Solution

Excursion de 4h dans le demi-plan de Poincaré

1.a) Soit $z \in \mathbb{P}$. Le nombre complexe $\frac{az+b}{cz+d}$ est bien défini si et seulement si $cz+d\neq 0$.

En notant z = x + iy sous forme algébrique,

$$cz + d = (cx + d) + cyi$$
.

- * Si $c \neq 0$, comme y > 0, alors cz + d est de partie imaginaire non nulle, donc est non nul.
- * Si c=0, comme $ad-bc\neq 0$, alors $d\neq 0$ donc la partie réelle de cz+d vaut d et est non nulle. Ainsi, $cz+d\neq 0$.

Ainsi, pour tout
$$z \in \mathbb{P}$$
, $\frac{az+b}{cz+d}$ est bien défini.

b) Soit $z \in \mathbb{P}$. D'après la définition,

$$\frac{az+b}{cz+d} = \frac{(az+b)(c\overline{z}+d)}{|cz+d|^2} = \frac{ac|z|^2 + adz + bc\overline{z} + bd}{|cz+d|^2}$$

donc
$$\mathscr{I}m\left(\frac{az+b}{cz+d}\right) = \frac{ad-bc}{|cz+d|^2} \mathscr{I}m\left(z\right).$$

Or ad - bc > 0 et $\mathcal{I}m(z) > 0$ (car $z \in \mathbb{P}$), donc

$$\forall z \in \mathbb{P}, h(z) = \frac{az+b}{cz+d} \in \mathbb{P}.$$

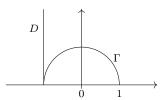
Partie I: Ensembles images

2. Soit $z \in \Gamma$ fixé quelconque.

Il existe $\theta \in]0, \pi[$ tel que $z = e^{i\theta}$. Ainsi, $\mathscr{I}m(z) = \sin(\theta)$. Or $\theta \in]0, \pi[$, donc $\mathscr{I}m(z) > 0$ et $z \in \mathbb{P}$.

Ainsi,
$$\Gamma \subset \mathbb{P}$$
.

3. D'après la paramétrisation du cercle unité, Γ est le demi-cercle, centré en O, de rayon 1, et inclus dans le demi-plan supérieur. D est la demi-droite d'équation x=-1 incluse dans le demi-plan supérieur.



4. a) La fonction f est le quotient d'une fonction dérivable par une fonction dérivable qui ne s'annule par sur $]0,\pi[$ donc f est dérivable et pour tout $\theta\in]0,\pi[$ et

$$f'(\theta) = \frac{\cos(\theta)(1 - \cos(\theta)) - \sin(\theta) \times \sin(\theta)}{(1 - \cos(\theta))^2} = \frac{\cos(\theta) - 1}{(1 - \cos(\theta))^2} = -\frac{1}{1 - \cos(\theta)}.$$

Ainsi, f' < 0 donc f est décroissante sur $[0, \pi]$.

Enfin, pour $\theta \in]0, \pi[$, transformons l'expression de $f(\theta)$ afin de calculer la limite en 0:

$$f(\theta) = \frac{\sin(\theta)}{1 - \cos(\theta)} = \frac{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}{2\sin^2\left(\frac{\theta}{2}\right)} = \frac{1}{\tan\left(\frac{\theta}{2}\right)}.$$

Ainsi, $\lim_{\theta \to 0^+} f(\theta) = +\infty$.

Une autre option est d'exploiter le règle de L'Hospital.

On note $n: \theta \mapsto \sin \theta$, n(0) = 0

et n dérivable avec $n'(\theta) = \cos(\theta) \xrightarrow[\theta \to 0]{} 1$.

On note $d: \theta \mapsto 1 - \cos \theta$, d(0) = 0 et d dérivable avec $d'(\theta) = \sin(\theta) \xrightarrow[\theta \to 0]{} 0$.

On a alors $\frac{n'(\theta)}{d'(\theta)} \xrightarrow[\theta \to 0]{} +\infty$.

La règle de L'hospital permet d'affirmer que

$$\lim_{\theta \to 0} f(\theta) = \lim_{\theta \to 0} \frac{n(\theta)}{d(\theta)} = \lim_{\theta \to 0} \frac{n'(\theta)}{d'(\theta)} = +\infty$$

Remarque. Cette dernière expression permettait d'établir le tableau de variations sans dériver!

θ	$0 \qquad \pi$	
$f'(\theta)$	_	
f	+∞ 0	

b) D'après les définitions,

$$h\left(e^{i\,\theta}\right) = \frac{2\,e^{i\,\theta} + 3}{-\,e^{i\,\theta} + 1} = \frac{(3 + 2\cos\theta) + 2i\sin\theta}{(1 - \cos\theta) - i\sin\theta}$$

$$= \frac{\left((3 + 2\cos\theta) + 2i\sin\theta\right)\left((1 - \cos\theta) + i\sin\theta\right)}{(1 - \cos\theta)^2 + \sin^2\theta}$$

$$= \frac{(3 + 2\cos\theta - 3\cos\theta - 2\cos^2\theta - 2\sin^2\theta) + i\sin\theta\left(\left(2(1 - \cos\theta) + (3 + 2\cos\theta)\right)\right)}{1 - 2\cos\theta + \cos^2\theta + \sin^2\theta}$$

$$= \frac{(3 - \cos\theta - 2) + 5i\sin\theta}{2 - 2\cos\theta} \quad \text{car } \cos^2\theta + \sin^2\theta$$

$$= \frac{(1 - \cos\theta) + 5i\sin\theta}{2(1 - \cos\theta)} = \frac{1}{2} + \frac{5}{2}f(\theta)i.$$

Ainsi.

$$h\left(e^{i\theta}\right) = \frac{1}{2} + i\frac{5}{2}f(\theta).$$

- c) On raisonne par double inclusion.
 - (\subset) Soit $\gamma \in h(\Gamma)$ fixé quelconque. Il existe $z \in \Gamma$ tel que $\gamma = h(z)$. Par définition de Γ , il existe $\theta \in]0, \pi[$ tel que $z = e^{i\theta}$. D'après la question précédente, $\mathscr{R}e\left(h(e^{i\theta})\right) = \frac{1}{2}$ et $\mathscr{I}m\left(h(e^{i\theta})\right) = \frac{5}{2}f(\theta) > 0$ (car f > 0 sur son domaine de définition) donc $\gamma = h(e^{i\theta}) \in \Delta_+$. Ainsi, $h(\Gamma) \subset \Delta_+$.
 - (\supset) Soit $z \in \Delta_+$ quelconque, fixé. Il existe x > 0 tel que $z = \frac{1}{2} + i x$.
 - * La fonction f est continue sur $]0,\pi[$,
 - $\star \lim_{\theta \to 0} f(\theta) = +\infty \text{ et } \lim_{\theta \to \pi} f(\theta) = 0,$

donc, d'après le théorème des valeurs intermédiaires, il existe $\theta_0 \in]0, \pi[$ tel que $f(\theta_0) = \frac{2}{5}x.$

Alors, d'après la question **4.b)**, $h(e^{\mathrm{i}\,\theta_0})=\frac{1}{2}+\mathrm{i}\,\frac{5}{2}f(\theta_0)=\frac{1}{2}+\mathrm{i}\,\frac{5}{2}\times\frac{2}{5}x=\frac{1}{2}+\mathrm{i}\,x=z$ donc $z\in h(\Gamma)$. Ainsi, $\Delta_+\subset h(\Gamma)$.

Finalement,

$$h(\Gamma) = \Delta_+.$$

5.a) D'après la définition,

$$h(-1+ix) = \frac{2(-1+ix)+3}{-(-1+ix)+1} = \frac{1+2ix}{2-ix} = \frac{(1+2ix)(2+ix)}{4+x^2}$$
$$h(-1+ix) = -\frac{2x^2-2}{x^2+4} + \frac{5x}{x^2+4}i.$$

Ainsi,

$$h(-1+ix) = -\frac{2x^2-2}{x^2+4} + \frac{5x}{x^2+4}i.$$

b) En utilisant la question précédente.

$$\left(X + \frac{3}{4}\right) + Y^2 = \left(-\frac{2x^2 - 2}{x^2 + 4} + \frac{3}{4}\right)^2 + \left(\frac{5x}{x^2 + 4}\right)^2$$

$$= \frac{(4(-2x^2 + 2) + 3(x^2 + 4))^2 + 16 \times 25x^2}{(4(x^2 + 4))^2}$$

$$= \frac{(-5x^2 + 20)^2 + 16 \times 25x^2}{(4(x^2 + 4))^2}$$

$$= \frac{25(-x^2 + 4)^2 + 25 \times 16x^2}{(4(x^2 + 4))^2}$$

$$= \frac{25}{16} \times \frac{(x^2 + 4)^2}{(x^2 + 4)^2}$$

$$= \frac{25}{16}.$$

Ainsi,

$$\left(X + \frac{3}{4}\right)^2 + Y^2 = \frac{25}{16}.$$

c) Notons C le cercle de centre $\left(-\frac{3}{4},0\right)$ et de rayon $\frac{5}{4}$. Montrons que $h(D) \subset C \cap \mathbb{P}$.

Soit $z=-1+\mathrm{i}\,x\in D$ fixé quelconque. Alors, d'après la question précédente, les coordonnées cartésiennes (X,Y) de h(z) satisfont l'équation du cercle de centre $\left(-\frac{3}{4},0\right)$ et de rayon $\frac{5}{4}$ donc h(z) est sur ce cercle. De plus x>0 donc $Y=\frac{5x}{x^2+4}>0$ si bien que $h(z)\in\mathbb{P}$ (ce qui pouvait aussi se déduire de la question 1 puisque $h\in\mathcal{H}$, le déterminant de la matrice définissant h étant strictement positif).

Par conséquent,
$$h(D) \subset C \cap \mathbb{P}$$
.

Remarque On peut montrer l'égalité des ensembles.

 $\overline{\text{R\'eciproquement}}$, soit $M \in C \cap \mathbb{P}$.

Notons $(X_M, Y_M) \in \mathbb{R}^2$ les coordonnées cartésiennes de M.

Puisque M est sur le demi-cercle C de centre $\left(-\frac{3}{4},0\right)$ et de rayon $\frac{5}{4}$ et inclus dans le demi-plan de Poincaré,

$$-2 = -\frac{5}{4} - \frac{3}{4} < X_M < -\frac{3}{4} + \frac{5}{4} = \frac{1}{2}$$
 et $Y_M > 0$

On a la caractérisation suivante :

$$M \in h(D) \iff \exists x \in \mathbb{R}_+^* : \begin{cases} \frac{2-2x^2}{x^2+4} &= X_M \\ \frac{5x}{x^2+4} &= Y_M \end{cases}$$

Il faudrait donc trouver une solution x>0 du système ci-dessus. Or,

$$\begin{cases}
\frac{2-2x^2}{x^2+4} &= X_M \\
\frac{5x}{x^2+4} &= Y_M
\end{cases}
\iff
\begin{cases}
2-2x^2 &= (x^2+4)X_M \\
\frac{5x}{x^2+4} &= Y_M
\end{cases}$$

$$\iff
\begin{cases}
x^2(X_M+2) &= 2(1-2X_M) \\
\frac{5x}{x^2+4} &= Y_M
\end{cases}$$
or $X_M \in]-2, \frac{1}{2}[\text{ donc } 1-2X_M > 0 \text{ et } X_M + 2 > 0 \end{cases}$

$$\iff
\begin{cases}
|x| &= \sqrt{\frac{2(1-2X_M)}{X_M+2}} \\
\frac{5x}{x^2+4} &= Y_M
\end{cases}$$

$$\iff
\begin{cases}
x &= \sqrt{\frac{2(1-2X_M)}{X_M+2}} \\
\frac{5x}{x^2+4} &= Y_M
\end{cases}$$

$$\iff
\begin{cases}
x &= \sqrt{\frac{2(1-2X_M)}{X_M+2}} \\
\frac{5x}{x^2+4} &= Y_M
\end{cases}$$

$$\iff
\begin{cases}
x &= \sqrt{\frac{2(1-2X_M)}{X_M+2}} \\
\frac{5x}{x^2+4} &= Y_M
\end{cases}$$

$$\iff
\begin{cases}
x &= \sqrt{\frac{2(1-2X_M)}{X_M+2}} \\
0 &= (x^2+4)Y_M > 0
\end{cases}$$

Or, pour $x = \sqrt{\frac{2(1-2X_M)}{X_M+2}}$, en notant $X = \frac{2(1-x^2)}{x^2+4}$ et $Y = \frac{5x}{x^2+4}$, le calcul de la question précédente a permis d'établir que

$$\left(X + \frac{3}{4}\right)^2 + Y^2 = \frac{25}{16}$$

et, en remontant le calcul qui a donné $x=\sqrt{\frac{2(1-2X_M)}{X_M+2}},$ on trouve que $X_M=\frac{2-2x^2}{x^2+4}=X$ donc

$$\left(X_M + \frac{3}{4}\right)^2 + Y^2 = \frac{25}{16}$$

Or $(X_M + \frac{3}{4})^2 + Y_M^2 = \frac{25}{16}$ car $M \in C$ donc

$$Y^2 = Y_M^2$$
 donc $Y = Y_M$ car ces deux réels sont positifs

Par conséquent l'équation (2) du système étudié est satisfaite donc le système $\begin{cases} \frac{2-2x^2}{x^2+4} &= X_M \\ \frac{5x}{x^2+4} &= Y_M \end{cases} \text{ admet } x = \sqrt{\frac{2(1-2X_M)}{X_M+2}} \text{ comme unique solution strictement positive.}$

L'unicité ne nous est pas utile, mais l'existence d'une solution permet d'affirmer que $h\left(\sqrt{\frac{2(1-2X_M)}{X_M+2}}\right)=X_M+\mathrm{i}\,Y_M$ ce qui prouve que $M\in h(D)$. Par conséquent, $C\cap\mathbb{P}\subset h(D)$.

Partie II : Structure de \mathscr{H}

- **6.** $\det(I) = 1 \times 1 0 \times 0 = 1 > 0$, donc $I \in E$. De plus, pour tout $z \in \mathbb{P}$, $h_I(z) = \frac{z+0}{0 \times z+1} = z$.

 Ainsi, $I \in E$ et $h = \mathrm{id}_{\mathbb{P}}$.
- 7. <u>Attention</u> Il ne s'agit pas d'un polynôme à coefficients réels de la variable réelle.

On ne peut donc pas appliquer le théorème qui affirme que l'identification des coefficients est possible.

Dans le TD, nous avions réussi une fois à généraliser ce théorème pour un polynôme à coefficients complexes de la variable réellle.

Mais ici ce n'est pas possible car $\mathcal{I}m(z) > 0$, puisque $z \in \mathbb{P}$ donc on ne peut pas donner de valeurs réelles à z.

Dans ces cas là, il n'y a plus qu'une stratégie reprendre la démonstration qui conduit au résultat sur l'identification, et essayer de l'adapter. Il s'agit alors de prendre plus de points z_1, z_2, \ldots que de coefficients du polynôme.

* Analyse. Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
 tel que

$$\forall z \in \mathbb{P}, h_M(z) = z \iff \frac{az+b}{cz+d} = z.$$

Particularisons cette relation pour certaines valeurs de z dans \mathbb{P} .

 \star Pour $z=\mathrm{i},$ on a $\frac{a\,\mathrm{i}+b}{c\,\mathrm{i}+d}=\mathrm{i},$ donc $a\,\mathrm{i}+b=-c+d\,\mathrm{i}.$ Ainsi,

$$\begin{cases} a = d \\ b = -c \end{cases}.$$

* Pour z=2i, on a $\frac{2ai+b}{2ci+d}=2i$, donc 2ai+b=-4c+2di. Ainsi,

$$\begin{cases} a = d \\ b = -4c \end{cases}.$$

On obtient ainsi b = c = 0 et $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = aI$.

De plus $M \in E$ donc $0 < \det M = a^2$ si bien que $a \neq 0$.

L'ensemble cherché est donc inclus dans $\{\lambda I \mid \lambda \in \mathbb{R}^*\}$.

* Synthèse. Soit $\lambda \in \mathbb{R}^*$ fixé quelconque. D'une part $\det(\lambda I) = \lambda^2 > 0$ donc $\lambda I \in E$, et d'autre part

$$\forall z \in \mathbb{P} , \ h_{\lambda I}(z) = \frac{\lambda z + 0}{0 \times z + \lambda} = z$$

donc λI est un élément de E dont l'homographie associée est $\mathrm{id}_{\mathbb{P}}.$

$$\forall z \in E, h_M(z) = z \iff \exists \lambda \in \mathbb{R}^*; M = \lambda I \iff M \in \{\lambda I \mid \lambda \in \mathbb{R}^*\}.$$

- **8.a)** \star Soit $M \in E$, alors $h_M = h_M$. Donc pour toute matrice $M \in E$, $M \mathcal{R} M$. Ainsi \mathcal{R} est réflexive.
 - * Soient $M, N \in E$ tels que $M \mathcal{R} N$. Donc $h_M = h_N$. Alors pour tout $z \in \mathbb{P}$, $h_M(z) = h_N(z)$, donc $h_N(z) = h_M(z)$ (par symétrie de = sur \mathbb{C}). Et donc $N \mathcal{R} M$. Ainsi \mathcal{R} est symétrique.

* Soient $M, N, T \in E$ tels que $M \mathcal{R} N$ et $N \mathcal{R} T$. Donc $h_M = h_N$ et $h_N = h_T$.

Alors pour tout $z \in \mathbb{P}$, $h_M(z) = h_N(z) = h_T(z)$, donc $h_M(z) = h_T(z)$ (par transitivité de = sur \mathbb{C}).

Et donc $M\mathcal{R}T$. Ainsi \mathcal{R} est transitive.

\mathcal{R} est une relation d'équivalence

On aurait pu également remarque de \mathcal{R} est le relation associée à la fonction $\Phi: M \mapsto h_M$, non injective (cf questions suivantes).

b) Soit $M \in E$. On note $\mathcal{C}(M)$, la classe d'équivalence de M. Analyse

 $\overline{\text{Si }M'} \in \mathcal{C}(M) \text{ (ou }M'\mathscr{R}M), \text{ alors pour tout } z \in \mathbb{P}, h_M(z) = h_{M'}(z).$

Notons
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $M' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$.

On a donc pour tout $z \in \mathbb{P}$, $\frac{az+b}{cz+d} = \frac{a'z+b'}{c'z+d'}$. Et donc pour tout $z \in \mathbb{P}$,

$$(ac' - a'c)z^{2} + (ad' + bc' - a'd - b'c)z + (bd' - b'd) = 0$$

Comme à la question précédente, en prenant $z \leftarrow i$, et la partie imaginaire, on trouve que nécessairement ad'+bc'-a'd-b'c=0. Puis, en soustrayant les parties réelles pour $z \leftarrow i$ et $z \leftarrow 2i$, on trouve que nécessairement : ac'-a'c=0 et bd'-b'd=0. Essayons de simplifier ces trois relations :

$$\begin{cases} ad' + bc' - a'd - b'c &= 0\\ ac' - a'c &= 0\\ bd' - b'd &= 0 \end{cases}$$

 \star Supposons que a=0. Alors comme ad-bc>0, on a bc<0 et donc nécessairement, $c\neq 0$ et $b\neq 0$.

La seconde équation donne a'c = 0, donc a' = 0, puisque $c \neq 0$. On trouve alors bc' - b'c = 0 et bd' - b'd = 0.

Et comme b est non nul : $c' = \frac{b'}{b}c$, $d' = \frac{b'}{b}d$ et $b' = \frac{b'}{b}b$.

En notant $\lambda = \frac{b'}{b}$, on a $d' = \lambda d$, $c' = \lambda c$, $b' = \lambda b$ et $a' = \lambda a = 0$.

* Supposons que $a \neq 0$, et notons $\lambda = \frac{a'}{a}$.

on a donc (L_2) $c' = \frac{a'}{a}c = \lambda c$, mais aussi : $a' = \frac{a'}{a}a = \lambda a$.

Donc (avec L_1) $ad' + \lambda bc - \lambda ad - b'c = 0$

On applique le même raisonnement avec b = 0 ou $b \neq 0$

• Si b = 0 (et toujours $a \neq 0$).

Alors (L_3) : b'd=0, mais comme ad-bc=ad>0, nécessairement $d\neq 0$

donc $b' = b = 0 = \lambda b$ et donc $ad' - \lambda ad = 0$ et $d' = \lambda d$, car $a \neq 0$.

• Si $b \neq 0$ (et toujours $a \neq 0$).

En notant $\mu = \frac{b'}{b}$, on trouve avec L_3 ; $b' = \mu b$ et $d' = \mu d$.

Et donc avec $L_1: (\lambda - \mu)(ad - bc) = 0$. Donc nécessairement $\mu = \lambda$.

Dans tous les cas $\exists \lambda \in \mathbb{R}$ tel que (a', b', c', d') = (a, b, c, d) i.e $M' = \lambda M$.

Nécessairement $\lambda \neq 0$, sinon $\det(A) = 0$.

Synthèse,

Si $M' = \lambda M$, avec $\lambda \neq 0$ alors

$$h_{M'}: z \mapsto \frac{\lambda az + \lambda b}{\lambda cz + \lambda d} = \frac{az + b}{cz + d} = h_M(z)$$

Donc $M'\mathcal{R}M$.

$$\mathcal{C}(M) = \{\lambda M, \lambda \in \mathbb{R}^*\}$$

9. Soient
$$M_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in E$$
 et $M_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in E$. Pour tout $z \in \mathbb{P}$.

$$\begin{split} h_{M_1} \circ h_{M_2}(z) &= h_{M_1}(h_{M_2}(z)) = \frac{a_1 \frac{a_2 z + b_2}{c_2 z + d_2} + b_1}{c_1 \frac{a_2 z + b_2}{c_2 z + d_2} + d_1} \\ &= \frac{a_1(a_2 z + b_2) + b_1(c_2 z + d_2)}{c_1(a_2 z + b_2) + d_1(c_2 z + d_2)} = \frac{(a_1 a_2 + b_1 c_2)z + (a_1 b_2 + b_1 d_2)}{(c_1 a_2 + d_1 c_2)z + (c_1 b_2 + d_1 d_2)}. \end{split}$$

Notons par ailleurs que

$$M_1 \times M_2 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \times \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 + b_1 c_2 & a_1 b_2 + b_1 d_2 \\ c_1 a_2 + d_1 c_2 & c_1 b_2 + d_1 d_2 \end{pmatrix}$$

Alors que

$$\det(M_1 M_2) = (a_1 a_2 + b_1 c_2)(c_1 b_2 + d_1 d_2) - (a_1 b_2 + b_1 d_2)(c_1 a_2 + d_1 c_2)$$

$$= a_1 c_1 (a_2 b_2 - a_2 b_2) + a_1 d_1 (a_2 d_2 - b_2 c_2)$$

$$+ b_1 c_1 (c_2 b_2 - a_2 d_2) + b_1 d_1 (c_2 d_2 - c_2 d_2)$$

$$= (a_1 d_1 - b_1 c_1)(a_2 d_2 - b_2 c_2)$$

$$= \det(M_1) \det(M_2)$$

$$> 0 \quad \operatorname{car}(M_1, M_2) \in E^2 \operatorname{donc} \det(M_1) > 0 \operatorname{et} \det(M_2) > 0.$$

Par conséquent, $M_1 \times M_2 \in E$.

Et, l'identité établie ci-dessus pour tout $z \in \mathbb{P}$ montre que $h_{M_1} \circ h_{M_2} = h_{M_1 \times M_2}$.

Ainsi,

$$h_{M_1} \circ h_{M_2} = h_{M_1 \times M_2}$$
 est une homographie.

10. a) En utilisant le calcul précédent, pour tout $z \in \mathbb{P}$,

$$h_M \circ h_{M'}(z) = \frac{(ad - bc)z + (-ab + ba)}{(cd - dc)z + (-cb + da)} = z.$$

On montre de même que, pour tout $z \in \mathbb{P}$, $h_{M'} \circ h_M(z) = z$. Ainsi,

$$\forall z \in \mathbb{P}, h_M \circ h_{M'}(z) = h_{M'} \circ h_M(z) = z.$$

Ainsi, $h_M \circ h_{M'}(z) = h_{M'} \circ h_M = \mathrm{id}_{\mathbb{P}} \operatorname{donc}$

 h_M est bijective et sa bijection réciproque est $h_{M'}$.

b) Posons $\delta = ad - bc$. $M \in E$ donc $\delta = ad - bc = \det(M) > 0$ ce qui permet de poser $N = \frac{1}{\sqrt{\delta}}M = \begin{pmatrix} \frac{a}{\sqrt{\delta}} & \frac{b}{\sqrt{\delta}} \\ \frac{c}{\sqrt{\delta}} & \frac{d}{\sqrt{\delta}} \end{pmatrix}$.

On remarque que

$$\det(N) = \det\begin{pmatrix} \frac{a}{\sqrt{\delta}} & \frac{b}{\sqrt{\delta}} \\ \frac{c}{\sqrt{\delta}} & \frac{d}{\sqrt{\delta}} \end{pmatrix} = \frac{ad - bc}{\sqrt{\delta^2}} = \frac{ad - bc}{\delta} = 1.$$

Par conséquent, $\det N > 0$ donc $N \in E$ et $\det(N) = 1$ donc la question **10.a)** permet d'affirmer que h_N est bijective de bijec-

tion réciproque
$$h'_N$$
 où $N' = \begin{pmatrix} \frac{d}{\sqrt{\delta}} & -\frac{b}{\sqrt{\delta}} \\ -\frac{c}{\sqrt{\delta}} & \frac{a}{\sqrt{\delta}} \end{pmatrix}$.

Par ailleurs, $M \in E$, $N \in E$ et $N = \frac{1}{\sqrt{\delta}}M$ donc, d'après la question **8.**, $h_M = h_N$ si bien que h_M est bijective et $(h_M)^{-1} = h_N'$:

$$\forall z \in \mathbb{P} , h_M^{-1}(z) = h_{N'}(z) = \frac{\frac{d}{\sqrt{\delta}}z - \frac{b}{\sqrt{\delta}}}{-\frac{c}{\sqrt{\delta}}z + \frac{a}{\sqrt{\delta}}} = \frac{dz - b}{-cz + a}$$

Ainsi, h_M est bijective et $h_M^{-1}: z \in \mathbb{P} \mapsto \frac{dz-b}{-cz+a}$.

11. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$ fixée quelconque.

$$h_M(i) = i \iff \frac{ai+b}{ci+d} = i$$
 $\iff ai+b = i(ci+d) = -c+id$
 $\iff a = d \text{ et } b = -c \text{ par identification}$
 $\iff M = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$

De plus M doit être dans E ce qui impose $0 < \det(M) = a^2 + b^2$, or $a^2 + b^2 \le 0 \iff a = b = 0$ donc le seul couple de réels (a, b) à exclure est le couple (0, 0).

Ainsi,
$$\mathcal{H}_{\mathbf{i}} = \left\{ \begin{array}{ccc} \mathbb{P} & \to & \mathbb{P} \\ z & \mapsto & \frac{az+b}{-bz+a} \end{array} \middle| \ (a,b) \in \mathbb{R}^2 \setminus \{(0,0)\} \right\}.$$

12. On a les équivalences :

 h_M admet un point fixe $\iff\exists z\in\mathbb{P}:h_M(z)=z$ $\iff\exists z\in\mathbb{P}:\frac{az+b}{cz+d}=z$ $\iff\exists z\in\mathbb{P}:az+b=cz^2+dz$ $\iff\exists z\in\mathbb{P}:cz^2+(d-a)z-b=0.$ \iff l'équation $cx^2+(d-a)x-b=0$ admet (au moins) une solution dans \mathbb{P}

* Si c = 0, l'équation devient (d - a)x - b = 0,

** Si d - a = 0, l'équation devient -b = 0, qui admet au moins une solution dans \mathbb{P} si et seulement si b = 0.

- ** Si $d a \neq 0$, l'équation admet une unique solution qui est réelle donc aucune solution dans \mathbb{P} .
- * Si $c \neq 0$, $cx^2 + (d-a)x b = 0$ est une équation algébrique du second degré de discriminant $\Delta = (d-a)^2 + 4bc$.

Si $\Delta \geqslant 0$, la ou les solutions de l'équation sont réelles donc aucune n'appartient à \mathbb{P} .

Si $\Delta < 0$, l'équation admet deux solution complexes non réelles conjugués si bien que l'une d'elle est dans \mathbb{P} .

Par conséquent,

$$h_M$$
 possède un point fixe \iff
$$\left\{ \begin{array}{l} c=0 \text{ et } a=d \text{ et } b=0 \\ \text{ou} \\ c\neq 0 \text{ et } (d-a)^2+4bc<0 \end{array} \right.$$

Le premier cas équivaut à dire que M = aI ce qui est exclu par hypothèse.

Ainsi, h_M possède un point fixe si et seulement si $c \neq 0$ et $(d-a)^2 + 4bc < 0$.

Remarque : si
$$c = 0$$
, on a $(d - a)^2 + 4bc = (d - a)^2 \ge 0$ donc h_M possède un point fixe si et seulement si $(d - a)^2 + 4bc < 0$.

13.a) D'après la question 8. (mais aussi 7.), pour $\lambda\in\mathbb{R}$ et $M\in E$ $\Phi(\lambda M)=\Phi(M).$

Donc en particulier $\Phi(2I_2) = \Phi(I_2)$.

Ainsi,
$$\Phi$$
 n'est pas injective

b) Soit $h \in \mathcal{H}$ fixée quelconque.

Par définition de \mathcal{H} , il existe $M \in E$ tel que $h = h_M$ donc $h = \Phi(M)$.

Ainsi,
$$\Phi$$
 est bien surjective.

c) Φ n'était pas injective

Ainsi, Φ n'est pas bijective.

Partie III : Distance hyperbolique

14. Soient $u, v \in \mathbb{P}$.

$$|u - \overline{v}|^2 - |u - v|^2 = (u - \overline{v})(\overline{u} - v) - (u - v)(\overline{u} - \overline{v})$$

$$= |u|^2 - uv - \overline{v}\overline{u} + |v|^2 - |u|^2 + u\overline{v} + v\overline{u} - |v|^2$$

$$= u(\overline{v} - v) - \overline{u}(\overline{v} - v)$$

$$= -(u - \overline{u})(v - \overline{v})$$

$$= -2i \mathcal{I}m(u) \times 2i \mathcal{I}m(v)$$

$$= 4 \mathcal{I}m(u) \mathcal{I}m(v)$$

$$> 0 \quad \text{car } (u, v) \in \mathbb{P}^2 \text{ donc } \mathcal{I}m(u) > 0 \text{ et } \mathcal{I}m(v) > 0$$

Ainsi,

$$|u-v|<|u-\overline{v}|.$$

D'après le point précédent, le rapport suivant est bien défini car $|u-\overline{v}|-|u-v|\neq 0$.

On a alors $|u - \overline{v}| - |u - v| > 0$ et donc l'équivalence :

$$\frac{|u-\overline{v}|+|u-v|}{|u-\overline{v}|-|u-v|}\geqslant 1 \Leftrightarrow |u-\overline{v}|+|u-v|\geqslant |u-\overline{v}|-|u-v| \Leftrightarrow 2|u-v|\geqslant 0$$

Ces propositions équivalentes sont toutes vraies. Ainsi,

$$\boxed{\frac{|u-\overline{v}|+|u-v|}{|u-\overline{v}|-|u-v|} \geqslant 1.}$$

Autre argument. On pouvait aussi remarquer que $|u-v| \ge 0$ d'où

$$\underbrace{0 \leq}_{\text{question précédente}} |u - \overline{v}| - |u - v| \leqslant |u - \overline{v}| \leqslant |u - \overline{v}| + |u - v|$$

Donc

$$\frac{|u - \overline{v}| + |u - v|}{|u - \overline{v}| - |u - v|} \geqslant 1$$

- **15. a)** Soient $u, v \in \mathbb{P}$. D'après la question précédente, d(u, v) est bien définie.
 - a) D'après la question précédente et la croissance de la fonction logarithme,

$$d(u, v) \geqslant \ln(1) \geqslant 0.$$

Ainsi,

$$d(u,v) \geqslant 0.$$

b) D'après la définition de la distance logarithmique, d(u,v)=0 si et seulement si $|u-\overline{v}|+|u-v|=|u-\overline{v}|-|u-v|$ si et seulement si |u-v|=0. Ainsi,

$$d(u,v) = 0 \iff u = v.$$

c) D'après les propriétés du module, deux nombres opposés ont même module et deux nombres conjugués ont même module donc

$$|u-\overline{v}| = |\overline{u}-\overline{v}| = |\overline{u}-v| = |v-\overline{u}|$$
 et $|u-v| = |-(u-v)| = |v-u|$

si bien que

$$d(u,v) = \ln \frac{|u-\overline{v}| + |u-v|}{|u-\overline{v}| - |u-v|} = \ln \frac{|v-\overline{u}| + |v-u|}{|v-\overline{u}| - |v-u|} = d(v,u).$$

$$d(u,v) = d(v,u).$$

16. Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
.

a) D'après les définitions, pour $z, z' \in \mathbb{P}$,

$$h_M(z) - h(z') = \frac{(ad - bc)(z - z')}{(cz + d)(cz' + d)}.$$

b) Il s'agit de calculer

$$d(h_{M}(z), h_{M}(z')) = \ln \frac{|h_{M}(z) - \overline{h_{M}(z')}| + |h_{M}(z) - h_{M}(z')|}{|h_{M}(z) - \overline{h_{M}(z')}| - |h_{M}(z) - h_{M}(z')|}.$$
Or $\overline{h_{M}(z')} = \overline{\left(\frac{az' + b}{cz' + d}\right)} = \frac{a\overline{z'} + b}{c\overline{z'} + d} \text{ car } a, b, c, d \in \mathbb{R}.$

Un calcul presqu'équivalent à celui de la question précédente, donne alors

$$h_M(z) - \overline{h_M(z')} = \frac{(ad - bc)(z - \overline{z'})}{(cz + d)(c\overline{z'} + d)}$$

De plus, en utilisant que $|cz'+d| = |\overline{cz'+d}| = |c\overline{z'}+d|$ car $(c,d) \in \mathbb{R}^2$,

$$\frac{|h_{M}(z) - h_{M}(\overline{z'})| + |h_{M}(z) - h_{M}(z')|}{|h_{M}(z) - h_{M}(\overline{z'})| + |h_{M}(z) - h_{M}(z')|} = \frac{\frac{|ad - bc||z - \overline{z'}|}{|cz + d||c\overline{z'} + d|} + \frac{|ad - bc||z - z'|}{|cz + d||cz' + d|}}{\frac{|ad - bc||z - \overline{z'}|}{|cz + d||c\overline{z'} + d|}} = \frac{\frac{|ad - bc||z - \overline{z'}|}{|cz + d||c\overline{z'} + d|} - \frac{|ad - bc||z - z'|}{|cz + d||cz' + d|}}{\frac{|z - \overline{z'}| + |z - z'|}{|z - \overline{z'}| - |z - z'|}}$$

Ainsi,

$$d(h(u), h(v)) = d(u, v).$$

Partie IV : Géodésiques

17.a) Soit
$$z \in \mathbb{P}$$
. Alors, $\mathscr{I}m(z) \neq 0$ et $|z| = \sqrt{\mathscr{R}e(z)^2 + \mathscr{I}m(z)^2} > |\mathscr{R}e(z)|$. D'où

$$\forall z \in \mathbb{P}, | \Re(z) | < |z|.$$

b) D'après la définition de $P_t(X) = X^2 - 2((1-t)\Re(z_0) + t\Re(z_1))X + (1-t)|z_0|^2 + t|z_1|^2$, comme $t \in]0,1[$,

$$\begin{split} I &:= \Delta_t' + t(1-t)(\mathscr{R}e\left(z_0\right) - \mathscr{R}e\left(z_1\right))^2 \\ &= \left[(1-t)\mathscr{R}e\left(z_0\right) + t\mathscr{R}e\left(z_1\right) \right]^2 - \left[(1-t)|z_0|^2 + t|z_1|^2 \right] \\ &+ t(1-t)(\mathscr{R}e\left(z_0\right) - \mathscr{R}e\left(z_1\right))^2 \\ &= (1-t)^2\mathscr{R}e\left(z_0\right)^2 + t^2\mathscr{R}e\left(z_1\right)^2 + 2t(1-t)\mathscr{R}e\left(z_0\right)\mathscr{R}e\left(z_1\right) - (1-t)|z_0|^2 \\ &- t|z_1|^2 + t(1-t)(\mathscr{R}e\left(z_0\right)^2 + \mathscr{R}e\left(z_1\right)^2 - 2\mathscr{R}e\left(z_0\right)\mathscr{R}e\left(z_1\right)) \\ &= (1-t)[1-t+t]\mathscr{R}e\left(z_0\right)^2 + t[t+1-t]\mathscr{R}e\left(z_1\right)^2 \\ &- (1-t)|z_0|^2 - t|z_1|^2 \\ &= -(1-t)\mathscr{I}m\left(z_0\right)^2 - t\mathscr{I}m\left(z_1\right)^2 < 0 \end{split}$$

Ainsi,
$$\Delta'_t < -t(1-t)(\Re(z_0) - \Re(z_1))^2$$
.

c) \star Supposons que $t \in]0,1[$. Alors t(1-t)>0 donc, d'après la question précédente, $\Delta_t'<0$. Le discriminant de P_t est donc strictement négatif, donc P_t admet deux racines distinctes non réelles, complexes conjuguées (car P_t est à coefficients réels) qui sont

$$(1-t) \mathscr{R}\!\!\!/ \left(z_0\right) + t \mathscr{R}\!\!\!/ \left(z_1\right) + i \sqrt{\left|\Delta_t'\right|} \text{ et } (1-t) \mathscr{R}\!\!\!/ \left(z_0\right) + t \mathscr{R}\!\!\!/ \left(z_1\right) - i \sqrt{\left|\Delta_t'\right|}$$

Une seule de ses racines est de partie imaginaire positive, c'est z_t :

$$z_t = (1 - t) \Re (z_0) + t \Re (z_1) + i \sqrt{|\Delta_t'|}.$$

* Supposons que t=0. Alors $P_0(X)=X^2-2\Re(z_0)X+|z_0|^2$,

donc $\Delta'_0 = \Re(z_0)^2 - |z_0|^2 = -\Im(z_0)^2 < 0$ si bien que P_0 admet deux racines non réelles complexes conjuguées

$$\begin{cases} \mathscr{R}e\left(z_{0}\right)+i\sqrt{\mathscr{I}m\left(z_{0}\right)^{2}} & \underset{\mathscr{I}m\left(z_{0}\right)>0}{=\mathscr{R}e\left(z_{0}\right)+i\mathscr{I}m\left(z_{0}\right)=z_{0}} \\ \mathscr{R}e\left(z_{0}\right)-i\sqrt{\mathscr{I}m\left(z_{0}\right)^{2}} & \underset{\mathscr{I}m\left(z_{0}\right)>0}{=\mathscr{R}e\left(z_{0}\right)-i\mathscr{I}m\left(z_{0}\right)=\overline{z_{0}}} \end{cases}$$

Remarque : on aurait pu obtenir cela directement en reconnaissant, dans l'expression de $P_0(X)$ le développement classique de $(X - z_0)(X - \overline{z_0})$.

Une seule de ces racines possède une partie imaginaire positive, c'est z_0 .

Observons que l'expression établie ci-dessus pour $t \in]0,1[$ est encore vraie pour t=0 :

$$(1-0)\times \Re(z_0) + 0 \times \Re(z_1) + i\sqrt{|\Delta_0'|} = \Re(z_0) + i\sqrt{\Im(z_0)^2} = z_0.$$

* Supposons que t=1. Comme dans le cas t=0, P_1 admet une unique racine de partie imaginaire positive, c'est z_1 et la formule générale est encore vraie : $(1-1) \times \Re(z_1) + 1 \times \Re(z_1) + i\sqrt{|\Delta_1'|} = z_1$.

Pour tout $t \in [0, 1]$, P_t a une unique racine de partie imaginaire positive $z_t = (1 - t) \Re(z_0) + t \Re(z_1) + i \sqrt{|\Delta_t'|}$.

18. D'après la question précédente, dans le cas particulier $\Re(z_0) = \Re(z_1)$, en reprenant la quatrième ligne du calcul de Δ'_t valable pour tout $t \in [0,1]$,

$$\Delta_t' = (1-t)(\Re(z_0)^2 - |z_0|^2) + t(\Re(z_1)^2 - |z_1|^2)$$

$$\Delta_t' = -((1-t)(|z_0|^2 - \Re(z_0)^2) + t(|z_1|^2 - \Re(z_1)^2))$$

si bien qu'en utilisant $\Re(z_0) = \Re(z_1)$, pour tout $t \in [0, 1]$,

$$z_{t} = \Re(z_{0}) + i\sqrt{(1-t)(|z_{0}|^{2} - \Re(z_{0})^{2}) + t(|z_{1}|^{2} - \Re(z_{1})^{2})}$$

$$= \Re(z_{0}) + i\sqrt{(|z_{0}|^{2} - \Re(z_{0})^{2}) + t((|z_{1}|^{2} - \Re(z_{1})^{2}) - (|z_{0}|^{2} - \Re(z_{0})^{2}))}$$

$$= \Re(z_{0}) + i\sqrt{\Im(z_{0})^{2} + t(\Im(z_{1})^{2} - \Im(z_{0})^{2})}$$

Supposons que $\mathscr{I}m(z_0) \leqslant \mathscr{I}m(z_1)$.

 $f: t \mapsto \mathcal{I}m\left(z_0\right)^2 + t\left(\mathcal{I}m\left(z_1\right)^2 - \mathcal{I}m\left(z_0\right)^2\right)$ est la fonction affine qui vaut en 0 :

$$f(0) = \mathscr{I}m\left(z_0\right)^2$$

et en 1,

$$f(1) = \mathscr{I}m(z_1)^2$$

Or cette fonction affine est continue et croissante (pente positive car $0 < \mathcal{I}m(z_0) \leq \mathcal{I}m(z_1)$) donc $f([0,1]) = [\mathcal{I}m(z_0)^2, \mathcal{I}m(z_1)^2]$.

La fonction racine carrée est également continue et croissante donc l'image du segment [0,1] par la fonction $t\mapsto \sqrt{|\Delta_t'|}=\sqrt{f(t)}$ est le segment $[\sqrt{\mathscr{I}m\left(z_0\right)^2},\sqrt{\mathscr{I}m\left(z_1\right)^2}]=[\mathscr{I}m\left(z_0\right),\mathscr{I}m\left(z_1\right)].$ Finalement, le point mobile d'affixe z_t , lorsque t parcourt le seg-

ment [0,1], a une partie réelle constante égale à $\Re(z_0)$ et une partie imaginaire qui croît continûment de $\Im(z_0)$ à $\Im(z_1)$.

On procède de la même manière en adaptant le raisonnement si $\mathcal{I}m\left(z_{0}\right)>\mathcal{I}m\left(z_{1}\right).$

Par conséquent, lorsque t parcourt [0,1], z_t décrit le segment vertical reliant les points d'affixes z_0 et z_1 .

19.a) En utilisant l'expression de z_t obtenue précédemment, et le fait que $\overline{x} = x$ car $x \in \mathbb{R}$,

$$|z_{t} - x|^{2} = (z_{t} - x)(\overline{z_{t}} - x)$$

$$= |z_{t}|^{2} - 2x\Re(z_{t}) + x^{2}$$

$$= [(1 - t)\Re(z_{0}) + t\Re(z_{1})]^{2} + \sqrt{|\Delta'_{t}|}^{2}$$

$$-2x[(1 - t)\Re(z_{0}) + t\Re(z_{1})] + x^{2}$$

$$= [\Re(z_{0}) + t(\Re(z_{1}) - \Re(z_{0}))]^{2} + |\Delta'_{t}|$$

$$-2x[\Re(z_{0}) + t(\Re(z_{1}) - \Re(z_{0}))] + x^{2}$$

Or
$$|\Delta'_t| = (1-t)(|z_0|^2 - \Re (z_0)^2) + t(|z_1|^2 - \Re (z_1)^2) + t(1-t)(\Re (z_0) - \Re (z_1))^2$$

$$|z_{t}| - x|^{2} = \Re(z_{0})^{2} + t^{2} (\Re(z_{1}) - \Re(z_{0}))^{2} + 2t\Re(z_{0}) (\Re(z_{1}) - \Re(z_{0})) + (1 - t)(|z_{0}|^{2} - \Re(z_{0})^{2}) + t(|z_{1}|^{2} - \Re(z_{1})^{2}) + t(1 - t)(\Re(z_{0}) - \Re(z_{1}))^{2} - 2x [\Re(z_{0}) + t(\Re(z_{1}) - \Re(z_{0}))] + x^{2}$$

$$= t \left[2\Re(z_{0}) (\Re(z_{1}) - \Re(z_{0})) - (|z_{0}|^{2} - \Re(z_{0})^{2}) + (|z_{1}|^{2} - \Re(z_{1})^{2}) + (\Re(z_{0}) - \Re(z_{1}))^{2} \right] - 2xt(\Re(z_{1}) - \Re(z_{0})) + (\Re(z_{0})^{2} + (|z_{0}|^{2} - \Re(z_{0})^{2}) - 2x\Re(z_{0}) + x^{2}$$

$$= t \left[2x(\Re(z_{0}) - \Re(z_{1})) - |z_{0}|^{2} + |z_{1}|^{2} \right] + x^{2} - 2x\Re(z_{0}) + |z_{0}|^{2}.$$

Ainsi,
$$|z_t - x|^2 = \lambda t + \mu$$
 où $\lambda = 2x (\Re(z_0) - \Re(z_1)) - |z_0|^2 + |z_1|^2$ et $\mu = x^2 - 2x \Re(z_0) + |z_0|^2$.

b) Dans l'expressions ci-dessus, nous avons la liberté de choisir le réel x et si nous parvenons à le choisir de manière à rendre le nombre λ nul, alors $\forall t \in [0,1], |z_t - x| = \mu$.

Posons
$$x_{0,1} = \frac{|z_0|^2 - |z_1|^2}{2(\Re(z_0) - \Re(z_1))}$$
, qui est bien défini car $\Re(z_0) \neq \Re(z_1)$.

Alors,

$$\forall t \in [0,1], |z_t - x_{0,1}|^2 = x_{0,1}^2 - 2x_{0,1} \Re (z_0) + |z_0|^2$$

donc $\forall t \in [0,1], |z_t - x_{0,1}|$ est une constante si bien que

pour tout
$$t \in [0, 1]$$
, z_t appartient au cercle de centre $(x_{0,1}, 0)$ et de rayon $\sqrt{x_{0,1}^2 - 2x_{0,1} \Re(z_0) + |z_0|^2}$.

Remarque. On pourrait montrer que le chemin $t\mapsto z_t$ qui relie z_0 à z_1 est le plus court chemin entre ces deux points au sens de la distance hyperbolique. Un tel chemin est une $g\acute{e}od\acute{e}sique$. Dans la géométrie du demi-plan de Poincaré $\mathbb P$, les géodésiques sont donc : soit des segments verticaux, soit des arcs de cercle dont le centre est situé sur l'axe des réels.

Partie V : Décomposition des homographies

20. Soit $t \in \mathbb{R}$, On a le développement $(e^t + e^{-t})(e^t - e^{-t}) = (e^{2t} - 1 + 1 - e^{-2t})$.

Ce qui s'écrit : $2 \operatorname{ch}(t) \times 2 \operatorname{sh}(t) = 2 \operatorname{sh}(2t)$, donc

$$sh(2t) = 2 ch(t) sh(t)$$

21. Soit $\theta \in \mathbb{R}$.

$$\det \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} = \cos^2(\theta) + \sin^2(\theta) = 1 > 0, \text{ donc}$$

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \in E \text{ si bien que } \boxed{f_{\theta} \text{ est une homographie.}}$$

$$\det \begin{pmatrix} \cosh(\theta) & \sinh(\theta) \\ \sinh(\theta) & \cosh(\theta) \end{pmatrix} = \cosh^2(\theta) - \sinh^2(\theta) = 1 > 0, \text{ donc}$$

$$\begin{pmatrix} \cosh(\theta) & \sinh(\theta) \\ \sinh(\theta) & \cosh(\theta) \end{pmatrix} \in E \text{ si bien que } \boxed{g_{\theta} \text{ est une homographie.}}$$

22. Soient $\theta, \varphi \in \mathbb{R}$.

Si pour tout $z \in \mathbb{C}$, $f_{\theta}(z) = f_{\varphi}(z)$, alors les matrices associées sont en relation \mathscr{R} .

Ainsi, d'après la question 8., il existe $\lambda \in \mathbb{R}$ tel que $\cos \theta = \lambda \cos \varphi$ et $\sin \theta = \lambda \sin \varphi$.

Nécessairement : $1 = \cos^2 \theta + \sin^2 \theta = \lambda^2 (\cos^2 \varphi + \sin^2 \varphi) = \lambda^2$. Donc $\lambda \in \{-1, 1\}$, et donc on trouve $\theta \equiv \varphi[2\pi]$ ou $\theta \equiv \pi + \varphi[2\pi]$, donc $\theta \equiv \varphi[\pi]$.

Réciproquement, supposons que $\theta \equiv \varphi$ [π]. Alors soit $\theta \equiv \varphi$ [2π], soit $\theta \equiv \varphi + \pi$ [2π].

- * Si $\theta \equiv \varphi$ [2 π], alors $\cos(\theta) = \cos(\varphi)$ et $\sin(\theta) = \sin(\varphi)$ donc $f_{\theta} = f_{\varphi}$.
- * Si $\theta \equiv \varphi + \pi$ [2 π], alors $\cos(\theta) = \cos(\varphi + \pi) = -\cos(\varphi)$ et $\sin(\theta) = \sin(\varphi + \pi) = -\sin(\varphi)$ donc $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} = -\begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$ si bien que les homographies associées sont égales (question II. 8 pour $\lambda = -1$) : $f_{\theta} = f_{\varphi}$.

Ainsi, pour tous
$$\theta, \varphi \in \mathbb{R}$$
, $f_{\theta} = f_{\varphi} \iff \theta \equiv \varphi \ [\pi]$.

- 23. Raisonnons par analyse-synthèse.
 - Supposons qu'il existe $(\lambda, t) \in \mathbb{R}_+^* \times \mathbb{R}$ tel que $x + iy = \lambda g_t(i)$. Alors $x + iy = \lambda \frac{\operatorname{ch}(t)i + \operatorname{sh}(t)}{\operatorname{sh}(t)i + \operatorname{ch}(t)}$ donc Dans un premier temps :

$$|x + iy| = \lambda_{>0} \left| \frac{\operatorname{ch} t \, \mathbf{i} + \operatorname{sh} t}{\operatorname{sh}(t) \, \mathbf{i} + \operatorname{ch} t} \right| = \lambda$$

$$x + iy = \lambda \frac{(\operatorname{ch}(t)i + \operatorname{sh}(t))(-\operatorname{sh}(t)i + \operatorname{ch}(t))}{\operatorname{sh}^{2}(t) + \operatorname{ch}^{2}(t)}$$
$$= \lambda \frac{2\operatorname{sh}(t)\operatorname{ch}(t) + (\operatorname{ch}^{2}(t) - \operatorname{sh}^{2}(t))i}{\operatorname{sh}^{2}(t) + \operatorname{ch}^{2}(t)} = \lambda \frac{\operatorname{sh}(2t) + i}{\operatorname{ch}(2t)}$$

si bien que, par unicité de la partie réelle et de la partie imaginaire,

$$\begin{cases} x = \lambda \frac{\sinh(2t)}{\cosh(2t)} \\ y = \frac{\lambda}{\cosh(2t)} \end{cases}$$

Puisque y>0, il est possible de multiplier la première équation par $\frac{1}{y}$ (c'est-à-dire de faire le rapport des deux équations membre à membre) pour obtenir

$$\frac{x}{y} = \operatorname{sh}(2t)$$

Or la fonction sh est

- \star continue sur \mathbb{R} ,
- * strictement croissante sur \mathbb{R} (car dérivable de dérivée ch > 0 sur \mathbb{R}),
- $\star \lim_{x \to -\infty} \operatorname{sh}(x) = -\infty$ et $\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$ donc elle réalise une bijection de \mathbb{R} dans \mathbb{R} .

La dernière égalité établie impose donc $t = \frac{1}{2} \operatorname{sh}^{-1} \left(\frac{x}{y} \right)$ puis nécessairement également $\lambda = y \operatorname{ch}(2t) = y \operatorname{ch} \left(\operatorname{sh}^{-1} \left(\frac{x}{y} \right) \right)$.

Ainsi, sous réserve d'existence, les scalaires λ et t sont uniques.

- Posons $t = \frac{1}{2} \operatorname{sh}^{-1} \left(\frac{x}{y} \right)$ et $\lambda = y \operatorname{ch} \left(\operatorname{sh}^{-1} \left(\frac{x}{y} \right) \right) = y \operatorname{ch}(2t)$.
 - * Par définition, d'une part $t \in \mathbb{R}$ et d'autre part, sachant que y > 0 et $\operatorname{ch}(\mathbb{R}) \subset \mathbb{R}_+^*$, $\lambda \in \mathbb{R}_+^*$.
 - \star En reprenant des calculs effectués précédemment, et en observant que $\mathrm{sh}(2t)=\frac{x}{y},$

$$\lambda g_t(i) = \lambda \frac{\operatorname{sh}(2t) + i}{\operatorname{ch}(2t)} = y \operatorname{ch}(2t) \frac{\frac{x}{y} + i}{\operatorname{ch}(2t)} = x + iy = z$$

Par conséquent, il existe au moins un couple $(\lambda, t) \in \mathbb{R}_+^* \times \mathbb{R}$ tel que $z = \lambda g_t(i)$.

Ainsi, il existe un unique couple $(\lambda, t) \in \mathbb{R}_+^* \times \mathbb{R}$ tel que $z = \lambda g_t(i)$.

24. Raisonnons par analyse-synthèse.

Soit $h \in \mathcal{H}$.

• Analyse. Supposons qu'il existe $(\theta, \lambda, t) \in [0, \pi[\times \mathbb{R}_+^* \times \mathbb{R}_+^*]$ tels que $h = \lambda g_t \circ f_{\theta}$.

Une remarque importante : i est un point fixe pour toutes les homographies f_{θ} ce qui se vérifie par le calcul :

$$\forall \theta \in \mathbb{R} , f_{\theta}(i) = \frac{i \cos \theta - \sin \theta}{i \sin \theta + \cos \theta} = \frac{i e^{i\theta}}{e^{i\theta}} = i$$

ou se déduit de la question II.12.b dans laquelle nous avons explicité toutes les homographies admettant i comme point fixe et il est alors immédiat de vérifier que les homographies f_{θ} en font partie.

Évaluons la relation $h = \lambda g_t \circ f_\theta$ en i (ce qui a du sens car $i \in \mathbb{P}$) et utilisons que $f_\theta(i) = i$ pour obtenir

$$h(i) = \lambda g_t(i)$$

Or $h(i) \in \mathbb{P}$ donc la question précédente permet d'affirmer que l'égalité ci-dessus détermine $\lambda \in \mathbb{R}_+^*$ et $t \in \mathbb{R}$ de manière unique :

$$t = \frac{1}{2} \operatorname{sh}^{-1} \left(\frac{\mathscr{R}e(h(i))}{\mathscr{I}m(h(i))} \right)$$
 et $\lambda = \mathscr{I}m(h(i))\operatorname{ch}(2t)$

Puisque $\lambda \neq 0$ la relation $h = \lambda g_t \circ f_\theta$ impose $\frac{1}{\lambda}h = g_t \circ f_\theta$ et comme les homographies sont des bijections de \mathbb{P} dans \mathbb{P} , on a $f_\theta = g_t^{-1} \circ \left(\frac{1}{\lambda}h\right)$ ce qui montre que l'homographie f_θ est déterminée et donc unique.

Par ailleurs nous avons établi dans la question 21 que deux homographies f_{φ} et f_{ψ} sont égales si et seulement si $\theta \equiv \psi$ $[\pi]$ ce qui signifie que, pour toute homographie de la forme f_{φ} , il existe une unique valeur $\varphi_0 \in [0, \pi[$ telle que $f_{\varphi} = f_{\varphi_0}$. En appliquant ce résultat à l'homographie f_{θ} ci-dessus, il existe une unique valeur $\theta_0 \in [0, \pi[$ telle que $f_{\theta} = f_{\theta_0}$, or $\theta \in [0, \pi[$ donc $\theta = \theta_0$ ce qui établit l'unicité de θ .

Ainsi, sous réserve d'existence, le triplet $(\theta, \lambda, t) \in [0, \pi[\times \mathbb{R}^*_+ \times \mathbb{R} \text{ est unique.}]$

• Synthèse. Posons $t = \frac{1}{2} \operatorname{sh}^{-1} \left(\frac{\Re(h(i))}{\mathscr{I}_m(h(i))} \right)$ et $\lambda = \mathscr{I}_m(h(i)) \operatorname{ch}(2t)$.

Puisque $h(i) \in \mathbb{P}$, $\mathcal{I}m(h(i)) > 0$ donc $\lambda = \mathcal{I}m(h(i))\operatorname{ch}(2t) > 0$ (car ch > 0).

Observons alors que, pour $H=\begin{pmatrix} \frac{1}{\lambda} & 0\\ 0 & 1 \end{pmatrix} \in E$ (car $\det(H)=\frac{1}{\lambda}>0$), l'homographie associée est

 $h_H: \mathbb{P} \to \mathbb{P}$ $z \mapsto \frac{\frac{1}{\lambda}z+0}{0z+1} = \frac{1}{\lambda}z$ si bien que $\frac{1}{\lambda}h = h_H \circ h \in \mathscr{H}$

(par stabilité de \mathscr{H} pour la loi \circ).

Notons $u = g_t^{-1} \circ (\frac{1}{\lambda}h)$. u est une homographie (composée de deux homographies).

Calculons u(i) en rappelant que les choix de λ et t ci-dessus garantissent, d'après la question précédente, que $h(i) = \lambda g_t(i)$:

$$u(i) = g_t^{-1} \left(\frac{1}{\lambda} h(i)\right) = g_t^{-1} \left(\frac{1}{\lambda} \times \lambda g_t(i)\right) = (g_t^{-1} \circ g_t)(i) = i$$

Par conséquent, u est une homographie admettant i comme point fixe donc, d'après la question II-11.c), il existe $(a, c) \in \mathbb{R}^2 \setminus \{(0, 0)\}$:

$$u = h_R$$
 où $R = \begin{pmatrix} a & -c \\ c & a \end{pmatrix}$

Posons $R' = \frac{1}{\sqrt{a^2 + c^2}} R = \begin{pmatrix} \frac{a}{\sqrt{a^2 + c^2}} & -\frac{c}{\sqrt{a^2 + c^2}} \\ \frac{c}{\sqrt{a^2 + c^2}} & \frac{a}{\sqrt{a^2 + c^2}} \end{pmatrix}$ ce qui a du sens car $(a, c) \neq (0, 0)$ donc $a^2 + c^2 > 0$.

Le nombre complexe $\frac{a}{\sqrt{a^2+c^2}}+i\frac{c}{\sqrt{a^2+c^2}}$ est de module 1 donc il existe $\varphi\in\mathbb{R}$:

$$\frac{a}{\sqrt{a^2+c^2}} + i\frac{c}{\sqrt{a^2+c^2}} = e^{i\varphi}$$

si bien que

$$R' = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

On observe alors d'une part que $h_{R'} = f_{\varphi}$ et d'autre part que la relation de proportionnalité entre R et R' impose (voir

question II-8) $h_R = h_{R'}$ si bien que

$$u = f_{\varphi}$$

Posons θ l'unique représentant de φ modulo π dans $[0,\pi[$.

- * Par définition et construction, $t \in \mathbb{R}$, $\lambda \in \mathbb{R}_+^*$ (car $h(i) \in \mathbb{P}$ donc $\mathscr{I}m(h(i)) > 0$ et ch est à valeurs strictement positives) et $\theta \in [0, \pi[$.
- * D'après la question V-21, puisque $\varphi \equiv \theta \ [\pi], f_{\theta} = f_{\varphi}$, or nous avons établi que $u = f_{\varphi}$ donc $u = f_{\theta}$. Compte tenu de la définition de u,

$$g_t^{-1} \circ \left(\frac{1}{\lambda}h\right) = f_\theta$$

si bien qu'en composant par g_t à gauche, puis en multipliant par λ

$$h = \lambda g_t \circ f_\theta$$

Par conséquent, il existe au moins un triplet $(\theta, \lambda, t) \in [0, \pi[\times \mathbb{R}^*_+ \times \mathbb{R} \text{ tel que } h = \lambda g_t \circ f_{\theta}.$

Ainsi, pour toute homographie h, il existe un unique triplet $(\theta, \lambda, t) \in [0, \pi[\times \mathbb{R}^*_+ \times \mathbb{R} \text{ tel que } h = \lambda g_t \circ f_{\theta}.$

