Devoir Surveillé n°2

Sujet donné le samedi 18 octobre 2025, 4h.

L'usage de la calculatrice n'est pas autorisé.

La notation tiendra particulièrement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des <u>formules utilisées</u>. Les réponses aux questions seront numérotées et séparées par un trait horizontal. Les résultats essentiels devront être encadrés ou soulignés.

BON TRAVAIL

Excursion de 4h dans le demi-plan de Poincaré

On note \mathbb{P} le demi-plan de Poincaré, c'est-à-dire l'ensemble des nombres complexes de partie imaginaire strictement positive :

$$\mathbb{P} = \{ z \in \mathbb{C} ; \operatorname{Im} z > 0 \}.$$

On note E l'ensemble des matrices d'ordre 2 de déterminant strictement positif :

$$E = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R}) \; ; \; \det(M) := ad - bc > 0 \right\}.$$

Pour tout $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E,$ on note h_M l'application :

$$h_M: \mathbb{P} \to \mathbb{P}$$

$$z \mapsto \frac{az+b}{cz+d}$$

Une fonction $f: \mathbb{P} \to \mathbb{P}$ est une homographie s'il existe $M \in E$ tel que $f = h_M$. L'ensemble des homographies est noté \mathscr{H} :

$$\mathcal{H} = \left\{ \begin{array}{ccc} \mathbb{P} & \rightarrow & \mathbb{P} \\ z & \mapsto & \frac{az+b}{cz+d} \end{array}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E \right\}.$$

- **1.** Soient $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$ et $z \in \mathbb{P}$.
 - a) Montrer que $h_M(z)$ est bien défini.
 - **b)** Montrer que $h_M(z) \in \mathbb{P}$.

Cette question permet de justifier a posteriori la définition des homographies proposée en début d'énoncé.

Partie I: Ensembles images

On note h l'homographie associée à l'élément $\begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$. Ainsi, $h: z \mapsto \frac{2z+3}{-z+1}$. On considère les ensembles $\Gamma = \left\{ \mathrm{e}^{\mathrm{i}\,\theta}, \ \theta \in]0, \pi[\right\}, \ D = \left\{ -1 + x\, \mathrm{i}, \ x > 0 \right\}$ et $\Delta_+ = \left\{ \frac{1}{2} + \mathrm{i}\, x, \ x > 0 \right\}$.

- **2.** Montrer que $\Gamma \subset \mathbb{P}$.
- 3. Sur un même graphique, représenter les ensembles Γ et D.
- **4.** Soit f l'application définie pour tout $\theta \in]0,\pi[$ par $f(\theta)=\frac{\sin(\theta)}{1-\cos(\theta)}$
 - a) Dresser le tableau de variations de f en précisant les valeurs aux bornes de l'intervalle de définition.
 - **b**) Soit $\theta \in]0, \pi[$. Écrire $h(e^{i\theta})$ sous forme algébrique.
 - c) En déduire $h(\Gamma) = \Delta_+$.

 On justifiera soigneusement cette égalité ensembliste.
- **5.** Soit $z = -1 + x i \in D$.
 - a) Écrire h(z) sous forme algébrique. On notera h(z) = X + i Y où $(X,Y) \in \mathbb{R}^2$.
 - **b)** Calculer $(X + \frac{3}{4})^2 + Y^2$.
 - c) En déduire que h(D) est inclus dans une forme géométrique simple dont on précisera les éléments caractéristiques principaux.

Partie II : Structure de ${\mathcal H}$

- **6.** On pose $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Montrer que $I \in E$ et décrire l'application h_I .
- 7. Déterminer l'ensemble des élements $M \in E$ tels que : $\forall z \in \mathbb{P}, h_M(z) = z$.
- **8.** On définit sur E la relation binaire : $M \mathcal{R} N$ si $h_M = h_N$.
 - a) Montrer que \mathcal{R} est une relation d'équivalence.
 - **b)** Soit $M \in E$. Déterminer la classe d'équivalence de M.
- 9. Soit $(M_1, M_2) \in E^2$, montrer que $h_{M_1} \circ h_{M_2}$ est une homographie. Plus précisément, montrer $h_{M_1} \circ h_{M_2} = h_{M_1 \times M_2}$ Il s'agit du produit matriciel M_1 par M_2 .
- **10.** Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$.
 - a) On suppose, dans cette sous-question, que $\det(M) = 1$. On note $M' = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Expliciter $h_M \circ h_{M'}$ et $h_{M'} \circ h_M$. Que peut-on en déduire concernant l'application h_M ?
 - b) On ne suppose plus que $\det M=1$. On rappelle toute fois que $\det M>0$. Justifier l'existence de $\lambda\in\mathbb{R}_+^*$ tel que $\lambda M\in E$ et $\det(\lambda M)=1$. En déduire que h_M est bijective et déterminer h_M^{-1} .
- 11. Décrire l'ensemble des homographies h qui satisfont h(i) = i.
- 12. Soit $M \in E \setminus \{\lambda I, \lambda \in \mathbb{R}\}$. Déterminer une condition nécessaire et suffisante sur E pour que h_M admette un point fixe, c'est-à-dire qu'il existe $z \in \mathbb{P}$ tel que $h_M(z) = z$.
- 13. On considère l'application $0 : E \longrightarrow \mathcal{H} \longrightarrow h_M$. Indiquez si chacune des assertions suivantes est vraie, en justifiant votre réponse (par une démonstration ou un contre-exemple).
 - a) L'application Φ est injective.
 - **b)** L'application Φ est surjective.
 - c) L'application Φ est bijective.

Partie III: Distance hyperbolique

14. Montrer que pour tous $u, v \in \mathbb{P}$, $|u - v| < |u - \overline{v}|$, puis que $\frac{|u - \overline{v}| + |u - v|}{|u - \overline{v}| - |u - v|} \geqslant 1$.

Pour tous $u, v \in \mathbb{P}$, la distance hyperbolique entre u et v, notée d(u, v), est définie par

$$d(u,v) = \ln \left(\frac{|u - \overline{v}| + |u - v|}{|u - \overline{v}| - |u - v|} \right).$$

- **15.** Montrer que pour tout $u, v \in \mathbb{P}$,
 - **a)** $d(u, v) \ge 0$.
 - **b)** $d(u, v) = 0 \iff u = v$.
 - **c)** d(u, v) = d(v, u).

On admettra par ailleurs que pour tous $u, v, w \in \mathbb{P}$, $d(u, w) \leq d(u, v) + d(v, w)$. Ces propriétés montrent que l'application d est une distance sur \mathbb{P} .

- **16.** Soit $M \in E$.
 - a) Pour tous $z, z' \in \mathbb{P}$, exprimer $h_M(z) h_M(z')$ en fonction de z z', ad bc, cz + d et cz' + d.
 - **b)** En déduire que pour tous $z, z' \in \mathbb{P}$, $d(h_M(z), h_M(z')) = d(z, z')$.

On a ainsi démontré que les homographies sont des isométries du demi-plan de Poincaré.

Partie IV: Géodésiques

Soient $z_0, z_1 \in \mathbb{P}$.

17. On pose $P_0(X) = X^2 - 2\Re(z_0)X + |z_0|^2$ et $P_1(X) = X^2 - 2\Re(z_1)X + |z_1|^2$. Pour tout $t \in]0,1[$, on note $P_t(X) = (1-t)P_0(X) + tP_1(X)$ et Δ'_t son discriminant réduit (qui vaut $\frac{1}{4}$ du discriminant).

Dans toute la suite, t désigne un réel de l'intervalle]0,1[.

- **a)** Montrer que, pour tout $z \in \mathbb{P}$, $|\Re(z)| < |z|$.
- **b)** Montrer que $\Delta'_t < -t(1-t) (\Re(z_0) \Re(z_1))^2$.
- c) En déduire que $P_t(X)$ possède une unique racine dans \mathbb{P} , notée z_t .
- **d)** Exprimer z_t en fonction de t, $\Re(z_0)$, $\Re(z_1)$ et Δ'_t .
- **18.** On suppose que $\Re(z_0) = \Re(z_1)$.

Montrer que pour tout $t \in [0,1]$, z_t appartient à la droite verticale qui contient z_0 et z_1 . On pourrait montrer que z_t décrit le segment qui relie z_0 à z_1 lorsque t décrit [0,1].

- **19.** On suppose que $\Re(z_0) \neq \Re(z_1)$.
 - a) Pour tout $x \in \mathbb{R}$ et $t \in [0,1]$. Montrer qu'il existe deux réels λ et μ indépendants de t, que vous préciserez, tels que $|z_t x|^2 = \lambda t + \mu$.
 - **b)** En déduire que pour tout $t \in [0,1]$, z_t appartient à un cercle de centre situé sur l'axe des réels.

On peut montrer que z_t décrit précisément l'arc de cercle qui relie z_0 à z_1 sur le cercle décrit précédemment lorsque t décrit [0,1].

Partie V : Décomposition des homographies

Pour tout θ , t réels et $z \in \mathbb{P}$, on note,

$$f_{\theta}(z) = \frac{\cos(\theta)z - \sin(\theta)}{\sin(\theta)z + \cos(\theta)} \text{ et } g_t(z) = \frac{\operatorname{ch}(t)z + \operatorname{sh}(t)}{\operatorname{sh}(t)z + \operatorname{ch}(t)}.$$

- **20.** Soit $t \in \mathbb{R}$. Exprimer sh(2t) en fonction de ch(t) et sh(t).
- **21.** Soit $\theta \in \mathbb{R}$. Montrer que f_{θ} et g_t sont des homographies.
- 22. Soient $\theta, \varphi \in \mathbb{R}$. Déterminer une condition nécessaire et suffisante pour que :

$$\forall z \in \mathbb{P}, f_{\theta}(z) = f_{\varphi}(z).$$

- **23.** Soit z = x + y i $\in \mathbb{P}$ écrit sous forme algébrique. Montrer qu'il existe un unique couple $(\lambda, t) \in \mathbb{R}_+^* \times \mathbb{R}$ tel que $z = \lambda g_t(i)$.
- **24.** Soit $h \in \mathcal{H}$. Montrer qu'il existe un unique triplet $(\lambda, t, \theta) \in \mathbb{R}_+^* \times \mathbb{R} \times [0, \pi[$ tel que $h = \lambda g_t \circ f_\theta$.