plan complexe
- Exercice n° 87, 90 & 95
- TD de jeudi : 8h-10h:??, 85, 88, 98 (cos)
 - 10h-12h:??, 86, 89, 98 (sin)