DEVOIR SURVEILLÉ N°0

Sujet donné le samedi 13 septembre 2025, 2h.

L'usage de la calculatrice n'est pas autorisé.

La notation tiendra particulièrement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des <u>formules utilisées</u>. Les réponses aux questions seront numérotées et séparées par un trait horizontal. Les résultats <u>essentiels devront</u> être encadrés ou soulignés.

BON TRAVAIL

Problème - La borne de Cauchy

Dans ce problème, nous étudions un encadrement des modules des racines d'une fonction polynomiale en fonction de ses coefficients. Pour un ensemble E fini, on note $\operatorname{card}(E)$, son $\operatorname{cardinal}$, c'est-à-dire le nombre de ses éléments.

On note, pour tout entier $n \in \mathbb{N}^*$ et $p \in [0, n]$, $\binom{\mathbb{N}_n}{p}$, l'ensemble à p éléments pris dans l'ensemble $\mathbb{N}_n := [1, n]$.

Par exemple, pour n = 4, $\binom{\mathbb{N}_4}{0} = \{\emptyset\}$ alors que $\binom{\mathbb{N}_4}{2} = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}.$

Ce problème est composé de quatre parties. La première donne deux résultats utiles par la suite : la généralisation de l'inégalité triangulaire et la valeur de $\operatorname{card}\binom{\mathbb{N}_n}{p}$. La deuxième partie donne un majorant de l'ensemble des racines d'un polynôme H qui a une forme particulière. Ce résultat est exploité dans deux applications en troisième partie. Et il est généralisé à toute forme de polynôme en quatrième partie. Cela se termine par un encadrement (majoration et minoration) des racines d'un polynôme quelconque en fonction de la borne de Cauchy.

I . Préliminaires. Relations sur les ensembles et inégalité triangulaire.

- **A.** On admet que pour tout nombre complexe $z, z' \in \mathbb{C}$, on a $|z + z'| \leq |z| + |z'|$.
 - I.1. Montrer que pour tout $n \in \mathbb{N}^*$, et tout $z_1, z_2 \dots z_n \in \mathbb{C}$,

$$\left| \sum_{k=1}^{n} z_k \right| \leqslant \sum_{k=1}^{n} |z_k|$$

- **B.** On note, pour $n \in \mathbb{N}$ et $p \in [0, n]$, $C(n, p) = \operatorname{card} \binom{\mathbb{N}_n}{p}$ (on rappelle que $\binom{\mathbb{N}_n}{p}$ a été défini plus haut).
 - I.2. Donner la description complète de l'ensemble $\binom{\mathbb{N}_5}{3}$. On notera que cet ensemble est composée de 10 éléments.
 - I.3. Evaluer $C(0,0) = \operatorname{card} \binom{\mathbb{N}_0}{0}$, $C(1,0) = \operatorname{card} \binom{\mathbb{N}_1}{0}$ et $C(1,1) = \operatorname{card} \binom{\mathbb{N}_1}{1}$.

 On notera que $\mathbb{N}_0 = \emptyset$.
 - I.4. Soit $n \in \mathbb{N}^*$.
 - (a) Soit $p \in [\![1,n+1]\!]$ et E, un ensemble de p éléments pris dans \mathbb{N}_{n+1} . Montrer que : ou bien $n+1 \in E$, et alors $E \setminus \{n+1\} \in \binom{\mathbb{N}_n}{p-1}$, ou bien $n+1 \notin E$, et alors $E \in \binom{\mathbb{N}_n}{p}$.
 - (b) En déduire C(n+1,p) = C(n,p-1) + C(n,p).
 - I.5. Montrer que pour tout $n \in \mathbb{N}, p \in [0, n], C(n, p) = \binom{n}{p}$

II . Une première famille de polynômes

Soit $n \in \mathbb{N}^*$. Soient $(c_i)_{i \in [0,n-1]}$ n réels positifs, non tous nuls. On considère la fonction polynomiale

$$H: x \mapsto x^n - \sum_{k=0}^{n-1} c_k x^k$$

et on définit également $h:]0, +\infty[\to \mathbb{R}, x \mapsto \frac{-H(x)}{x^n}]$

- II.1. H est polynomiale donc dérivable sur \mathbb{R} . Montrer que pour tout $x \in \mathbb{R}$, $xH'(x) = nx^n \sum_{k=1}^{n-1} kc_k x^k$
- II.2. Etudier les variations de h et démontrer que h est strictement décroissante sur $]0, +\infty[$.
- II.3. En déduire que la fonction polynomiale H admet une unique racine réelle strictement positive, notée α . On exploitera le théorème de la bijection ou corollaire des valeurs intermédiaires, en énonçant et vérifiant chacune de ses hypothèses.
- II.4. Montrer que $H'(\alpha) \neq 0$, donc que α est une racine simple de H.
- II.5. Soit ζ une racine complexe de H. On va démontrer par l'absurde que nécessairement $|\zeta| \leq \alpha$.

Supposons que que $|\zeta| > \alpha$. En évaluant le signe de $H(|\zeta|)$, montrer que $|\zeta|^n > \sum_{k=1}^{n-1} c_k |\zeta|^k$.

II.6. Montrer que cela conduit à une contradiction, puis conclure.

III . Deux applications

- III.1. Première application. Soit $H_1: x \mapsto x^5 x^4 2x^2 x 6$. Evaluer $H_1(2)$. Que dire des racines de H_1 ? Combien de racines entières H_1 admet-il?
- III.2. Deuxième application. On considère $m \in \mathbb{N}$ et $m \ge 2$, puis $(a_i)_{i \in [\![0,m-1]\!]}$ m réels strictement positifs et

$$F: x \mapsto \sum_{k=0}^{m-1} a_k x^k$$

une fonction polynomiale de degré m-1. On pose $\gamma = \max_{1\leqslant i\leqslant m-1} \frac{a_{i-1}}{a_i}$, le plus grand rapport des termes consécutifs : $\frac{a_{i-1}}{a_i}$.

(a) On note $F_{\gamma}: x \mapsto (x - \gamma)F(x)$. Montrer que F_{γ} est une fonction polynomiale de degré m, puis que pour tout $k \in [0, m]$,

$$[F_{\gamma}]_k = a_{k-1} - \gamma a_k$$

(avec les conventions : $a_m = 0$ et $a_{-1} = 0$.)

(b) En déduire que $H: x \mapsto \frac{1}{a_{m-1}} F_{\gamma}(x)$ vérifie exactement les hypothèse de la partie II. En déduire que pour toute racine ζ de F, $|\zeta| \leqslant \gamma$

IV La borne de Cauchy

Soit $n \in \mathbb{N}^*$. Soit $f: x \mapsto \sum_{i=0}^n a_k x^k$, un polynôme de degré n, à coefficients dans \mathbb{C} et tel que les $(a_i)_{i \in [0, n-1]}$ soient non tous nuls.

IV.1. Montrer que l'équation d'inconnue $x:\sum_{k=0}^{n-1}|a_k|x^k=|a_n|x^n$ notée (E), possède une unique solution réelle strictement positive. Cette racine est appelée **borne de Cauchy** de f et sera notée dans la suite $\rho(f)$. Puis montrer que pour tout $x\in\mathbb{R}:\sum_{k=0}^{n-1}|a_k|x^k\geqslant |a_n|x^n$ si et seulement si $x\leqslant \rho(f)$

- IV.2. Montrer que, pour tout racine complexe ζ de f, on a : $|\zeta| \leq \rho(f)$
- IV.3. Soit $(\zeta_i)_{i\in[1,n]}$ les n racines complexes (distinctes ou non) de f avec comme convention:

$$0 \leqslant |\zeta_1| \leqslant |\zeta_2| \leqslant \cdots \leqslant |\zeta_n| \leqslant \rho(f)$$

On a donc la factorisation : pour tout $x \in \mathbb{R}$, $f(x) = a_n \prod_{i=1}^{n} (x - \zeta_i)$.

(a) On admet que pour tout nombres complexes $z_1, \dots z_n$, $\prod_{i=1}^n (x-z_i) = \sum_{k=0}^n (-1)^k \left(\sum_{I \in (\mathbb{N}_n)} \prod_{i \in I} z_i\right) x^{n-k}.$

Montrer que pour tout entier $k \in [0, n]$, on a : $\left| \frac{a_k}{a_n} \right| \leq \binom{n}{k} |\zeta_n|^{n-k}$

- (b) En déduire que : $\rho(f)^n \leq \sum_{k=0}^{n-1} \binom{n}{k} \rho(f)^k |\zeta_n|^{n-k}$
- (c) En déduire que

$$\left(\sqrt[n]{2} - 1\right)\rho(f) \leqslant |\zeta_n| \leqslant \rho(f)$$

DEVOIR SURVEILLE 0 Correction

Ce sujet est inspiré très largement d'un sujet de l'université d'Angers : https://math.univ-angers.fr/documents/09-ep2.pdf

Dans ce problème, nous étudions un encadrement des modules des racines d'une fonction polynomiale en fonction de ses coefficients. Pour un ensemble E fini, on note card(E), son cardinal, c'est-à-dire le nombre de ses éléments.

On note, pour tout entier $n \in \mathbb{N}^*$ et $p \in [0, n]$, $\binom{\mathbb{N}_n}{p}$, l'ensemble à p éléments pris dans l'ensemble $\mathbb{N}_n := [1, n]$.

Par exemple, pour n = 4, $\binom{\mathbb{N}_4}{0} = \{\emptyset\}$ alors que $\binom{\mathbb{N}_4}{2} = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}.$

Ce problème est composé de quatre parties. La première donne deux résultats utiles par la suite : la généralisation de l'inégalité triangulaire et la valeur de card $\binom{\mathbb{N}_n}{p}$. La deuxième partie donne un majorant de l'ensemble des racines d'un polynôme H qui a une forme particulière. Ce résultat est exploité dans deux applications en troisième partie. Et il est généralisé à toute forme de polynôme en quatrième partie. Cela se termine par un encadrement (majoration et minoration) des racines d'un polynôme quelconque en fonction de la borne de Cauchy.

I . Préliminaires. Relations sur les ensembles et inégalité triangulaire.

- **A.** On admet que pour tout nombre complexe $z, z' \in \mathbb{C}$, on a $|z + z'| \leq |z| + |z'|$.
 - I.1. Montrer que pour tout $n \in \mathbb{N}^*$, et tout $z_1, z_2 \dots z_n \in \mathbb{C}$,

$$\left| \sum_{k=1}^{n} z_k \right| \leqslant \sum_{k=1}^{n} |z_k|$$

Posons, pour tout $n \in \mathbb{N}^*$, $\mathcal{P}_n : \langle \forall z_1, \dots z_n \in \mathbb{C}, \left| \sum_{k=1}^n z_k \right| \leqslant \sum_{k=1}^n |z_k| \rangle$.

- Pour
$$n = 1$$
. Soit $z_1 \in \mathbb{C}$. $\left| \sum_{k=1}^n z_k \right| = |z_1| \le |z_1| = \sum_{k=1}^n |z_k|$.

Donc \mathcal{P}_1 est vraie.

— Soit $n \in \mathbb{N}^*$. Supposons que \mathcal{P}_n est vraie.

Soient $z_1, z_2, \dots z_n, z_{n+1} \in \mathbb{C}$. Par inégalité triangulaire appliquée à $Z = z_1 + \dots + z_n$ et $Z' = z_{n+1}$, on a

$$\left| \sum_{k=1}^{n+1} z_k \right| = \left| \sum_{k=1}^{n} z_k + z_{n+1} \right| = \left| Z + Z' \right| \leqslant |Z| + |Z'|$$

$$\left| \sum_{k=1}^{n+1} z_k \right| \leqslant \left| \sum_{k=1}^n z_k \right| + |z_{n+1}| \leqslant \sum_{k=1}^n |z_k| + |z_{n+1}|$$

d'après l'hypothèse de récurrence appliquée en $z_1,\dots z_n.$ Ainsi, on retrouve l'inégalité recherchée.

Donc \mathcal{P}_{n+1} est vraie.

La récurrence est démontrée :

Pour tout
$$n \in \mathbb{N}^*$$
, et tout $z_1, z_2 \dots z_n \in \mathbb{C}$, $\left| \sum_{k=1}^n z_k \right| \leqslant \sum_{k=1}^n |z_k|$

Notons que le cas \mathcal{P}_0 est également vraie : nous avons deux sommes vides. Elles valent zéeo chacune.

- **B.** On note, pour $n \in \mathbb{N}$ et $p \in [0, n]$, $C(n, p) = \operatorname{card} \binom{\mathbb{N}_n}{p}$ (on rappelle que $\binom{\mathbb{N}_n}{p}$ a été défini plus haut).
 - I.2. Donner la description complète de l'ensemble $\binom{\mathbb{N}_5}{3}$. On notera que cet ensemble est composée de 10 éléments.

I.3. Evaluer
$$C(0,0) = \operatorname{card} \binom{\mathbb{N}_0}{0}$$
, $C(1,0) = \operatorname{card} \binom{\mathbb{N}_1}{0}$ et $C(1,1) = \operatorname{card} \binom{\mathbb{N}_1}{1}$.

On notera que $\mathbb{N}_0 = \emptyset$.

Il y a un et un seul sous-ensemble à l'ensemble vide : l'ensemble vide lui-même. Donc C(0,0)=1.

Il y a un et un seul sous-ensemble à zéro élément pris dans \mathbb{N}_1 : l'ensemble vide.

Et il y a un et un seul sous-ensemble à un élément pris dans $\mathbb{N}_1:\mathbb{N}_1$ lui-même.

$$C(0,0) = 1, \quad C(1,0) = 1, \quad C(1,1) = 1$$

I.4. Soit $n \in \mathbb{N}^*$.

(a) Soit $p \in [1, n+1]$ et E, un ensemble de p éléments pris dans \mathbb{N}_{n+1} . Montrer que :

— ou bien
$$n+1 \in E$$
, et alors $E \setminus \{n+1\} \in \binom{\mathbb{N}_n}{p-1}$

— ou bien
$$n+1 \notin E$$
, et alors $E \in \binom{\mathbb{N}_n}{p}$

En effet, les deux propriétés $n+1 \in E$ et $n+1 \notin E$ sont complémentaires.

Dans le premier cas, E est composé de p éléments pris dans \mathbb{N}_{n+1} , mais dont l'un est n+1.

Si on retire cet élément, l'ensemble $E \setminus \{n+1\}$ est alors un sous-ensemble de p-1 éléments pris dans $\mathbb{N}_{n+1} \setminus \{n+1\} = \mathbb{N}_n$. Dans le second cas, E est composé de p éléments pris directement dans \mathbb{N}_n .

Donc, ou bien
$$n+1 \in E$$
, et alors $E \setminus \{n+1\} \in \binom{\mathbb{N}_n}{p-1}$, ou bien $n+1 \notin E$, et alors $E \in \binom{\mathbb{N}_n}{p}$.

(b) En déduire C(n+1,p) = C(n,p-1) + C(n,p).

Pour chaque éléments de $\binom{\mathbb{N}_{n+1}}{p}$, on associe exactement un élément de $\binom{\mathbb{N}_n}{p-1}$ (si $n+1 \in E$) ou un élément de $\binom{\mathbb{N}_n}{p}$ Cette correspondance est bijective, on a donc

$$\operatorname{card}\binom{\mathbb{N}_{n+1}}{p} = \operatorname{card}\binom{\mathbb{N}_n}{p-1} + \operatorname{card}\binom{\mathbb{N}_n}{p}$$

$$C(n+1,p) = C(n,p-1) + C(n,p)$$

I.5. Montrer que pour tout $n \in \mathbb{N}, p \in [0, n], C(n, p) = \binom{n}{n}$

Nous allons conclure cette partie en démontrant le résultat recherché par récurrence.

On remarque d'abord que $C(0,0) = 1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

On note, pour tout $n \in \mathbb{N}^*$, \mathcal{P}_n : « $\forall p \in \llbracket 0, n \rrbracket$, $C(n, p) = \binom{n}{p}$ ».

- La question 2. permet d'affirmer que $C(1,0) = 1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $C(1,1) = 1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Donc \mathcal{P}_1 est vraie.
- Soit $n \in \mathbb{N}^*$. Supposons que \mathcal{P}_n est vraie. Soit $p \in [1, n+1]$. D'après 3.(b)

$$C(n+1,p) = C(n,p-1) + C(n,p) \underbrace{=}_{\mathcal{P}_n} \binom{n}{p-1} + \binom{n}{p} \underbrace{=}_{\text{triangle de Pascal}} \binom{n+1}{p}$$

Et
$$C(n+1,0) = \text{card}\{\emptyset\} = 1 = \binom{n+1}{0}$$
.

Ainsi \mathcal{P}_{n+1} est vraie.

La récurrence est démontrée, le cas n=0 aussi. On peut donc affirmer

$$\forall n \in \mathbb{N} \text{ et } p \in \llbracket 0, n \rrbracket, C(n, p) = \binom{n}{p}.$$

II. Une première famille de polynômes

Soit $n \in \mathbb{N}^*$. Soient $(c_i)_{i \in [\![0,n-1]\!]}$ n réels positifs, non tous nuls. On considère la fonction polynomiale

$$H: x \mapsto x^n - \sum_{k=0}^{n-1} c_k x^k$$

et on définit également

$$h:]0, +\infty[\to \mathbb{R}, x \mapsto \frac{-H(x)}{x^n}$$

II.1. H est polynomiale donc dérivable sur \mathbb{R} . Montrer que pour tout $x \in \mathbb{R}$, $xH'(x) = nx^n - \sum_{k=1}^{n} kc_k x^k$

Pour tout $k \ge 1$, la dérivée de $x \mapsto x^k$ est $x \mapsto kx^{k-1}$ et pour k = 0, la dérivée est nulle

Par dérivation de somme égale à la somme de dérivées : $\forall x \in \mathbb{R}, H'(x) = nx^{n-1} - \sum_{k=1}^{n-1} c_k kx^{k-1}$.

Puis en multipliant par x: pour tout $x \in \mathbb{R}$, $x \times H'(x) = nx^n - \sum_{k=1}^{n-1} kc_k c^k$.

Enfin, comme pour k = 0, $kc_k x^k = 0 \times c_0 \times 1 = 0$, on trouve

$$\forall x \in \mathbb{R}, \quad xH'(x) = nx^n - \sum_{k=0}^{n-1} kc_k x^k$$

II.2. Etudier les variations de h et démontrer que h est strictement décroissante sur $]0, +\infty[$.

La fonction h est une fraction rationnelle, elle est définie sur $]0, +\infty[$ sans aucun problème (son dénominateur ne s'annule pas). Elle est alors de classe C^1 sur son ensemble de définition.

Pour tout x > 0,

$$h'(x) = \frac{-H'(x)x^n - (-H(x)) \times nx^{n-1}}{x^{2n}} = \frac{nH(x) - xH'(x)}{x^{n+1}}$$

Sur $\mathbb{R}_+^*,$ le signe de h'(x) est donc le même que celui

$$nH(x) - xH'(x) = nx^{n} - \sum_{k=0}^{n-1} nc_{k}x^{k} - x(nx^{n-1}) + \sum_{k=0}^{n-1} kc_{k}x^{k-1} = \sum_{k=0}^{n-1} (k-n)c_{k}x^{k}$$

Or pour tout $k \leq n-1$, k-n < 0, $c_k \geq 0$ (par hypothèse de l'énoncé) et $x^k > 0$ (car x > 0).

Enfin, comme les réels (c_i) sont non tous nuls, au moins un $c_k > 0$ et donc pour ce $k : (n-k)c_kx^k < 0$ et ainsi par addition :

$$\forall \; x>0, \qquad h'(x)<0 \qquad \qquad \text{donc h est strictement décroissante sur }]0,+\infty[.$$

II.3. En déduire que la fonction polynomiale H admet une unique racine réelle strictement positive, notée α .

On exploitera le théorème de la bijection ou corollaire des valeurs intermédiaires, en énonçant et vérifiant chacune de ses hypothèse.

Pour tout x > 0, $H(x) = 0 \iff x^n \times h(x) = 0 \iff h(x) = 0 \text{ (car } x \neq 0).$

Or h est strictement décroissante sur $]0,+\infty[,$ continue (fraction rationnelle ou car dérivable),

h établit donc une bijection de $]0, +\infty[$ sur $\left|\lim_{x\to 0^+} h(x), \lim_{x\to +\infty} h(x)\right|$.

Or $\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{-x^n}{x^n} = -1$ (factorisation par le terme de plus haut degré) et $\lim_{x \to 0} h(x) = \lim_{x \to +\infty} \frac{\sum_{k=0}^n c_k x^k - x^n}{x^n}$. Par ailleurs, les c_i sont non tous nuls. On note $k_0 = \min\{i \mid c_i \neq 0\}$ (il existe bien) on a alors:

$$-H(x) = c_{k_0} x^{k_0} + \sum_{i=k_0+1}^{n-1} c_i x^i - x^n$$

Ainsi, par composition, addition et multiplication des limites :

$$h(x) = \frac{\sum_{\substack{x \to 0^+ \\ x \to 0^+ \\ \\ x \to 0^+ \\ \\ \\ x \to 0^+ \\ \\ x \to 0^+ \\ \\ } \frac{-c_{k_0}}{\sum_{\substack{x \to 0^+ \\ \\ x \to 0^+ \\ \\ \\ x \to 0^+ \\ }} c_i x^{i-k_0} - x^{n-k_0}} \xrightarrow[x \to 0^+]{} + \infty$$

Donc h établit une bijection (strictement décroissante) de $]0, +\infty[$ sur $]-1, +\infty[$.

 $0 \in]-1, +\infty[$ admet un unique antécédent par h.

les équations h(x) = 0 et donc H(x) = 0 (par équivalence) admet une unique solution sur \mathbb{R}_+^*

II.4. Montrer que $H'(\alpha) \neq 0$, donc que α est une racine simple de H.

On a donc $H(\alpha) = 0$. Si $H'(\alpha) = 0$ également, alors $h'(\alpha) = \frac{nH(\alpha) - \alpha H'(\alpha)}{\alpha^{n+1}} = 0$.

Or on a vu que pour tout x > 0, h'(x) < 0. On a donc une contradiction $(h'(\alpha) = 0 \text{ et } h'(\alpha) < 0)$. Ainsi $H'(\alpha) \neq 0$.

Si α est racine d'ordre m>1, il existe g fonction polynomiale d'ordre n-m tel que pour tout $x\in\mathbb{R}$,

$$H(x) = (x - \alpha)^m \times q(x)$$

En dérivant : $\forall x \in \mathbb{R}, H'(x) = m(x - \alpha)^{m-1}g(x) + (x - \alpha)^m g'(x).$

Et donc, puisque $m \ge 1$, $H'(\alpha) = 0 + 0 = 0$. Absurde.

 α est racine de simple de H.

II.5. Soit ζ une racine complexe de H. On va démontrer par l'absurde que nécessairement $|\zeta| \leqslant \alpha$.

Supposons que que $|\zeta| > \alpha$. En évaluant le signe de $H(|\zeta|)$, montrer que $|\zeta|^n > \sum_{k=0}^{n-1} c_k |\zeta|^k$.

(Il faut considérer $|\zeta|$, comme un nombre réel, strictement positif).

Supposons que $|\zeta| > \alpha$, alors comme h est décroissante strictement : $h(|\zeta|) < h(\alpha) = 0$.

Et ainsi $H(|\zeta|) = -|\zeta|^n \times h(|\zeta|) > 0$ ce qui donne exactement

$$|\zeta|^n > \sum_{k=0}^{n-1} c_k |\zeta|^k$$

II.6. Montrer que cela conduit à une contradiction, puis conclure.

On pourra exploiter l'inégalité triangulaire d'ordre n-1: $\left|\sum_{k=0}^{n-1} a_k\right| \leqslant \sum_{k=0}^{n-1} |a_k|$ pour $a_0, a_1, \dots a_{n-1} \in \mathbb{C}$, quelconques.

Par ailleurs, nous savons que ζ est une racine de (complexe) de H, donc $H(\zeta) = 0 = \zeta^n - \sum_{k=0}^{n-1} c_k \zeta^k$.

On a donc par inégalité triangulaire :

$$|\zeta|^n = |\zeta^n| = \left| \sum_{k=0}^{n-1} c_k \zeta^k \right| \le \sum_{k=0}^{n-1} |c_k \zeta^k| = \sum_{k=0}^{n-1} c_k |\zeta|^k$$

où pour finir, on a exploité $c_k \ge 0$, donc $|c_k z| = c_k |z|$, pour tout $z \in \mathbb{C}$.

On trouve donc

$$\sum_{k=0}^{n-1} c_k |\zeta|^k < |\zeta|^n \le \sum_{k=0}^{n-1} c_k |\zeta|^k$$

C'est contradictoire. L'hypothèse $(|\zeta| > \alpha)$ faite précédemment est fausse. Bilan :

Pour tout ζ racine (complexe) de H, $|\zeta| \leq \alpha$

III . Deux applications

III.1. Première application. Soit $H_1: x \mapsto x^5 - x^4 - 2x^2 - x - 6$.

Evaluer $H_1(2)$. Que dire des racines de H_1 ? Combien de racines entières H_1 admet-il?

$$H_1(2) = 2^5 - 2^4 - 2 \times 2^2 - 2 - 6 = 32 - 16 - 8 - 2 - 6 = 0.$$

 H_1 est exactement de la forme des polynômes H de la question précédente, avec n = 5, et $c_4 = 1$, $c_3 = 0$, $c_2 = 2$, $c_1 = 1$ et $c_0 = 6$.

En effet, tous les c_i sont positifs et ils ne sont pas tous nuls.

Donc H_1 n'admet qu'une racine strictement positive, ici $\alpha = 2$ d'après les calculs,

toutes les autres racines sont de module inférieur ou égal à 2.

Si H_1 admet d'autres racines entières, cela ne peut être que -2, -1, 0 (pas 1 car une seule racine réelle positive).

Or $H_1(-2) = -60 \neq 0$ $H_1(-1) = -8 \neq 0$ et enfin $H_1(0) = -6 \neq 0$.

 H_1 n'admet qu'une racine entière : 2.

III.2. Deuxième application. On considère $m \in \mathbb{N}$ et $m \ge 2$, puis $(a_i)_{i \in [0,m-1]}$ m réels strictement positifs et

$$F: x \mapsto \sum_{k=0}^{m-1} a_k x^k$$

une fonction polynomiale de degré m-1.

On pose $\gamma = \max_{1 \leqslant i \leqslant m-1} \frac{a_{i-1}}{a_i}$, le plus grand rapport des termes consécutifs : $\frac{a_{i-1}}{a_i}$.

(a) On note $F_{\gamma}: x \mapsto (x - \gamma)F(x)$.

Montrer que F_{γ} est une fonction polynomiale de degré m, puis que pour tout $k \in [0, m]$,

$$[F_{\gamma}]_k = a_{k-1} - \gamma a_k$$

(avec les conventions : $a_m = 0$ et $a_{-1} = 0$.)

Par produit de deux polynômes, nous savons que F_{γ} est également un polynôme. Son degré est égal à la somme de celui de F: m-1 additionné à celui de $x\mapsto x-\gamma$ i.e. 1.

Donc F_{γ} est un polynôme de degré m.

On a alors pour tout $x \in \mathbb{R}$,

$$F_{\gamma}(x) = (x - \gamma) \sum_{k=0}^{m-1} a_k x^k = \underbrace{\sum_{k=0}^{m-1} a_k x^{k+1}}_{h=k+1 \Longrightarrow k=h-1} - \underbrace{\sum_{k=0}^{m-1} \gamma a_k x^k}_{h=k} = \sum_{h=1}^m a_{h-1} x^h - \sum_{h=0}^{m-1} \gamma a_h x^h = a_{m-1} x^m + \sum_{h=1}^{m-1} (a_{h-1} - \gamma a_h) x^h - \gamma a_0$$

alors, $[F_{\gamma}]_m = a_{m-1} = a_{m-1} - \gamma a_m$ car $a_m = 0$, $[F]_0 = -\gamma a_0 = a_{-1} - \gamma a_0$ car $a_{-1} = 0$.

Ainsi avec la formule précédente :

Pour tout
$$k \in [0, m], [F_{\gamma}]_k = a_{k-1} - \gamma a_k$$
.

(b) En déduire que $H: x \mapsto \frac{1}{a_{m-1}} F_{\gamma}(x)$ vérifie exactement les hypothèse de la partie II.

En déduire que pour toute racine ζ de F, $|\zeta| \leq \gamma$

On a donc pour tout $x \in \mathbb{R}$,

$$H(x) = \frac{1}{a_{m-1}}F(x) = x^m - \sum_{k=0}^{m-1} \frac{\gamma a_k - a_{k-1}}{a_{m-1}}x^k$$

Et comme $\gamma = \max_i \frac{a_i}{a_{i-1}}$, on a donc pour tout $i \in [1, m-1]$, $\gamma \geqslant \frac{a_i}{a_{i-1}}$, donc $\gamma a_{i-1} - a_i \geqslant 0$ (puisque $a_{i-1} > 0$).

Et par conséquent, puisqu'églalement $a_{m-1}>0,$ $c_k:=\frac{\gamma a_k-a_{k-1}}{a_{m-1}}>0.$

$$H: x \mapsto \frac{1}{a_{m-1}} F_{\gamma}(x)$$
 vérifie exactement les hypothèse de la partie II.

On peut donc lui appliquer la conclusion : $\forall \zeta$, racines de H, donc pour toutes racines de F_{γ} , $|\zeta| \leqslant \gamma$. Mais les racines de F sont toutes des racines de F_{γ} , donc

$$\forall \zeta \text{ racines de } F, |\zeta| \leqslant \gamma$$

IV La borne de Cauchy

Soit $n \in \mathbb{N}^*$. Soit $f: x \mapsto \sum_{k=0}^n a_k x^k$, un polynôme de degré n, à coefficients dans \mathbb{C} et tel que les $(a_i)_{i \in [0,n-1]}$ soient non tous nuls.

IV.1. Montrer que l'équation d'inconnue $x:\sum_{n=1}^{n-1}|a_k|x^k=|a_n|x^n$ notée (E), possède une unique solution réelle strictement positive.

Cette racine est appelée borne de Cauchy de f et sera notée dans la suite $\rho(f)$.

Puis montrer que pour tout $x \in \mathbb{R}$:

$$\sum_{k=0}^{n-1} |a_k| x^k \geqslant |a_n| x^n \text{ si et seulement si } x \leqslant \rho(f)$$

f est de degré n, donc $a_n \neq 0$.

Soit $H: x \mapsto x^n - \sum_{k=0}^{n-1} \left| \frac{a_k}{a_n} \right| x^k$. H vérifie les mêmes hypothèses que le polynôme H de la première partie.

Donc, également, H n'admet qu'une unique racine réelle, strictement positive (elle est simple), ainsi

l'équation d'inconnue $x:\sum_{k=0}^{n-1}|a_k|x^k=|a_n|x^n$ notée (E), possède une unique solution réelle strictement positive.

Plus précisément encore, en première partie nous avons vu que

la fonction $h: x \mapsto \frac{-H(x)}{x^n}$ est décroissante sur \mathbb{R}_+^* , donc H est croissante sur \mathbb{R}_+^* , ainsi : $\forall x \in]0, \rho(f)], H(x) \leq H(\rho(f)) = 0$ et $\forall x \in]\rho(f), +\infty[, H(x) > H(\rho(f)) = 0$.

Pour tout $x \in \mathbb{R}$: $\sum_{k=0}^{n-1} |a_k| x^k \geqslant |a_n| x^n \text{ si et seulement si } x \leqslant \rho(f).$

IV.2. Montrer que, pour tout racine complexe ζ de f, on a

$$|\zeta| \leqslant \rho(f)$$

Soit ζ une racine de f. $\sum_{k=0}^{n} a_k \zeta^k = 0$, ainsi par inégalité triangulaire :

$$|a_n| \times |\zeta|^n = |a_n \zeta^n| = \left| -\sum_{k=0}^{n-1} a_k \zeta^k \right| \le \sum_{k=0}^{n-1} |a_k| (|\zeta|)^k$$

Par conséquent, d'après la question précédente (l'équivalence avec l'inégalité)

$$|\zeta| \leqslant \rho(f)$$

IV.3. Soit $(\zeta_i)_{i \in [\![1,n]\!]}$ les n racines complexes (distinctes ou non) de f avec comme convention :

$$0 \leqslant |\zeta_1| \leqslant |\zeta_2| \leqslant \cdots \leqslant |\zeta_n| \leqslant \rho(f)$$

On a donc la factorisation : pour tout $x \in \mathbb{R}$, $f(x) = a_n \prod_{i=1}^{n} (x - \zeta_i)$.

(a) On admet que pour tout nombres complexes $z_1, \ldots z_n$, $\prod_{i=1}^n (x-z_i) = \sum_{k=0}^n (-1)^k \left(\sum_{I \in \binom{\mathbb{N}_n}{i}} \prod_{i \in I} z_i\right) x^{n-k}.$

Montrer que pour tout entier $k \in [0, n]$, on a :

$$\left| \frac{a_k}{a_n} \right| \leqslant \binom{n}{k} |\zeta_n|^{n-k}$$

f se factorise : $f(x) = a_n(x - \zeta_1)(x - \zeta_2) \cdots (x - \zeta_n)$.

Avec la formule donnée dans l'énoncé, ce calcul se développe en

$$f(x) = a_n \left(\sum_{k=0}^n (-1)^k \left(\sum_{I \in \binom{\mathbb{N}_n}{k}} \prod_{i \in I} \zeta_i \right) x^{n-k} \right)$$

Le coefficient du polynôme f devant le monôme x^{n-k} est donc

$$a_{n-k} = [f]_{n-k} = a_n(-1)^k \left(\sum_{I \in \binom{\mathbb{N}_n}{k}} \prod_{i \in I} \zeta_i \right)$$

Par inégalité triangulaire (I.T.) :

$$\left|\frac{a_{n-k}}{a_n}\right| = \left|(-1)^k \left(\sum_{I \in \binom{\mathbb{N}_n}{k}} \prod_{i \in I} \zeta_i\right)\right| \leqslant \left|\sum_{I \in \binom{\mathbb{N}_n}{k}} \prod_{i \in I} \zeta_i\right| \underbrace{\leqslant}_{I.T.} \sum_{I \in \binom{\mathbb{N}_n}{k}} \left|\prod_{i \in I} \zeta_i\right| = \sum_{I \in \binom{\mathbb{N}_n}{k}} \prod_{i \in I} |\zeta_i| \underbrace{\leqslant}_{|\zeta_i| \leqslant |\zeta_n|} \sum_{I \in \binom{\mathbb{N}_n}{k}} \prod_{i \in I} |\zeta_n|$$

6

Or pour tout $I \in \binom{\mathbb{N}_n}{k}$, $\prod_{i \in I} |\zeta_n| = |\zeta_n|^{\operatorname{card}(I)} = |\zeta_n|^k$, indépendant de I. Donc

$$\left|\frac{a_{n-k}}{a_n}\right| \leqslant \sum_{I \in \binom{\mathbb{N}_n}{k}} \left|\zeta_n\right|^k = \operatorname{card}\binom{\mathbb{N}_n}{k} \left|\zeta_n\right|^k = \binom{n}{k} \left|\zeta_n\right|^k$$

Ainsi, en faisant le changement de variable h = n - k et par symétrie du coefficient binomial :

$$\left| \frac{a_h}{a_n} \right| \leqslant \binom{n}{n-h} |\zeta_n|^{n-h} = \binom{n}{h} |\zeta_n|^{n-h}$$

(b) En déduire que

$$\rho(f)^n \leqslant \sum_{k=0}^{n-1} \binom{n}{k} \rho(f)^k |\zeta_n|^{n-k}$$

On sait que $\rho(f)$ est la racine de H, on a donc $\rho(f)^n = \sum_{k=0}^{n-1} \left| \frac{a_k}{a_n} \right| \rho(f)^k$. Ainsi, d'après les inégalités de la question précédente, comme tous les termes multipliés $(\rho(f)^k)$ sont positifs :

$$\rho(f)^n \leqslant \sum_{k=0}^{n-1} \binom{n}{k} |\zeta_n|^{n-k} \rho(f)^k$$

(c) En déduire que

$$\left(\sqrt[n]{2} - 1\right)\rho(f) \leqslant |\zeta_n|$$

On a donc (toujours par positivité stricte des produits) :

$$1 \leqslant \sum_{k=0}^{n-1} \binom{n}{k} \left(\frac{|\zeta_n|}{\rho(f)}\right)^{n-k} = \left(1 + \frac{|\zeta_n|}{\rho(f)}\right)^n - \binom{n}{n} \left(\frac{|\zeta_n|}{\rho(f)}\right)^{n-n} = \left(1 + \frac{|\zeta_n|}{\rho(f)}\right)^n - 1$$

En exploitant la formule du binôme de Newton.

Ainsi : $\left(1 + \frac{|\zeta_n|}{\rho(f)}\right)^n \geqslant 2$. Puis par croissance de $t \mapsto t^{1/n} = \sqrt[n]{t}$ sur \mathbb{R}_+ :

$$\frac{|\zeta_n|}{\rho(f)} \geqslant \sqrt[n]{2} - 1$$

Ainsi $(\rho(f)>0)$ et en exploitant l'inégalité démontrée en IV.1. :

$$\left(\sqrt[n]{2} - 1\right)\rho(f) \leqslant |\zeta_n| \leqslant \rho(f)$$