

Leçon 20 - Nombres complexes

Leçon 20 - Nombres complexes

⇒ Racines (complexes)

Problème:

Manipulateur des nombres du diable

. Gauss

4.1. √z

4.2. 1<sup>1/n</sup>

4.3.  $z^{1/n}$ 

(complexes)

⇒ Racines

- 2. EULER :
  Manipulateur des
  - CIAUSS
  - Racines
- 4.1. √z
- 4.2. 117
- 4.3. z<sup>1/z</sup>

4. Racines d'un nombre complexe

1. Problèmes

- 4.1. Recherche de racines carrées
- 4.2. Racines n-ièmes de l'unité
- 4.3. Racines *n*-ièmes d'un nombre complexe

2. EULER: Manipulateur des nombres du diable

3. Le visionnaire : GAUSS et la multiplication complexe

- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
- 3. Le visionnaire : GAUSS et la multiplication complexe
- 4. Racines d'un nombre complexe
  - 4.1. Recherche de racines carrées
  - 4.2. Racines n-ièmes de l'unité
  - 4.3. Racines *n*-ièmes d'un nombre complexe

⇒ Racines (complexes)

. Problèmes

2. EULER : Manipulateur des nombres du diable

. GAUSS

Racines

4.1. √*z* 

4.2. 1\*\*\*

4.3 21/11

On dit que  $Z \in \mathbb{C}$  est une racine carrée de  $z \in \mathbb{C}$  si  $Z^2 = z$ .

⇒ Racines (complexes)

Problème:

2. EULER:
Manipulateur des
nombres du diable

3. Gauss

Racines

4.1. √z

l.3. z<sup>1/n</sup>

4 □ ト 4 圖 ト 4 圖 ト 4 圖 ・ 9 Q (~)

⇒ Racines (complexes)

. Problèmes

Manipulateur des nombres du diable

. .....

acines

4.1.  $\sqrt{z}$ 4.2.  $1^{1/n}$ 

l.3. z<sup>1/n</sup>

On dit que  $Z \in \mathbb{C}$  est une racine carrée de  $z \in \mathbb{C}$  si  $Z^2 = z$ .

On dispose de deux méthodes pour chercher les racines carrées de z.

On considère un complexe z écrit sous forme trigonométrique  $z=|z|e^{i\alpha}$ , et on cherche Z sous forme trigonométrique  $Z=\rho e^{i\theta}$  où  $\rho>0$ .

On a alors  $Z^2 = \rho^2 e^{2i\theta}$ , on fait ensuite une sorte d'identification entre les modules et les arguments (mais attention...).

# ⇒ Racines (complexes)

- 1. Problèmes
- 2. EULER:
  Manipulateur des
  nombres du diable
  - . Gauss
  - Racine
- 4.1. √z 4.2. 1<sup>1/n</sup>
  - .3. z<sup>1/n</sup>

# Savoir-faire. Exploitation de la forme trigonométrique

On considère un complexe z écrit sous forme trigonométrique  $z=|z|e^{i\alpha}$ , et on cherche Z sous forme trigonométrique  $Z=\rho e^{i\theta}$  où  $\rho>0$ .

On a alors  $Z^2=\rho^2e^{2i\theta}$ , on fait ensuite une sorte d'identification entre les modules et les arguments (mais attention...).

### Exercice

Trouver les racines carrées de  $z = \frac{1-i}{\sqrt{3}-i}$ .

On rappelle que 
$$\cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$$
 et  $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$ 

⇒ Racines (complexes)

1. Problèmes

Manipulateur des nombres du diable

. Gauss

Racine

4.1. √z

4.3 z<sup>1/n</sup>

# Savoir-faire. Exploitation de la forme trigonométrique

On considère un complexe z écrit sous forme trigonométrique  $z=|z|e^{i\alpha}$ , et on cherche Z sous forme trigonométrique  $Z=\rho e^{i\theta}$  où  $\rho>0$ .

On a alors  $Z^2=\rho^2e^{2i\theta}$ , on fait ensuite une sorte d'identification entre les modules et les arguments (mais attention...).

### Exercice

Trouver les racines carrées de  $z = \frac{1-i}{\sqrt{3}-i}$ .

On rappelle que  $\cos\frac{7\pi}{12}=\frac{\sqrt{2}-\sqrt{6}}{4}$  et  $\sin\frac{7\pi}{12}=\frac{\sqrt{2}+\sqrt{6}}{4}$ 

La méthode-algorithmique précédente nous permet d'affirmer :

# Proposition - Deux racines complexes

Tout complexe non nul possède exactement deux racines carrées complexes (opposées).

#### ⇒ Racines (complexes)

1. Problèmes

# Manipulateur des nombres du diable

. GAUSS

### 4.1. √*z*

4.2.  $1^{1/n}$ 

4.3.  $z^{1/n}$ 

# Savoir-faire. Exploitation de la forme algébrique

On considère un complexe  $z=x+iy\neq 0$ , et on cherche Z sous forme algébrique Z=X+iY.

Le principe est d'écrire l'égalité des modules, des parties réelles et imaginaires de z et  $Z^2$  pour se ramener à une résolution simple de système donnant  $X^2,Y^2$  et le signe de XY.

$$Z^{2} = z \Leftrightarrow \begin{cases} X^{2} + Y^{2} = \sqrt{x^{2} + y^{2}} \\ X^{2} - Y^{2} = x \\ 2XY = y \end{cases}$$

On résout le système formée par les deux premières équations, la troisième donne le signe de XY.

⇒ Racines (complexes)

I. Problemes

2. EULER : Manipulateur des nombres du diable

o. GAUSS

. Racines

4.1.  $\sqrt{z}$ 4.2.  $1^{1/n}$ 

 $4.3.\ z^{1/n}$ 

# Savoir-faire. Exploitation de la forme algébrique

On considère un complexe  $z=x+iy\neq 0$ , et on cherche Z sous forme algébrique Z=X+iY.

Le principe est d'écrire l'égalité des modules, des parties réelles et imaginaires de z et  $Z^2$  pour se ramener à une résolution simple de système donnant  $X^2,Y^2$  et le signe de XY.

$$Z^{2} = z \Leftrightarrow \begin{cases} X^{2} + Y^{2} = \sqrt{x^{2} + y^{2}} \\ X^{2} - Y^{2} = x \\ 2XY = y \end{cases}$$

On résout le système formée par les deux premières équations, la troisième donne le signe de XY.

## Exercice

Déterminer les racines carrées de 2-3i.

⇒ Racines (complexes)

. Problèmes

2. EULER:
Manipulateur des
nombres du diable

B. GAUSS

4.1. √z

4.2.  $1^{1/n}$ 

 $4.3.\ z^{1/n}$ 

4.1.  $\sqrt{z}$ 

(complexes)

Le théorème suivant a déjà été vu. Mais ici, on insiste sur le fait que les coefficients peuvent être des nombres complexes.

# Proposition - Nombre de racines et degré

L'équation  $az^2 + bz + c = 0$ , avec  $(a, b, c) \in \mathbb{C}^3$ ,  $a \neq 0$ , admet deux solutions complexes  $z_1 = \frac{-b-\delta}{2a}$  et  $z_2 = \frac{-b+\delta}{2a}$  où  $\delta$  est une racine carrée complexe de  $b^2 - 4ac$ .

4.1.  $\sqrt{z}$ 

Remarque Bien connu...

Le théorème suivant a déjà été vu. Mais ici, on insiste sur le fait que les coefficients peuvent être des nombres complexes.

# Proposition - Nombre de racines et degré

L'équation  $az^2 + bz + c = 0$ , avec  $(a, b, c) \in \mathbb{C}^3$ ,  $a \neq 0$ , admet deux solutions complexes  $z_1 = \frac{-b-\delta}{2a}$  et  $z_2 = \frac{-b+\delta}{2a}$  où  $\delta$  est une racine carrée complexe de  $b^2 - 4ac$ .

Manipulateur des nombres du diable

. GA000

Racines

4.1.  $\sqrt{z}$ 4.2.  $1^{1/n}$ 

4.3. z<sup>1/n</sup>

# Proposition - Théorème de Viète

Soient  $(S,P) \in \mathbb{C}^2$ . Les solutions du système  $\left\{ \begin{array}{l} z_1 + z_2 = S \\ z_1 \times z_2 = P \end{array} \right.$  sont exactement (à permutation près) les solutions de  $z^2 - Sz + P = 0$ 

Proposition - Théorème de Viète

Manipulateur des nombres du diable

3. GAUSS

4.1. √z

4.2. 1<sup>1/n</sup>

4.3. z<sup>1/n</sup>

Soient  $(S,P) \in \mathbb{C}^2$ . Les solutions du système  $\begin{cases} z_1 + z_2 = S \\ z_1 \times z_2 = P \end{cases}$  sont exactement (à permutation près) les solutions de  $z^2 - Sz + P = 0$ 

## Exercice

Résoudre dans  $\mathbb C$  le système d'équation  $\left\{ \begin{array}{l} z_1+z_2=3\\ z_1\times z_2=1-3i \end{array} \right..$ 

- 1. Problèmes
- 2. EULER: Manipulateur des nombres du diable
- 3. Le visionnaire : GAUSS et la multiplication complexe
- 4. Racines d'un nombre complexe
  - 4.1. Recherche de racines carrées
  - 4.2. Racines n-ièmes de l'unité
  - 4.3. Racines *n*-ièmes d'un nombre complexe

⇒ Racines (complexes)

Problèmes

EULER:
 Manipulateur des
 nombres du diable

3. Gauss

Racines

4.1. √z

4.2.  $1^{1/n}$ 

.3. z<sup>1/n</sup>

Soit  $n \in \mathbb{N}^*$ . Les racines n-ièmes de l'unité, c'est à dire les solutions de l'équation  $z^n=1$ , sont les n nombres  $e^{\frac{2ik\pi}{n}}$  avec  $k \in \{0,1,\ldots,n-1\}$ .

On note 
$$\mathbb{U}_n=\left\{e^{\frac{2ik\pi}{n}};k\in\{0,1,\ldots,n-1\}\right\}$$

⇒ Racines (complexes)

1. Problèmes

Manipulateur des nombres du diable

3. Gauss

Racines

4.2. 1<sup>1/n</sup>

# Théorème - Les n solutions de $z^n = 1$

Soit  $n \in \mathbb{N}^*$ . Les racines n-ièmes de l'unité, c'est à dire les solutions de l'équation  $z^n=1$ , sont les n nombres  $e^{\frac{2ik\pi}{n}}$  avec  $k \in \{0,1,\ldots,n-1\}$ .

On note 
$$\mathbb{U}_n=\left\{e^{\frac{2ik\pi}{n}};k\in\{0,1,\ldots,n-1\}\right\}$$

# On obtient donc pour

$$n=2:1$$
 et  $-1$ ;  $n=3:1, j=e^{\frac{2i\pi}{3}}=\exp{\frac{2i\pi}{3}}$  et  $j^2=\overline{j}=e^{\frac{4i\pi}{3}}=\exp{\frac{4i\pi}{3}}$ ;  $n=4:1,i,-1$  et  $-i$ .

Il faut savoir les placer sur le cercle trigonométrique.

Racines primitives  $n^{e}$ de l'unité.

# ⇒ Racines (complexes)

- 1. Problèmes
- Manipulateur des nombres du diable
- 3. Gauss
- 4.1.  $\sqrt{z}$ 4.2  $1^{1/n}$

4.2. 1<sup>1/n</sup>
4.3. z<sup>1/n</sup>

# Théorème - Les n solutions de $z^n = 1$

Soit  $n \in \mathbb{N}^*$ . Les racines n-ièmes de l'unité, c'est à dire les solutions de l'équation  $z^n=1$ , sont les n nombres  $e^{\frac{2ik\pi}{n}}$  avec  $k \in \{0,1,\ldots,n-1\}$ .

On note 
$$\mathbb{U}_n=\left\{e^{\frac{2ik\pi}{n}};k\in\{0,1,\ldots,n-1\}\right\}$$

# On obtient donc pour

$$n=2:1$$
 et  $-1$ ;  $n=3:1, j=e^{\frac{2i\pi}{3}}=\exp{\frac{2i\pi}{3}}$  et  $j^2=\overline{j}=e^{\frac{4i\pi}{3}}=\exp{\frac{4i\pi}{3}}$ ;  $n=4:1,i,-1$  et  $-i$ .

Il faut savoir les placer sur le cercle trigonométrique.

Racines primitives  $n^{e}$ de l'unité.

#### Démonstration

#### ⇒ Racines (complexes)

1. Problémes

# Manipulateur des nombres du diable

3. Gauss

4.1.  $\sqrt{z}$ 4.2  $1^{1/n}$ 

4.2. 1<sup>1/n</sup>
4.3. z<sup>1/n</sup>

4.2.  $1^{1/n}$ 

# Proposition - Somme des racines *n*-ième

Soit  $n \in \mathbb{N}$ ,  $n \ge 2$ . La somme des racines n-ièmes de l'unité est nulle.

En particulier  $1 + j + j^2 = 0$ .

4.2.  $1^{1/n}$ 

# Proposition - Somme des racines *n*-ième

Soit  $n \in \mathbb{N}$ ,  $n \ge 2$ . La somme des racines n-ièmes de l'unité est nulle.

En particulier  $1 + j + j^2 = 0$ .

### Démonstration

- Problèmes
- 2. EULER: Manipulateur des nombres du diable
- 3. Le visionnaire : GAUSS et la multiplication complexe
- 4. Racines d'un nombre complexe
  - 4.1. Recherche de racines carrées
  - 4.2. Racines n-ièmes de l'unité
  - 4.3. Racines *n*-ièmes d'un nombre complexe

⇒ Racines (complexes)

43 21/11

# Théorème - Racines n-ièmes de $z_0$

Soient  $z_0\in\mathbb{C}^*$  et  $n\in\mathbb{N}^*$ . Alors  $z_0$  a exactement n racines n-ièmes (solutions de  $z^n=z_0$ ).

Si 
$$z_0 = |z_0|e^{i\alpha}$$
, alors ce sont les

$$z_k = |z_0|^{1/n} e^{i(\frac{\alpha}{n} + \frac{2k\pi}{n})}$$
 où  $k \in \{0, 1, ..., n-1\}$ .

#### ⇒ Racines (complexes)

- . Problèmes
- Manipulateur des nombres du diable
- 3. Gauss
  - Racines
- 4.2. 1<sup>1/n</sup>
- 4.3 21/n

# Théorème - Racines n-ièmes de $z_0$

Soient  $z_0 \in \mathbb{C}^*$  et  $n \in \mathbb{N}^*$ . Alors  $z_0$  a exactement n racines n-ièmes (solutions de  $z^n = z_0$ ).

Si  $z_0 = |z_0|e^{i\alpha}$ , alors ce sont les

$$z_k = |z_0|^{1/n} e^{i(\frac{\alpha}{n} + \frac{2k\pi}{n})}$$
 où  $k \in \{0, 1, \dots, n-1\}$ .

### **Démonstration**

Il suffit de les écrire

⇒ Racines (complexes)

. Problèmes

Manipulateur des nombres du diable

B. GAUSS

1. √z

4.2. 1<sup>1/n</sup>

4.3. z<sup>1/n</sup>

2. EULER:
Manipulateur des
nombres du diable

3. Gauss

Racines

4.1.  $\sqrt{z}$ 4.2.  $1^{1/n}$ 

4.3.  $z^{1/n}$ 

### Exercice

Déterminer les racines n-ièmes de  $\frac{1+\sqrt{3}i}{1-i}$ .

On rappelle que  $\cos\frac{7\pi}{12}=\frac{\sqrt{2}-\sqrt{6}}{4}$  et  $\sin\frac{7\pi}{12}=\frac{\sqrt{2}+\sqrt{6}}{4}$ 

4.3.  $z^{1/n}$ 

# Exercice

Déterminer les racines n-ièmes de  $\frac{1+\sqrt{3}i}{1-i}$ .

On rappelle que  $\cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$  et  $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$ 

# Exercice

Résoudre dans  $\mathbb{C}$  l'équation  $(z-1)^6 + (z+1)^6 = 0$ .

#### . Problèmes

2. EULER:
Manipulateur des
nombres du diable

#### 3. Gauss

Racines

4.1. √z

l.3. z<sup>1/n</sup>

# **Objectifs**

⇒ Racines (complexes) d'un nombre

# ⇒ Racines (complexes) d'un nombre

 Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique
 Applications à la recherche des racines des équations polynomiales de degré 2

# ⇒ Racines (complexes)

1. Problèmes

Manipulateur des nombres du diable

. Gauss

r. Hacii

4.2 11/2

4.3. z<sup>1/n</sup>

# **Objectifs**

# ⇒ Racines (complexes) d'un nombre

- Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique
   Applications à la recherche des racines des équations polynomiales de degré 2
- Les n racines de 1 sont  $e_k=e^{2ik\pi/n}$ , ils vérifient  $\sum e_k=0\ldots$  On coupe le gâteau en n parts égales.

⇒ Racines (complexes)

1. Problèmes

EULER:
 Manipulateur des
 nombres du diable

. Gauss

1.1. √z

4.2. 1<sup>1/n</sup>

# Conclusion

### **Objectifs**

- ⇒ Racines (complexes) d'un nombre
  - Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique
     Applications à la recherche des racines des équations polynomiales de degré 2
  - Les n racines de 1 sont  $e_k=e^{2ik\pi/n}$ , ils vérifient  $\sum e_k=0\ldots$  On coupe le gâteau en n parts égales.
  - Les n racines de Z sont  $e_k = \sqrt[n]{|Z|}e^{2ik\pi/n + i\arg(Z)/n}$

⇒ Racines (complexes)

1. Problèmes

Manipulateur des nombres du diable

. Gauss

4.1. √z

4.2. 1<sup>1</sup>

4.3. z<sup>1/n</sup>

## **Objectifs**

# ⇒ Racines (complexes) d'un nombre

- Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique
   Applications à la recherche des racines des équations polynomiales de degré 2
- Les n racines de 1 sont  $e_k=e^{2ik\pi/n}$ , ils vérifient  $\sum e_k=0\ldots$  On coupe le gâteau en n parts égales.
- Les n racines de Z sont  $e_k = \sqrt[n]{|Z|}e^{2ik\pi/n + i\arg(Z)/n}$
- ▶ Il est souvent préférable d'exploiter la forme trigonométrique...

⇒ Racines (complexes)

1. Problemes

EULER:
 Manipulateur des
 nombres du diable

. Gauss

4.1. √*z* 

4.2. 1 4.3. z 1/n

# Conclusion

### **Objectifs**

# ⇒ Racines (complexes) d'un nombre

- Deux méthodes pour calculer la racine carrée : trigonométrique et algébrique
   Applications à la recherche des racines des équations polynomiales de degré 2
- Les n racines de 1 sont  $e_k=e^{2ik\pi/n}$ , ils vérifient  $\sum e_k=0\ldots$  On coupe le gâteau en n parts égales.
- Les n racines de Z sont  $e_k = \sqrt[n]{|Z|}e^{2ik\pi/n + i\arg(Z)/n}$
- ▶ Il est souvent préférable d'exploiter la forme trigonométrique...
- ▶ Il y a une importante structure de groupe cachée derrière!

⇒ Racines (complexes)

1. Problèmes

EULER:
 Manipulateur des
 nombres du diable

. Gauss

4.1. √z

4.2.  $1^{1/n}$ 4.3.  $z^{1/n}$ 

4日ト4月ト4日ト4日ト ヨ めので

2. EULER:
Manipulateur des
nombres du diable

. GAUSS

. Racines

4.1. √z

4.2. 1<sup>1/n</sup>

⇒ Racines (complexes) d'un nombre

**Objectifs** 

# Pour la prochaine fois

Lecture : 5. Le plan complexe

Exercice n°101 & 102