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Identification R2 =C=P

Proposition - Identification

On munit le plan P d’un repère orthonormé (O, i⃗, j⃗).
Soient A,B, A′,B′ quatre points du plan. On a alors (mesure des
angles orientés de vecteurs) :

|zA| =OA

AB = |zB − zA|
arg zA ≡ (⃗i,O⃗A)[2π] et arg(zB − zA)≡ (⃗i, A⃗B)[2π]

arg
( zB′ − zA′

zB − zA

)
≡ (A⃗B, A⃗′B′)[2π]

Le dernier résultat, essentiel, mérite une démonstration.
Démonstration
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LE nombre z′× z

Analyse Le nombre Z = z′× z

Définition - Le complexe Z

Soient A,B, A′,B′ quatre points du plan d’affixe zA , zB, zA′ et
zB′ respectivement.
On note Z = (zB′ − zA′)× (zB − zA).
Alors

arg Z ≡ (A⃗B, A⃗′B′)[2π] et |Z| = ∥A⃗B∥×∥A⃗′B′∥

où ∥u⃗∥ =
√

x2 + y2 est par définition la norme (longueur) du
vecteur u⃗(x, y).
Et donc

Z = ∥A⃗B∥∥A⃗′B′∥
[
cos(A⃗B, A⃗′B′)+ isin(A⃗B, A⃗′B′)

]
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LE nombre z′× z

Le calcul donne :

Proposition - Partie réelle et imaginaire de Z

Avec les mêmes notations et en notant u⃗ = A⃗B d’affixe
z = zB − zA = x+ i y et u⃗′ = A⃗′B′ d’affixe z′ = zB′ − zA′ = x′+ i y′.
On rappelle que Z = z′× z. On a alors :

Re(Z)= ∥A⃗B∥∥A⃗′B′∥cos(A⃗B, A⃗′B′)= xx′+ yy′

Im(Z)= ∥A⃗B∥∥A⃗′B′∥sin(A⃗B, A⃗′B′)= xy′− x′y

Démonstration
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Droites
Une droite est un ensemble de points alignés. Pour définir une
(équation de) droite, on exploite donc les deux points de vue sur
l’alignement.

Théorème - Utilisation des complexes

1. La droite (AB) privée des points A et B (d’affixes
respectives a et b) est l’ensemble des points M d’affixe z

vérifiant arg
( z−b

z−a

)
≡ 0[π].

2. La droite (AB) privée du point A est l’ensemble des points
M d’affixe z vérifiant

z−b
z−a

=
( z−b

z−a

)
⇐⇒ (z−b)(z−a)= (z−b)(z−a).

les points A et B vérifient également la seconde équation. . .

Démonstration
Exercice
Donner l’équation de la droite (complexe) qui passe par les points
A(1+ i) et B(2− i).
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Cercle

Théorème - Ligne de niveau - Cercle

Soient A,B,C trois points distincts d’affixes respectives a,b et c.

1. (AB)⊥ (AC)⇔ arg
( c−a

b−a

)
≡ π

2 [π]

2. L’ensemble des points M d’affixe z vérifiant

arg
( z−b

z−a

)
≡ π

2 [π] est le cercle de diamètre [AB] privé des

points A et B.

3. L’ensemble des points M d’affixe z vérifiant
z−b
z−a

=−
( z−b

z−a

)
est le cercle de diamètre [AB] privé du

point A.

Démonstration
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Transformations « élémentaires »

Définition - Transformation du plan

On appelle transformation du plan toute bijection du plan dans
lui-même.

Attention - Projection

Une projection sur une droite n’est pas une transformation du
plan.
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Translation

Définition - Translation

On appelle translation de vecteur u⃗ l’application

tu⃗ : P →P

M 7→ M′ tel que M⃗M′ = u⃗

En complexes, tu⃗ est représentée par l’application de C dans C
définie par

z 7→ z+ z0

où z0 est l’affixe du vecteur u⃗.

Fichier geogebra : translation.ggb
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Homothétie

Définition - Homothétie

On appelle homothétie de centre Ω et de rapport le réel k ̸= 0
l’application

hΩ,k : P →P

M 7→ M′ tel que Ω⃗M′ = kΩ⃗M

En complexes, hΩ,k est représentée par l’application de C dans C
définie par

z 7→ z0 +k(z− z0)

où z0 est l’affixe du point Ω.

Fichier geogebra : homothetie.ggb
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Rotation

Rotation

On appelle rotation de centre Ω et d’angle θ l’application

RΩ,θ : P →P

M 7→ M′ tel que
{
ΩM′ =ΩM
(Ω⃗M,Ω⃗M′)≡ θ[2π]

si M ̸=Ω
Ω 7→Ω

En complexes, RΩ,θ est représentée par l’application de C dans
C définie par

z 7→ z0 + eiθ(z− z0)

où z0 est l’affixe du point Ω.

Fichier geogebra : rotation.ggb
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Rotation

Rotation

On appelle rotation de centre Ω et d’angle θ l’application

RΩ,θ : P →P

M 7→ M′ tel que
{
ΩM′ =ΩM
(Ω⃗M,Ω⃗M′)≡ θ[2π]

si M ̸=Ω
Ω 7→Ω

En complexes, RΩ,θ est représentée par l’application de C dans
C définie par

z 7→ z0 + eiθ(z− z0)

où z0 est l’affixe du point Ω.

Fichier geogebra : rotation.ggb
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Similitudes (directes)

Il s’agit de composition de rotation et d’homothétie. . .

Définition - Similitude directe

On appelle similitude directe du plan toute transformation
représentée dans le plan complexe par une application de la
forme

z 7→ az+b

avec (a,b) ∈C∗×C.

Remarque Les transformations élémentaires
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Représentation et propriétés

Analyse Résultats caractéristiques

Fichier geogebra : similitude.ggb

Proposition - Similitude directe

Une similitude directe conserve les angles et les rapports des
distances.
Si A,B,C sont trois points distincts d’images respectives
A′,B′,C′ par cette similitude
Alors

(A⃗B, A⃗C)≡ (A⃗′B′, A⃗′C′)[2π] et
AB
AC

= A′B′

A′C′

Démonstration
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Caractérisation

Théorème - Caractérisation

Soit f la transformation du plan représentée par z 7→ az+b avec
a ∈C∗,b ∈C.

Ï Si a = 1, f est la translation de vecteur d’affixe b.

Ï Si a ̸= 1, f admet un unique point fixe (point invariant)
Ω( b

1−a ) appelé centre de la similitude.
f s’écrit alors : f = h◦ r = r ◦h avec
· r rotation de centre Ω d’angle de mesure arga
· h homothétie de centre Ω et de rapport |a|.

On dit que |a| est le rapport de la similitude, et arga est (la
mesure de) l’angle de la similitude.

Démonstration
Remarque Cas particuliers avec a ̸= 1
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Reconnaissance

Corollaire - Caractérisation de la similitude

La similitude de centre d’affixe z0, de rapport k et d’angle θ est
représentée par

z 7→ z0 +keiθ(z− z0).

Savoir-faire. Reconnaître une similitude

Etant donnée une transformation, pour reconnaître une similitude
il faut :

1. chercher le point fixe : la solution de f (z)= z.
On le note z0, c’est le centre de la similitude.

2. chercher le complexe a tel que f (z)− z0 = a(z− z0).
Ce complexe a donne le rapport et l’angle de la similitude
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Proposition - Composée de similitudes

La composée de deux similitudes est une similitude dont le
rapport est le produit des rapports et l’angle, la somme des
angles.
On a les cas particuliers suivants :

Ï la composée de deux translations est une translation de
vecteur la somme des deux vecteurs,

Ï la composée de deux homothéties est soit une homothétie
soit une translation,

Ï la composée de deux rotations de même centre est une
rotation de même centre et d’angle la somme des deux
angles (éventuellement d’angle nul, i.e. l’identité du plan)

Proposition - Composée de similitudes

La composée de deux similitudes est une similitude dont le
rapport est le produit des rapports et l’angle, la somme des
angles.
On a les cas particuliers suivants :
Ï la composée de deux rotations de centres distincts, d’angles

respectifs θ et θ′ est :
· une rotation si θ+θ′ ̸≡ 0[2π]
· une translation (éventuellement de vecteur nul, i.e. l’identité)

sinon.

Démonstration
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Propriétés réciproques et transformations

Corollaire - Transformation réciproque (ou inverse)

On a les transformations réciproques suivantes :

t−1
u⃗ = t−u⃗; h−1

Ω,k = hΩ, 1
k
; R−1

Ω,θ = RΩ,−θ.

Proposition - Transformation du plan

Etant donné deux segments [MN] et [M′N ′] de longueurs non
nulles, il existe une et une seule similitude directe transformant M
en M′ et N en N ′.

Démonstration
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Symétries

Définition - Symétries

On appelle :

Ï Symétrie centrale de centre Ω l’application
sΩ : P →P

M 7→ M′ tel que Ω⃗M′ =−Ω⃗M
En complexes, sΩ est représentée par l’application de C
dans C définie par z 7→ 2z0 − z où z0 est l’affixe du point Ω.

Ï Symétrie orthogonale d’axe la droite D (ou réflexion d’axe
D) l’application
sD : P →P

M 7→ M′ tel que
{

M′ = M si M ∈D

D est la médiatrice de [MM′] sinon
La symétrie orthogonale par rapport à Ox est représentée
par l’application de C dans C définie par z 7→ z.
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Définition

Remarque Symétrie centrale

Attention. Réflexion

Une réflexion n’est pas une similitude directe
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Involution
Proposition - Involution

Une symétrie est une transformation du plan qui vérifie s−1 = s.

Démonstration
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Conclusion

Objectifs
⇒ Etude de l’alignement et l’orthogonalité dans le plan
⇒ Transformations géométriques du plan

Pour la prochaine fois

Ï Lecture : chap 11 : Applications.

Ï Exercice n° 105 & 113
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Ï Ligne de niveau : la droite arg(A⃗B, A⃗′B′)≡ 0[π]

Ï Ligne de niveau : le cercle de diamètre [AB]
est l’ensemble des points M tel que (MA)⊥ (MB)

⇒ Transformations géométriques du plan
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Objectifs
⇒ Etude de l’alignement et l’orthogonalité dans le plan
⇒ Transformations géométriques du plan

Ï Transformations simples : translation : +a, homothétie : ×k,
rotation : ×eiθ ,

Ï Similitude (direct) : mélange : z 7→ a+bz (avec a,b ∈C)

Ï Elle conserve le rapport des distances et des angles.

Ï Trouver le centre (point fixe), puis l’angle (argk) et le rapport (|k|)
si f (z)− z0 = k(z−0)

Ï Composition de similitude et similitude réciproque

Ï Unicité de similitude étant donné deux couples de points.

Ï Symétrie centrale : z 7→ 2z0 − z ?

Ï Symétrie axiale : z 7→ 2z0 − z ?

Ï Ce sont des involutions s2 = id

Pour la prochaine fois
Ï Lecture : chap 11 : Applications.
Ï Exercice n° 105 & 113
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Ï Symétrie centrale : z 7→ 2z0 − z ?

Ï Symétrie axiale : z 7→ 2z0 − z ?

Ï Ce sont des involutions s2 = id

Pour la prochaine fois
Ï Lecture : chap 11 : Applications.
Ï Exercice n° 105 & 113
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