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=Etude de I’'alignement et I'orthogonalité dans le plan

= Transformations géométriques du plan

1. Probléemes
2. EULER : manipulateur des nombres du diable
3. Le visionnaire : GAUSS et la multiplication complexe
4. Racines d’'un nombre complexe
5. Rappels : R2=C = 2
5.1. Regard géométrique sur le plan complexe
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5.3 Transformations du plan (point de vue complexe)
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|dentification R%2 = C = 22

Proposition - Identification

On munit le plan £2 d'un repére orthonormé (O,f,]').
Soient A,B,A’, B’ quatre points du plan. On a alors (mesure des
angles orientés de vecteurs) :

lzal=0A

AB=|zp—z4]|

argza = (7,0A)[27] et arg(zg —24) = (i,AB)[27]
arg(M) = (A_)B,ATB/)[2T[]

2B —RA
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Identification R%2 = C = 9

Proposition - Identification

On munit le plan £2 d'un repére orthonormé (O,f,]').
Soient A,B,A’, B’ quatre points du plan. On a alors (mesure des
angles orientés de vecteurs) :

lzal=0A

AB=|zp—z4]|

argza = (7,0A)[27] et arg(zg —24) = (i,AB)[27]
arg(Z%Z) = (A_)B,ATB/)[2T[]

Le dernier résultat, essentiel, mérite une démonstration.
Démonstration
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LE nombre 2’ x z

Analyse Le nombre Z =2' xz
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;=

LE nombre 2’ x z complexes
Analyse Le nombre Z =2z'xz A
Définition - Le complexe Z seomcue "

Soient A,B,A’, B’ quatre points du plan d'affixe z4, zB, 24’ et
zp' respectivement.

Onnote Z =(zp' —za/) x(zg —z4).

Alors

argZ =(AB,A’B"[2n] et |Z|=|AB| x|A'B|

ou ||iZ]l = v/x2 + y? est par définition la norme (longueur) du
vecteur u(x, y).
Et donc

Z = |AB|[IATB'| [cos(A*B,A'*B/) +isin(AB,AB’)
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Le calcul donne :

Proposition - Partie réelle et imaginaire de Z

Avec les mémes notations et en notant z = AB d’affixe
z=zp—za=x+iyetu' =A'B' daffixe 2’ =zp —za =x'+iy'.
On rappelle que Z =z’ xz. On a alors :

5.1. Regard géoémtrique

Re(Z) = |AB||A’B’|| cos(AB,A’B") = xx' + yy'

Im(Z) = |AB||||A’B'||sin(AB,A’B') = xy' —x'y
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LE nombre Z, X Z complexes

=Alignement et
I'orthogonalité

= Transformations
géométriques

Le calcul donne :
Proposition - Partie réelle et imaginaire de Z

Avec les mémes notations et en notant z = AB d’affixe
z=zp—za=x+iyetu' =A'B' daffixe 2’ =zp —za =x'+iy'.
On rappelle que Z =z’ xz. On a alors :

5.1. Regard géoémtrique

Re(Z) = |AB||A’B’|| cos(AB,A’B") = xx' + yy'

Im(Z) = |AB||||A’B'||sin(AB,A’B') = xy' —x'y

Démonstration
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1. Probléemes
2. EULER : manipulateur des nombres du diable
3. Le visionnaire : GAUSS et la multiplication complexe
4. Racines d’un nombre complexe 22 Lo o o

5.3. Transformations du plan

5. Rappels : R2=C =2

5.2. Ligne de niveau



Droites
Une droite est un ensemble de points alignés. Pour définir une
(équation de) droite, on exploite donc les deux points de vue sur
l'alignement.
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Droites
Une droite est un ensemble de points alignés. Pour définir une
(équation de) droite, on exploite donc les deux points de vue sur
l'alignement.

Théoréme - Utilisation des complexes

1. La droite (AB) privée des points A et B (d’affixes
respectives a et b) est 'ensemble des points M d’affixe z

vérifiant  arg (Z—) = 0[x].

2. La droite (AB) privée du point A est 'ensemble des points
M d’affixe z vérifiant

z2-b :(z_b)@(z—b)(m)=(ﬂ)(z—a)~

Z2—Qa 2—a

les points A et B vérifient également la seconde équation. . .
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Droites
Une droite est un ensemble de points alignés. Pour définir une
(équation de) droite, on exploite donc les deux points de vue sur
l'alignement.

Théoréme - Utilisation des complexes

1. La droite (AB) privée des points A et B (d’affixes
respectives a et b) est 'ensemble des points M d’affixe z

vérifiant  arg (Z—) = 0[x].

2. La droite (AB) privée du point A est 'ensemble des points
M d’affixe z vérifiant

z2-b :(z_b)@(z—b)(m)=(ﬂ)(z—a)~

Z2—Qa 2—a

les points A et B vérifient également la seconde équation. . .

Démonstration
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Droites
Une droite est un ensemble de points alignés. Pour définir une
(équation de) droite, on exploite donc les deux points de vue sur
l'alignement.

Théoréme - Utilisation des complexes

1. La droite (AB) privée des points A et B (d’affixes
respectives a et b) est 'ensemble des points M d’affixe z

vérifiant  arg (Z—) =0[x].
2. La droite (AB) privée du point A est 'ensemble des points
M daffixe z vérifiant
-b A _
z :(z )<=>(z—b)(_z—a)=(z—b)(z—a).
z—a ‘z-—a

les points A et B vérifient également la seconde équation. . .

Démonstration

Exercice

Donner I'équation de la droite (complexe) qui passe par les points
A(l+1i)et B(2-1).
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Cercle

Théoréme - Ligne de niveau - Cercle
Soient A, B, C trois points distincts d’affixes respectives a,b et c.
(AB) L(AC) & arg+——| = &[]
b-a

2. Lensemble des points M d’affixe z vérifiant

-b
arg(z ) = gln] est le cercle de diamétre [AB] privé des
z—a
points A et B.

3. Lensemble des points M d’affixe z vérifiant
z2-b (z -b

= ) est le cercle de diametre [AB] privé du
zZ2—a
point A.

2—a
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CerC|e complexes
=Alignement et
I'orthogonalité
Théoréme - Ligne de niveau - Cercle = Transformations
géométriques

Soient A, B, C trois points distincts d’affixes respectives a,b et c.
(AB) L(AC) & arg+——| = &[]
b-a

2. Lensemble des points M d’affixe z vérifiant

-b
arg(z ) = gln] est le cercle de diamétre [AB] privé des
z—a
points A et B.

3. Lensemble des points M d’affixe z vérifiant
z2-b (z -b

5.2. Ligne de niveau

= ) est le cercle de diametre [AB] privé du
zZ2—a
point A.

2—a

Démonstration
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5.3 Transformations du plan (point de vue complexe)
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Transformations « élémentaires »

Définition - Transformation du plan
On appelle transformation du plan toute bijection du plan dans

lui-méme.
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Transformations « élémentaires » complexes

=Alignement et
I'orthogonalité

= Transformations
géométriques

Définition - Transformation du plan

On appelle transformation du plan toute bijection du plan dans
lui-méme.

Attention - Projection

5.3, Transformations du plan

Une projection sur une droite n’est pas une transformation du
plan.



Lecon 21 - Nombres
complexes

Translation

=Alignement et
I'orthogonalité

= Transformations
géométriques

Définition - Translation
On appelle translation de vecteur # I'application

tg: &P -
M — M tel que MM' =i

En complexes, t; est représentée par I'application de C dans C

définie par S
z2—2z+2

ol zq est Iaffixe du vecteur .
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Tran S | atIO n complexes

=Alignement et
I'orthogonalité

= Transformations

Définition - Translation géométriques
On appelle translation de vecteur # I'application

tg: &P -
M — M tel que MM' =i

En complexes, t; est représentée par I'application de C dans C

définie par S
z2—2z+2

ol zq est Iaffixe du vecteur .

Fichier geogebra : translation.ggb



Homothétie

Définition - Homothétie
On appelle homothétie de centre Q et de rapport le réel & # 0
I'application

hQ’k: P ->P
M — M tel que QM' =kQM

En complexes, hq 1, est représentée par I'application de C dans C
définie par
z—2zo+k(z—2p)

ol z( est Iaffixe du point .
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Homothétie

Définition - Homothétie
On appelle homothétie de centre Q et de rapport le réel & # 0
I'application

hQ’k: P ->P
M — M tel que QM' =kQM

En complexes, hq 1, est représentée par I'application de C dans C
définie par
z—2zo+k(z—2p)

ol z( est Iaffixe du point .

Fichier geogebra : homothetie.ggb
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complexes

Rotation

=Alignement et
I'orthogonalité

= Transformations

Rotation
géométriques
On appelle rotation de centre Q2 et d’angle 6 I'application

Rag: @ —P
OM' = QM
M — M tel S i M #Q
tel que { M, Qi =or2m; SM7
QO —0

5.3, Transformations du plan

En complexes, Rq g est représentée par I'application de C dans

C définie par .
z—zo+e%(z—2)

ol zq est I'affixe du point Q.
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ROtatlon complexes
=Alignement et
I'orthogonalité
Rotation = Transformations
éométriques
On appelle rotation de centre 2 et d’angle 6 I'application e
Rqpg: & -2
QOM' = QM
M — M tel - > siM #Q
S { @M, b =or2m M7
Q —~Q
En complexes, Rq g est représentée par I'application de C dans 5.5 Tansormatons da pln
C définie par

z—2zo+ ef(z - 20)
ol zq est I'affixe du point Q.

Fichier geogebra : rotation.ggb
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Similitudes (directes) compleres

=Alignement et
I'orthogonalité

= Transformations
géométriques

Il s’agit de composition de rotation et d’homothétie. ..
Définition - Similitude directe

On appelle similitude directe du plan toute transformation
représentée dans le plan complexe par une application de la

forme
z—az+b

5.3, Transformations du plan

avec (a,b)e C* x C.
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Similitudes (directes) compleres

=Alignement et
I'orthogonalité

= Transformations
géométriques

Il s’agit de composition de rotation et d’homothétie. ..
Définition - Similitude directe

On appelle similitude directe du plan toute transformation
représentée dans le plan complexe par une application de la

forme
z—az+b

5.3, Transformations du plan

avec (a,b)e C* x C.

Remarque Les transformations élémentaires



Représentation et propriétés

Analyse Résultats caractéristiques
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Analyse Résultats caractéristiques
Fichier geogebra : similitude.ggb

5.3, Transformations du plan
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Représentation et propriétés comploces

=Alignement et
I'orthogonalité

= Transformations

Analyse Résultats caractéristiques géométriques
Fichier geogebra : similitude.ggb

Proposition - Similitude directe

Une similitude directe conserve les angles et les rapports des

distances.
Si A, B, C sont trois points distincts d'images respectives

A',B’,C’ par cette similitude
Alors

5.3, Transformations du plan
AB A'B’

(AB,AC)=(A'B',A'C")[2n] et T



Représentation et propriétés

Analyse Résultats caractéristiques
Fichier geogebra : similitude.ggb

Proposition - Similitude directe

Une similitude directe conserve les angles et les rapports des
distances.

Si A, B, C sont trois points distincts d'images respectives
A',B’,C’ par cette similitude

Alors
AB B A'B’

(AB,AC)=(A'B',A'C")[2n] et T

Démonstration
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Caractérisation

=Alignement et
I'orthogonalité

Théoreme - Caractérisation ,
= Transformations
Soit f la transformation du plan représentée par z — az + b avec %"
aeC*,beC.
> Sia =1, f est la translation de vecteur d’affixe b.
> Sia #1, f admet un unique point fixe (point invariant)
Q(%) appelé centre de la similitude.
f sécritalors: f=hor=roh avec
- r rotation de centre () d’angle de mesure arga
- h homothétie de centre Q et de rapport |a|.

On dit que |a| est le rapport de la similitude, et arga est (la
mesure de) I'angle de la similitude.

5.3, Transformations du plan
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Caractérisation

=Alignement et
I'orthogonalité

Théoreme - Caractérisation - arciormatons
Soit f la transformation du plan représentée par z — az + b avec %"
aeC*,beC.
> Sia =1, f est la translation de vecteur d’affixe b.
> Sia #1, f admet un unique point fixe (point invariant)
Q(%) appelé centre de la similitude.
f sécritalors: f=hor=roh avec
- r rotation de centre () d’angle de mesure arga
- h homothétie de centre Q) et de rapport |al. o s

On dit que |a| est le rapport de la similitude, et arga est (la
mesure de) I'angle de la similitude.

Démonstration
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complexes

Caractérisation

=Alignement et

. . I'orthogonalité
Théoreme - Caractérisation - arciormatons
Soit f la transformation du plan représentée par z — az + b avec %"
aeC*,beC.
> Sia =1, f est la translation de vecteur d’affixe b.
> Sia #1, f admet un unique point fixe (point invariant)
Q(%) appelé centre de la similitude.
f sécritalors: f=hor=roh avec
- r rotation de centre () d’angle de mesure arga S

- h homothétie de centre Q et de rapport |a|.
On dit que |a| est le rapport de la similitude, et arga est (la
mesure de) I'angle de la similitude.

Démonstration
Remarque Cas particuliers avec a # 1
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Reconnaissance

=Alignement et
I'orthogonalité

Corollaire - Caractérisation de la similitude = Tansiormations
o am 5 . y géométriques
La similitude de centre d’affixe zq, de rapport % et d’angle 6 est -

représentée par
z—zo+ ke (z - zg).

5.3, Transformations du plan



Reconnaissance

Corollaire - Caractérisation de la similitude

La similitude de centre d’affixe zq, de rapport % et d’angle 6 est

représentée par

z2— 2o+ ke'l(z - 20).

Savoir-faire. Reconnaitre une similitude

Etant donnée une transformation, pour reconnaitre une similitude

il faut :

1.

chercher le point fixe : la solution de f(z) = z.

On le note zg, c’est le centre de la similitude.

chercher le complexe a tel que f(z) — zg = a(z — zg).

Ce complexe a donne le rapport et I'angle de la similitude

Lecon 21 - Nombres
complexes
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= Transformations
géométriques

5.3, Transformations du plan
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CompOSItlon complexes
Proposition - Composée de similitudes

=Alignement et
I'orthogonalité

La composée de deux similitudes est une similitude dont le  Tansformations
rapport est le produit des rapports et I'angle, la somme des géométriques
angles.

On a les cas particuliers suivants :

> la composée de deux translations est une translation de
vecteur la somme des deux vecteurs,

> |a composée de deux homothéties est soit une homothétie
soit une translation,

5.3, Transformations du plan

> la composée de deux rotations de méme centre est une
rotation de méme centre et d’angle la somme des deux
angles (éventuellement d’angle nul, i.e. 'identité du plan)
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Composition
=Alignement et
I'orthogonalité

= Transformations
géométriques

Proposition - Composée de similitudes

La composée de deux similitudes est une similitude dont le
rapport est le produit des rapports et I'angle, la somme des
angles.
On a les cas particuliers suivants :
> la composée de deux rotations de centres distincts, d’angles
respectifs 0 et 0’ est :

- une rotation si 6 + 6’ # 0[27]
- une translation (éventuellement de vecteur nul, i.e. I'identité)

sinon.

5.3, Transformations du plan
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CompOSItlon complexes
=Alignement et
I'orthogonalité

= Transformations
géométriques

Proposition - Composée de similitudes

La composée de deux similitudes est une similitude dont le
rapport est le produit des rapports et I'angle, la somme des
angles.
On a les cas particuliers suivants :
> la composée de deux rotations de centres distincts, d’angles
respectifs 0 et 0’ est :

- une rotation si 6 + 6’ # 0[27]
- une translation (éventuellement de vecteur nul, i.e. I'identité)

sinon.

5.3, Transformations du plan

Démonstration



Propriétés réciproques et transformations

Corollaire - Transformation réciproque (ou inverse)

On a les transformations réciproques suivantes :

=

=1 =1l
t_ﬁ; hQ,k :hQ,%; RQ,G :RQ’_H.

Lecon 21 - Nombres
complexes

=Alignement et
I'orthogonalité

= Transformations
géométriques

Regat ntrique
Ligne

5.3, Transformations du plan



v s _x . Lecon 21 - Nombres
Proprletes reciproques et transformations complexes
=Alignement et
I'orthogonalité

= Transformations

Corollaire - Transformation réciproque (ou inverse) géométriques
On a les transformations réciproques suivantes :

“1_, . -1 _ B
tii —t_u, hQ,k_hQ,%’ RQ,Q_RQ,—H‘

Proposition - Transformation du plan

5.3, Transformations du plan

Etant donné deux segments [M N] et [M'N'] de longueurs non
nulles, il existe une et une seule similitude directe transformant M
enM' et N enN'.
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Propriétés réciproques et transformations complexes
=Alignement et
I'orthogonalité

= Transformations

Corollaire - Transformation réciproque (ou inverse) géométriques
On a les transformations réciproques suivantes :

“1_, . -1 _ B
tii —t_u, hQ,k_hQ,%’ RQ,Q_RQ,—H‘

Proposition - Transformation du plan

5.3, Transformations du plan

Etant donné deux segments [M N] et [M'N'] de longueurs non
nulles, il existe une et une seule similitude directe transformant M
enM' et N enN'.

Démonstration
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Symétries

=Alignement et

Def|n|t|0n = Symetrles l'orthogonalité
= Transformations

géométriques

On appelle :
> Symeétrie centrale de centre (2 I'application
sQ: &P —->P

M — M tel que QM'=-QM
En complexes, sq est représentée par I'application de C
dans C définie par z — 2z — z ou z est I'affixe du point Q.
> Symétrie orthogonale d’axe la droite 2 (ou réflexion d’axe
2) l'application

Sg . » -
M=MsiMec9
M — M tel
tel que { 9 est la médiatrice de [MM'] sinon
La symétrie orthogonale par rapport a Ox est représentée
par I'application de C dans C définie par z — z.

5.3, Transformations du plan



Définition

Remarque Symétrie centrale

Lecon 21 - Nombres
complexes

=Alignement et
I'orthogonalité

= Transformations
géométriques

5.3, Transformations du plan
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Déf'n |t|0n complexes

=Alignement et
I'orthogonalité

= Transformations
géométriques

Remarque Symétrie centrale

Attention. Réflexion

Une réflexion n’est pas une similitude directe

5.3, Transformations du plan



Involution
Proposition - Involution

Une symétrie est une transformation du plan qui vérifie s~

1_

=S.

Lecon 21 - Nombres
complexes

=Alignement et
I'orthogonalité

= Transformations
géométriques

5.3, Transformations du plan
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Involution complexes

Proposition - Involution

=Alignement et
1 I'orthogonalité

Une symétrie est une transformation du plan qui vérifie s™ =s.

= Transformations
géométriques

Démonstration

5.3, Transformations du plan



Lecon 21 - Nombres

COHC|USIOn complexes
=Alignement et
I'orthogonalité
= Transformations
géométriques
Obijectifs
= Etude de I'alignement et I'orthogonalité dans le plan
= Transformations géométriques du plan
5.1. Regard géoémtriq

5.2. Ligne de niv

5.3. Transformations du plan
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C0nC|USIOn complexes
=Alignement et
I'orthogonalité
= Transformations
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= Etude de 'alignement et I'orthogonalité dans le plan

> Ligne de niveau : la droite arg(AB, A’B’) = 0[x]
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=Alignement et
I'orthogonalité
= Transformations
Objectifs géométriques

= Etude de l'alignement et I'orthogonalité dans le plan
> Ligne de niveau : la droite arg(AﬁB,A’*B’) =0[x]

> Ligne de niveau : le cercle de diamétre [AB]
est 'ensemble des points M tel que (M A) L (MB)
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= Etude de I'alignement et I'orthogonalité dans le plan Forthogonalité
= Transformations géométriques du plan = Transformations
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> Transformations simples : translation : +a, homothétie : xk,
rotation : xe®?,

> Similitude (direct) : mélange : z — a + bz (avec a, b € C)

5.1. Regard géoémtrique
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> Transformations simples : translation : +a, homothétie : xk,
rotation : xe®?,

> Similitude (direct) : mélange : z — a + bz (avec a, b € C)

> Elle conserve le rapport des distances et des angles.



Conclusion
Objectifs
= Etude de I'alignement et I'orthogonalité dans le plan
= Transformations géométriques du plan

>

Transformations simples : translation : +a, homothétie : xk,
rotation : xe®?,

> Similitude (direct) : mélange : z — a + bz (avec a, b € C)

> Elle conserve le rapport des distances et des angles.

> Trouver le centre (point fixe), puis I'angle (argk) et le rapport (|&|)

si f(2)—z0 = k(z—0)
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= Transformations géométriques du plan = Transformations

géométriques
> Transformations simples : translation : +a, homothétie : xk,
rotation : xe®?,
> Similitude (direct) : mélange : z — a + bz (avec a, b € C)
> Elle conserve le rapport des distances et des angles.

> Trouver le centre (point fixe), puis I'angle (argk) et le rapport (|&|)
si f(2)—z0 = k(z—0)

» Composition de similitude et similitude réciproque



Conclusion
Objectifs
= Etude de I'alignement et I'orthogonalité dans le plan
= Transformations géométriques du plan

>

Transformations simples : translation : +a, homothétie : xk,
rotation : xe®?,

> Similitude (direct) : mélange : z — a + bz (avec a,b € C)

> Elle conserve le rapport des distances et des angles.

> Trouver le centre (point fixe), puis I'angle (argk) et le rapport (|&|)

si f(2)—z0 = k(z—0)

» Composition de similitude et similitude réciproque

> Unicité de similitude étant donné deux couples de points.
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Conclusion
Objectifs
= Etude de I'alignement et I'orthogonalité dans le plan
= Transformations géométriques du plan

>

Transformations simples : translation : +a, homothétie : xk,
rotation : xe®?,

> Similitude (direct) : mélange : z — a + bz (avec a,b € C)

> Elle conserve le rapport des distances et des angles.

> Trouver le centre (point fixe), puis I'angle (argk) et le rapport (|&|)

si f(2)—z0 = k(z—0)

» Composition de similitude et similitude réciproque

> Unicité de similitude étant donné deux couples de points.

> Symétrie centrale : z2+— 229 -2 7?
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Conclusion
Objectifs
= Etude de I'alignement et I'orthogonalité dans le plan
= Transformations géométriques du plan

>

Transformations simples : translation : +a, homothétie : xk,
rotation : xe®?,

> Similitude (direct) : mélange : z — a + bz (avec a,b € C)

> Elle conserve le rapport des distances et des angles.

v

vV v v Y

Trouver le centre (point fixe), puis I'angle (argk) et le rapport (|&|)
si f(2) —z0 = k(z—)

Composition de similitude et similitude réciproque

Unicité de similitude étant donné deux couples de points.
Symétrie centrale : 2 — 229 —2?

Symétrie axiale : z — 2z¢9— 2 ?
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Conclusion
Objectifs
= Etude de I'alignement et I'orthogonalité dans le plan
= Transformations géométriques du plan

>

Transformations simples : translation : +a, homothétie : xk,
rotation : xe®?,

> Similitude (direct) : mélange : z — a + bz (avec a,b € C)

> Elle conserve le rapport des distances et des angles.

v

vV v v v Y

Trouver le centre (point fixe), puis I'angle (argk) et le rapport (|&|)
si f(2) —z0 = k(z—)

Composition de similitude et similitude réciproque

Unicité de similitude étant donné deux couples de points.
Symétrie centrale : 2 — 229 —2?

Symétrie axiale : z — 2z¢9— 2 ?

Ce sont des involutions s2 = id
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C0nC|USIOn complexes

=Alignement et
I'orthogonalité

= Transformations
géométriques

Obijectifs
= Etude de I'alignement et I'orthogonalité dans le plan
= Transformations géométriques du plan

Pour la prochaine fois
> Lecture : chap 11 : Applications.
> Exercice n°105 & 113
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