

Leçon 22 - Relations (binaires) sur ${m E}^2$

Leçon 22 - Relations (binaires) sur ${\it E}^2$

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
- i. Flublellies
- 2. Graphe
- 2.1. Formalisation
- Z.Z. VOCADUIAI
 - ...
 - Relations binaires
 - 3.1. Construction e
 - representation
 3.2 Caractérisation
 - 4 Relation d'ordre
 - 4.1. Définitions
- 4.2. Ensemble avec ordre t
- 4.3. Ensemble avec ordre

Leçon 22 - Relations (binaires) sur E^2

.. Grapne

2.1. Formalisati

Relations binai

3.1. Construction et représentation

3.2. Caractérisations

4. Relation d'ordre

4.2. Ensemble avec ordre total

4.3. Ensemble avec ordre

1. Problèmes

2. Graphe

- 2.1. Formalisation
- 2.2. Vocabulaire

⇒ Relations d'ordre

2.3. Applications

3. Relations binaires

- 3.1. Construction et représentation
- 3.2. Caractérisations

4. Relation d'ordre

- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre partiel

⇒ Graphe& Relations

⇒ Relations d'ordre

1. Problèmes

2. Graphe

Problèmes

3. Relations binaires

4. Relation d'ordre

- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre partiel

Problème Graphe

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

1. Problèmes

- 2. Graphe
 - 2.1. Formalisatio
 - 0.0 \/---------
- 2.3. Applications
- . Relations binaires
- Construction et
- epresentation
- . Relation d'ordre
- 1.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.2. Ensemble avec ordre tota
 4.3. Ensemble avec ordre

Problème Graphe

Problème Forcer l'égalité. Qu'est-ce qu'une égalité?

Lecon 22 - Relations (binaires) sur E^2

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
- 1. Problèmes

Problème Graphe

Problème Forcer l'égalité. Qu'est-ce qu'une égalité?

Problème Relation d'ordre?

- \Rightarrow Graphe& Relations
- ⇒ Relations d'ordre
- 1. Problèmes
- 2. Graphe
- 2.1 Formalisation
- 2.2. Vocabulain
- 2.3. Application
 - Relations binaires
 - Construction et présentation
 - epresentation 3.2 Caractérisations
 - Dolotion d'ordro
 - . Relation d'ordre
 - 1.2. Ensemble avec ordre total
 - i.3. Ensemble avec ordre total

Problème Graphe

Problème Relation d'ordre?

Problème Plus grand élément

Problème Forcer l'égalité. Qu'est-ce qu'une égalité?

1. Problèmes

2. Graphe

2.1. Formalisa

2.2. Vocabulair

Relations binaire

.1. Construction et eprésentation

4. Relation d'ordre

4.1 Définitions

I.2. Ensemble avec ordre total

3. Ensemble avec ordre

1. Problèmes

Problème Graphe

Problème Forcer l'égalité. Qu'est-ce qu'une égalité?

Problème Relation d'ordre?

Problème Plus grand élément

Problème Codage de graphe (ou relation) à partir d'application. Et réciproquement...

⇒ Relations d'ordre

2.1. Formalisation

Problèmes

2. Graphe

2.1. Formalisation

3. Relations binaires

4. Relation d'ordre

- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre partiel

Image mentale

Heuristique - Images mentales de graphes!

Pour l'historique et les images mentales (à bien garder en tête), il faut revoir le cours de mathématiques de terminale.

Leçon 22 - Relations (binaires) sur ${\it E}^2$

- ⇒ Graphe& Relations
- \Rightarrow Relations d'ordre
 - . Problemes
- . Grapne
- 2.1. Formalisation
- 2.3. Application
- Deletion II
- . Helations binaires
- eprésentation
- 3.2. Caractérisations
- 4. Relation d'ordre
- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

Image mentale

Heuristique - Images mentales de graphes!

Pour l'historique et les images mentales (à bien garder en tête), il faut revoir le cours de mathématiques de terminale.

Définition - Graphe non orienté

On considère un ensemble S (de sommets), fini en règle générale. Puis un ensemble $A \subset \binom{S}{2}$ de paires d'arêtes. On appelle graphe non orienté le couple (S,A).

Leçon 22 - Relations (binaires) sur ${\it E}^2$

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
 - Grapne
- 2.1. Formalisation
- 2.2. Vocabulaire
- 2.3. Application
- Relations binaires
- eprésentation
- J.E. Caracterisations
- 4. Relation d'ordre
 - . Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

Pour l'historique et les images mentales (à bien garder en tête), il faut revoir le cours de mathématiques de terminale.

Définition - Graphe non orienté

On considère un ensemble S (de sommets), fini en règle générale. Puis un ensemble $A \subset \binom{S}{2}$ de paires d'arêtes.

On appelle graphe non orienté le couple (S,A).

Définition - Graphe orienté

On considère un ensemble S (de sommets), fini en règle générale. Puis un ensemble $A \subset S \times S$ de couples d'arêtes. On appelle graphe orienté le couple (S,A).

Lecon 22 - Relations (binaires) sur E^2

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
- 2.1. Formalisation

⇒ Relations d'ordre

2.1. Formalisation

Définition - Graphe non orienté

On considère un ensemble S (de sommets), fini en règle générale. Puis un ensemble $A \subset \binom{S}{2}$ de paires d'arêtes. On appelle graphe non orienté le couple (S,A).

Définition - Graphe orienté

On considère un ensemble S (de sommets), fini en règle générale. Puis un ensemble $A \subset S \times S$ de couples d'arêtes. On appelle graphe orienté le couple (S,A).

Exercice

Donner la définition formalisée d'un graphe complet.

- ⇒ Relations d'ordre
- 1. Problèmes
- 2. Graphe
 - 2.1. Formalisation
 - 2.2. Vocabulaire
 - 2.3. Applications
- 3. Relations binaires
 - 3.1. Construction et représentation
 - 3.2. Caractérisations
- 4. Relation d'ordre
 - 4.1. Définitions
 - 4.2. Ensemble avec ordre total
 - 4.3. Ensemble avec ordre partiel

⇒ Graphe& Relations

⇒ Relations d'ordre

- Problèmes
- 2. Graphe
- 2.1. Formalisation
- ____
- 2.3. Application
 - . Relations binaires
 - n. Construction et eprésentation
- J.Z. Odrauterisations
- 4. Relation d'ordre
 - 4.1. Définitions
 - 4.2. Ensemble avec ordre total
 - 4.3. Ensemble avec ordre

Sommets

Définition - Sommets reliés

On dit que deux sommets $s_1,s_2\in S$ sont reliés si $(s_1,s_2)\in A$ (cas orienté) ou $\{s_1,s_2\}\in A$ (cas non orienté)

Leçon 22 - Relations (binaires) sur ${\it E}^2$

- \Rightarrow Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
- 2. Graphe
- 2.1. Formalisation
 2.2. Vocabulaire
- 2.3 Application
- 2.0. Applications
 - . Helations binaires
 - eprésentation
 - 3.2. Caracterisations
- Relation d'ordre
- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

On dit que deux sommets $s_1,s_2\in S$ sont reliés si $(s_1,s_2)\in A$ (cas orienté) ou $\{s_1,s_2\}\in A$ (cas non orienté)

Définition - Degré d'un sommet

Soit $s \in S$ un sommet d'un graphe non orienté (S,A) a pour degré $d(s) = \operatorname{card}(A_s)$ où $A_s = \{a \in A \mid s \in a\}$. Soit $s \in S$ un sommet d'un graphe orienté (S,A) a pour degré entrant $d_+(s) = \operatorname{card}(A_s)$ où $A_s = A \cap (\{s\} \times S)$ et pour degré sortant $d_-(s) = \operatorname{card}(A_s')$ où $A_s = A \cap (S \times \{s\})$.

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - roblèmes
- Granhe
- 2.1. Formalisation
- 2.2 Vocabulaire
- 2.3. Applications
- . Relations binair
- représentation
- 1 Relation d'ordre
 - Helation d ordre
- 4.2. Ensemble avec ordre total
- 4.2. Ensemble avec ordre total
 4.3. Ensemble avec ordre

2.2. Vocabulaire

3. Relations bina

3.1. Construction et représentation

4 Polotion d'ordre

. Helation d'ordre

4.2. Ensemble avec ordre tota

4.3. Ensemble avec ordre

Définition - Sommets reliés

On dit que deux sommets $s_1, s_2 \in S$ sont reliés si $(s_1, s_2) \in A$ (cas orienté) ou $\{s_1, s_2\} \in A$ (cas non orienté)

Définition - Degré d'un sommet

Soit $s \in S$ un sommet d'un graphe non orienté (S,A) a pour degré $d(s) = \operatorname{card}(A_s)$ où $A_s = \{a \in A \mid s \in a\}$. Soit $s \in S$ un sommet d'un graphe orienté (S,A) a pour degré entrant $d_+(s) = \operatorname{card}(A_s)$ où $A_s = A \cap (\{s\} \times S)$ et pour degré sortant $d_-(s) = \operatorname{card}(A_s')$ où $A_s = A \cap (S \times \{s\})$.

Exercice

Comment définir chemin d'un sommet à un autre? Et graphe connexe?

⇒ Graphe& Relations

⇒ Relations d'ordre

2.3. Applications

Problèmes

2. Graphe

- 2.3. Applications

3. Relations binaires

4. Relation d'ordre

- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre partiel

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
- Problémes
- .. Grapiic

2.3. Applications

3. Relations bina

- representation
 3.2. Caractérisations
- 4. Relation d'ordre
 - I.2. Ensemble avec ordre total
- Ensemble avec ordre total
 Sensemble avec ordre

On retrouvera très vite les graphes dans le cours sur les relations binaires, plus loin en probabilité et algèbre linéaire (chaine de Markov), ou en informatique...A l'occasion, nous verrons en informatique, un façon supplémentaire et pratique de coder/définir un graphe à l'aide de matrice...

⇒ Relations d'ordre

- ⇒ Graphe& Relations
 ⇒ Relations d'ordre
- , molationio a ora
 - . Problèmes
- 2. Grapne
- 2.1. Formalisati
- 2.2 Vocabulaira
- 2.3 Application
- Rolatione binairee
- nerations binaires
- Construction et représentation
- 3.2. Caractérisations
- 4. Relation d'ordre
 - 4. neialion a orar
 - 4.1. Delitipons
 - 4.2. Ensemble avec ordre total
 - 4.3. Ensemble avec ord

1. Problèmes

- 2. Graphe
 - 2.1. Formalisation
 - 2.2. Vocabulaire
 - 2.3. Applications
- 3. Relations binaires
 - 3.1. Construction et représentation
 - 3.2. Caractérisations
- 4. Relation d'ordre
 - 4.1. Définitions
 - 4.2. Ensemble avec ordre total
 - 4.3. Ensemble avec ordre partiel

Première approche (par un graphe)

Définition - Relation

Soit E un ensemble.

Une relation binaire sur E est un sous-ensemble G de $E \times E$. Si $(x,y) \in E^2$ on écrit $x \mathcal{R} y$ lorsque $(x,y) \in G$.

Leçon 22 - Relations (binaires) sur E^2

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
- z. Grapne
- 2.1. Formalisation
- 2.2. Vocabulaire
- Deletiene bineire
- 3. Relations binaire:
- 3.1. Construction et représentation
- 4. Relation d'ordre
- 4.1 Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

Une relation binaire sur E est un sous-ensemble G de $E \times E$. Si $(x,y) \in E^2$ on écrit $x \mathcal{R} y$ lorsque $(x,y) \in G$.

On peut représenter une relation par un graphe (diagramme sagittal) : une représentation de $E \times E$ et avec des flèches on indique que x (du premier E) est en relation à y (du second E).

Leçon 22 - Relations (binaires) sur E^2

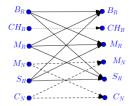
- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
- z. Grapne
- .1. Formalisation
- 2.2. Vocabulair
- 3. Relations binaires
- 3.1. Construction et représentation
- 4. Relation d'ordre
 - 4.1. Delinipons
- 4.2. Ensemble avec ordre total
 4.3. Ensemble avec ordre

Soit *E* un ensemble.

Une relation binaire sur E est un sous-ensemble G de $E \times E$. Si $(x,y) \in E^2$ on écrit $x \mathcal{R} y$ lorsque $(x,y) \in G$.

On peut représenter une relation par un graphe (diagramme sagittal) : une représentation de $E \times E$ et avec des flèches on indique que x (du premier E) est en relation à y (du second E). **Exemple** Stade Toulousain

Leçon 22 - Relations (binaires) sur E^2


- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
- 2. Graphe
- .1. Formalisation
- 2.2. Vocabulair
- 2.0. Applications
- 3. Relations binaire:
- Construction et représentation
- 3.2. Caracterisations
- 4. Relation d'ordre
- 4. Helation d ordre
 - 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

Soit E un ensemble.

Une relation binaire sur E est un sous-ensemble G de $E \times E$. Si $(x, y) \in E^2$ on écrit $x \mathcal{R} y$ lorsque $(x, y) \in G$.

On peut représenter une relation par un graphe (diagramme sagittal) : une représentation de $E \times E$ et avec des flèches on indique que x (du premier E) est en relation à y (du second E). **Exemple** Stade Toulousain

Voir

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

- 3.1. Construction et représentation

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

- 3.1. Construction et
- représentation

Exercice

On peut définir dans l'ensemble $\{0,1,2,3,4,5,6\}$ les relations \mathcal{R}_1 "est un multiple de" ou \mathcal{R}_2 "est le double de".

Expliciter G_1, G_2 et les diagrammes sagittaux de ces deux relations.

2. Graphe

2.1 Formalisat

2.2. Vocabula

2.3. Application

Relations binair

3.1. Construction et représentation

3.2. Caractérisations

4 Relation d'ordre

4. Relation d ordre

4.1. Définitions

4.2. Ensemble avec ordre total

4.3. Ensemble avec o

1. Problèmes

2. Graphe

- 2.1. Formalisation
- 2.2. Vocabulaire

⇒ Relations d'ordre

2.3. Applications

3. Relations binaires

- 3.1. Construction et représentation
- 3.2. Caractérisations

4. Relation d'ordre

- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre partiel

3.2 Caractérisations

Définition - Propriétés des relations

symétrique

Soit $\mathcal R$ une relation sur un ensemble E. On dit que $\mathcal R$ est :

réflexive si $\forall x \in E, x \mathcal{R} x$:

si $\forall (x, y) \in E^2, x \Re y \Rightarrow y \Re x$;

antisymétrique si $\forall (x, y) \in E^2$, $x \mathcal{R} y$ et $y \mathcal{R} x \Rightarrow x = y$;

si $\forall (x, y, z) \in E^3$, $x \mathcal{R} y$ et $v \mathcal{R} z \Rightarrow x \mathcal{R} z$. transitive

Exemple

Exemple Stade Toulousain

Leçon 22 - Relations (binaires) sur E^2

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

- 3.2. Caractérisations

Exemple

Leçon 22 - Relations (binaires) sur ${\it E}^2$

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
- i. Problemes
- .. Grapric
- .1. Formalisatio
- 2.2. Vocabulaire
- B. Relations binaire
- représentation

 3.2. Caractérisations
- 4. Relation d'ordre
- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

Exemple Stade Toulousain

Exercice

Comment se représentent les propriétés précédentes des relations sur un diagramme sagittal?

⇒ Graphe& Relations ⇒ Relations d'ordre

4.1. Définitions

Problèmes

2. Graphe

3. Relations binaires

4. Relation d'ordre

4.1. Définitions

- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre partiel

Formalisation

2.3. Application

Relations binaire

présentation

Deletion d'endre

4.1. Définitions

4.2. Ensemble avec ordre total

.3. Ensemble avec ordre

Définition - Relation d'ordre

Soit ${\mathscr R}$ une relation sur un ensemble E. On dit que c'est une relation d'ordre si elle est réflexive, antisymétrique et transitive.

4.1. Définitions

Définition - Relation d'ordre

Soit \mathcal{R} une relation sur un ensemble E. On dit que c'est une relation d'ordre si elle est réflexive, antisymétrique et transitive.

Définition - Plus petit

Une relation d'ordre permet de comparer deux éléments. Lorsque $x\mathcal{R}y$ on dit que x est "plus petit" que y et on note $x \leq y$.

0. 1/---------

2.3. Applications

Relations binai

1.1. Construction et eprésentation

2. Caractérisations

4. Relation d'ordre

4.1. Définitions

4.2. Ensemble avec ordre total

4.3. Ensemble avec ordre

Définition - Relation d'ordre

Soit $\mathcal R$ une relation sur un ensemble E. On dit que c'est une relation d'ordre si elle est réflexive, antisymétrique et transitive.

Définition - Plus petit

Une relation d'ordre permet de *comparer* deux éléments. Lorsque $x \mathcal{R} y$ on dit que x est "plus petit" que y et on note $x \leq y$.

Savoir-faire. Montrer que ${\mathscr R}$ est une relation d'ordre

Il s'agit de montrer, tour à tour, que la relation est réflexive, antisymétrique et transitive.

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

- 4.2. Ensemble avec ordre total

- 2. Graphe

⇒ Relations d'ordre

- 3. Relations binaires
- 4. Relation d'ordre
 - 4.1. Définitions
 - 4.2. Ensemble avec ordre total
 - 4.3. Ensemble avec ordre partiel

Ensemble avec ordre total

Définition - Ordre total

Soit \leq une relation d'ordre sur un ensemble E. On dit que c'est une relation d'ordre total si : $\forall (x, y) \in E^2, x \leq y \text{ ou } y \leq x$ (c'est-à-dire si deux éléments quelconques de E sont comparables).

Lecon 22 - Relations (binaires) sur E^2

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

- 4.2. Ensemble avec ordre total

Soit \leq une relation d'ordre sur un ensemble E. On dit que c'est une relation d'ordre total si : $\forall (x, y) \in E^2, x \leq y \text{ ou } y \leq x$ (c'est-à-dire si deux éléments quelconques de E sont comparables).

Remarque Concernant le treillis (ou graphe)

Lecon 22 - Relations (binaires) sur E^2

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

- 4.2. Ensemble avec ordre total

Ensemble avec ordre total

Définition - Ordre total

Soit \leq une relation d'ordre sur un ensemble E. On dit que c'est une relation d'ordre total si : $\forall (x, y) \in E^2, x \leq y \text{ ou } y \leq x$ (c'est-à-dire si deux éléments quelconques de E sont comparables).

Remarque Concernant le treillis (ou graphe) **Exemple** Sur \mathbb{R}

Lecon 22 - Relations (binaires) sur E^2

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

- 4.2. Ensemble avec ordre total

Définition - Ordre total

Soit \leq une relation d'ordre sur un ensemble E. On dit que c'est une relation d'ordre total si : $\forall (x, y) \in E^2, x \leq y \text{ ou } y \leq x$ (c'est-à-dire si deux éléments quelconques de E sont comparables).

Remarque Concernant le treillis (ou graphe)

Exemple Sur \mathbb{R}

Exercice

Sur $E = R^2$, on définit les deux relations suivantes :

- $(x, y) \leq_1 (x', y') \iff x \leq x' \text{ et } y \leq y'.$
- $(x, y) \leq_2 (x', y') \iff x < x' \text{ ou } (x = x' \text{ et } y \leq y').$

Vérifier qu'il s'agit de relation d'ordre. S'agit-il d'ordre total ou partiel?

Problèmes

2. Graphe

⇒ Graphe& Relations

⇒ Relations d'ordre

- 4.3 Ensemble avec ordre partiel

4. Relation d'ordre

4.1. Définitions

3. Relations binaires

- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre partiel

Ensemble avec ordre partiel

Définition - Ordre partiel

Soit \leq une relation d'ordre sur un ensemble E. On dit que c'est une relation d'ordre partiel si il n'est pas total :

$$\exists (x, y) \in E^2, x \not \leq y \text{ et } y \not \leq x$$

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
- z. Grapne
- 2.1. Formalisation
- 2.3. Applicatio
 - 8. Relations binaire
 - .1. Construction et
 - représentation
 - Dolotion d'audro
 - Branch
 - 4.2. Ensemble avec ordre total
 - 4.2. Ensemble avec ordre total
 4.3. Ensemble avec ordre

Définition - Ordre partiel

Soit \leq une relation d'ordre sur un ensemble E. On dit que c'est une relation d'ordre partiel si il n'est pas total :

$$\exists (x, y) \in E^2, x \not \leq y \text{ et } y \not \leq x$$

Exercice

Soit Ω un ensemble et $E=\mathscr{P}(\Omega)$. On définit sur E la relation \mathscr{R} par

$$\forall (A,B) \in E^2, A \mathcal{R}B \Leftrightarrow A \subset B.$$

Vérifier que la relation \mathcal{R} est une relation d'ordre. S'agit-il d'une relation d'ordre total?

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
- . Grapne
- Formalisation
- 0.0 4------
- z.s. Application
- 3. Relations binaires
- Construction et présentation
- 3.2. Caractérisations
- 4. Relation d'ordre
- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre partiel

4.3 Ensemble avec ordre partiel

Définition - Ordre partiel

Soit \leq une relation d'ordre sur un ensemble E. On dit que c'est une relation d'ordre partiel si il n'est pas total :

$$\exists (x,y) \in E^2, x \not\preceq y \text{ et } y \not\preceq x$$

Exercice

Soit Ω un ensemble et $E = \mathcal{P}(\Omega)$. On définit sur E la relation \mathcal{R} par

$$\forall (A,B) \in E^2, A \mathcal{R}B \Leftrightarrow A \subset B.$$

Vérifier que la relation \mathcal{R} est une relation d'ordre. S'agit-il d'une relation d'ordre total?

Exemple Divisibilité sur N

4.3 Ensemble avec ordre partiel

Définition - Ordre partiel

Soit \leq une relation d'ordre sur un ensemble E. On dit que c'est une relation d'ordre partiel si il n'est pas total :

$$\exists (x,y) \in E^2, x \not \leq y \text{ et } y \not \leq x$$

Exercice

Soit Ω un ensemble et $E = \mathcal{P}(\Omega)$. On définit sur E la relation \mathcal{R} par

$$\forall (A,B) \in E^2, A \mathscr{R} B \Leftrightarrow A \subset B.$$

Vérifier que la relation \mathcal{R} est une relation d'ordre. S'agit-il d'une relation d'ordre total?

Exemple Divisibilité sur N

Exercice Montrer ce résultat

4.3 Ensemble avec ordre partiel

Définition - Ordre partiel

Soit \leq une relation d'ordre sur un ensemble E. On dit que c'est une relation d'ordre partiel si il n'est pas total :

$$\exists (x,y) \in E^2, x \not\preceq y \text{ et } y \not\preceq x$$

Exercice

Soit Ω un ensemble et $E = \mathcal{P}(\Omega)$. On définit sur E la relation \mathcal{R} par

$$\forall (A,B) \in E^2, A \mathcal{R} B \Leftrightarrow A \subset B.$$

Vérifier que la relation \mathcal{R} est une relation d'ordre. S'agit-il d'une relation d'ordre total?

Exemple Divisibilité sur N

Exercice Montrer ce résultat

Remarque Treillis

Objectifs

- \Rightarrow Graphe et relations sur E
- ⇒ Relation d'ordre

- \Rightarrow Graphe& Relations
- ⇒ Relations d'ordre
 - I. Problèmes
- 2. Graphe
- 2.1. Formalisation
- 2.2 Vocabulaira
- 2.3. Applications
- . Relations binaires
- 1 Construction at
- eprésentation
- 3.2. Caractérisations
- Relation d'ordre
- Helation d ordi
- 4.2 Encomble avec order total
- Ensemble avec ordre
 Total

Objectifs

- \Rightarrow Graphe et relations sur E
 - Garder des images mentales sur les graphes (fini)!

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
- 2. Graphe
 - 2.1. Formalisation
- 2.2. Vocabulaire
- 2.3. Applications
- . Relations binaires
- .1. Construction et
- 3.2 Caractáricatio
- Polotion d'ordre
- 44 DATE OF
- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

Objectifs

- \Rightarrow Graphe et relations sur E
 - Garder des images mentales sur les graphes (fini)!
 - Sous-ensemble G de E^2 ou application (caractéristique de G) de $E^2 \to \{0,1\}$

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
 - . Grapne
 - Formalisation
- 0.0 4-----
- Polotiona binaire
- . Relations binaires
- présentation
- 4. Relation d'ordre
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

Objectifs

- \Rightarrow Graphe et relations sur E
 - Garder des images mentales sur les graphes (fini)!
 - Sous-ensemble G de E^2 ou application (caractéristique de G) de $E^2 \to \{0,1\}$
 - Vocabulaire. Relation : réflexive, symétrique, antisymétrique, transitive.

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
 - Graphe
 - Formalisation
- 2.3 Application
 - . Relations binaires
 - .1. Construction et
 - .2. Caractérisations
 - L Polation d'ordro
 - . Relation d'ordre
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

Objectifs

- \Rightarrow Graphe et relations sur E
- ⇒ Relation d'ordre

Lecon 22 - Relations (binaires) sur E^2

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

Objectifs

- \Rightarrow Graphe et relations sur E
- ⇒ Relation d'ordre
 - ightharpoonup Définition d'une relation \mathscr{R} entre deux objets (graphes).

- \Rightarrow Graphe& Relations
- ⇒ Relations d'ordre
 - . Problèmes
- .. Grapne
- .1. Formalisation
- 2.2 Application
- Relations hinaires
- Relations binaires
- Construction et eprésentation
- 3.2. Caractérisations
- 4. Relation d'ordre
- 4.1 Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

Objectifs

- \Rightarrow Graphe et relations sur E
- ⇒ Relation d'ordre
 - ightharpoonup Définition d'une relation \mathscr{R} entre deux objets (graphes).
 - Propriétés particulières : reflexivité, transitivité, symétrie, antisymétrie

- \Rightarrow Graphe& Relations
- ⇒ Relations d'ordre
 - . Problemes
 - Citapilo
 - 1. Formalisatio
- 2.2 Application
 - . Relations binaires
 - 1 Construction of
 - eprésentation
- Deletion disease
- I. Relation d'ordre
- 4.2 Ensemble avec ordre total
- 4.2. Ensemble avec ordre total
 4.3. Ensemble avec ordre

- \Rightarrow Graphe et relations sur E
- ⇒ Relation d'ordre
 - ightharpoonup Définition d'une relation \mathscr{R} entre deux objets (graphes).
 - Propriétés particulières : reflexivité, transitivité, symétrie, antisymétrie
 - Relation d'ordre : reflexivité, transitivité, antisymétrie. Totale ou non.

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
 - Grapne
 - Formalisatio
- 2.2 Application
 - B. Relations binaire
 - 3.1. Construction et représentation
 - J.Z. Garacierisations
- 4. Relation d'ordre
- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec or partiel

Objectifs

- \Rightarrow Graphe et relations sur E
- ⇒ Relation d'ordre
 - Définition d'une relation \mathcal{R} entre deux objets (graphes).
 - Propriétés particulières : reflexivité, transitivité, symétrie, antisymétrie
 - Relation d'ordre : reflexivité, transitivité, antisymétrie. Totale ou non.
 - Nombreux exemples...

- Lecon 22 Relations (binaires) sur E^2
- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

\Rightarrow Graphe et relations sur E

- ⇒ Relation d'ordre
 - ightharpoonup Définition d'une relation \mathscr{R} entre deux objets (graphes).
 - Propriétés particulières : reflexivité, transitivité, symétrie, antisymétrie
 - Relation d'ordre : reflexivité, transitivité, antisymétrie. Totale ou non.
 - Nombreux exemples...
 - Vocabulaire : majorant, plus grand élément, borne supérieure

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
 - Grapne
 - . Formalisation
- 2.3 Application
- . Relations binaire
- représentation
- s.2. Caracterisations
- I. Relation d'ordre
- 4.1. Définitions
- 4.2. Ensemble avec ordre total
- 4.3. Ensemble avec ordre

- ⇒ Relation d'ordre
 - ightharpoonup Définition d'une relation \mathscr{R} entre deux objets (graphes).
 - Propriétés particulières : reflexivité, transitivité, symétrie, antisymétrie
 - Relation d'ordre : reflexivité, transitivité, antisymétrie. Totale ou non.
 - ► Nombreux exemples...
 - Vocabulaire : majorant, plus grand élément, borne supérieure
 - Relation d'ordre strict

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre
 - Problèmes
 - Grapne
 - . Formalisation
- ____
- Relations binai
- 3.1. Construction et
- 2 Caractérisations
- .L. Ouracionourono
- Relation d'ordre
- 4.2 Ensemble avec ordre total
- 4.3. Ensemble avec ordre total

- ⇒ Graphe& Relations
- ⇒ Relations d'ordre

- **Objectifs**
- \Rightarrow Graphe et relations sur E
- ⇒ Relation d'ordre

Pour la prochaine fois

- Lecture du cours : Chap 12 Relations binaires 4. Relations d'équivalence
- Exercice n°260 & 265
- TD de jeudi :

8h-10h: N° 93, 103, 106, 107, 259, 263, 267, 269 10h-12h: N° 94, 104, 111, 108, 261, 264, 267, 270