

Leçon 30 - Fonctions primitives et équations différentielles

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
- Intégrales e orimitives
- 4. Equations différentielles (dérivation/intégration tordue)
 - .1. Vocabulaire
- 4.2. Equation différentielle

- 1. Problèmes
- 2. Primitives
- 3. Intégrales et primitives
- 4. Equations différentielles (dérivation/intégration tordue)
 - 4.1. Vocabulaire
 - 4.2. Equation différentielle linéaire d'ordre 1

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff

- Problèmes
- Primitives
- Intégrales et rimitives
- i. Equations lifférentielles dérivation/intégration
- 4.1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

- 1. Problèmes
- 2. Primitives
- 3. Intégrales et primitives
- 4. Equations différentielles (dérivation/intégration tordue)
 - 4.1. Vocabulaire
 - 4.2. Equation différentielle linéaire d'ordre 1

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- . Problèmes
- Drimitivoo
- . Intégrales et
- 4. Equations
 différentielles
 (dérivation/intégratio
- 4.1. Vocabulaire
- 4.2. Equation différentielle

Vocabulaire

D'une manière générale on appelle équation différentielle *une* équation faisant intervenir les dérivées successives d'une même fonction, elle est du <u>premier ordre</u> si elle porte sur la fonction et sa dérivée première, <u>du second ordre</u> si elle porte sur la fonction et ses dérivées première et seconde...

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- 2. Primitives
- Intégrales et
- l. Equations lifférentielles dérivation/intégration product
- 4.1. Vocabulaire
- 4.2. Equation différentielle

Vocabulaire

D'une manière générale on appelle équation différentielle *une* équation faisant intervenir les dérivées successives d'une même fonction, elle est du premier ordre si elle porte sur la fonction et sa dérivée première, <u>du second ordre</u> si elle porte sur la fonction et ses dérivées première et seconde...

La résolution d'un problème de Cauchy est la résolution d'une équation différentielle avec des conditions initiales.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- 2. Primitives
- . Intégrales e
- 4. Equations différentielles (dérivation/intégration
- 4.1. Vocabulaire
- .2. Equation différentielle

Définition

Définition - Equation différentielle linéaire du premier ordre

Une équation différentielle (E) est dite linéaire et du premier ordre si elle s'écrit $\alpha(t)y'+\beta(t)y=\gamma(t)$ où α,β,γ sont trois fonctions définies sur un intervalle I de $\mathbb R$ (à valeurs dans $\mathbb R$ ou $\mathbb C$). Elle est dite normalisée si elle s'écrit y'+a(t)y=b(t) où a,b sont deux fonctions définies sur un intervalle I de $\mathbb R$ (à valeurs dans $\mathbb R$ ou $\mathbb C$).

b(t) (ou $\gamma(t)$) est le second membre, l'équation est dite sans second membre ou homogène si la fonction b est nulle.

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problème
- 2. Primitives
- Intégrales e primitives
- 4. Equations
 différentielles
 (dérivation/intégratio
- 4.1. Vocabulaire
- .2. Equation différentielle

Définition

Définition - Equation différentielle linéaire du premier ordre

Une équation différentielle (E) est dite linéaire et du premier ordre si elle s'écrit $\alpha(t)y'+\beta(t)y=\gamma(t)$ où α,β,γ sont trois fonctions définies sur un intervalle I de $\mathbb R$ (à valeurs dans $\mathbb R$ ou $\mathbb C$). Elle est dite normalisée si elle s'écrit y'+a(t)y=b(t) où a,b sont deux fonctions définies sur un intervalle I de $\mathbb R$ (à valeurs dans $\mathbb R$ ou $\mathbb C$).

b(t) (ou $\gamma(t)$) est le *second membre*, l'équation est dite *sans second membre ou homogène* si la fonction b est nulle.

Remarque Mise sous forme normale

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problème
- 2. Primitives
- . Intégrales el rimitives
- 4. Equations
 différentielles
 (dérivation/intégratio
 tordue)
- 4.1. Vocabulaire
- 4.2. Equation différentielle

Problème de Cauchy

Définition - Problème de Cauchy du premier ordre

On appelle problème de Cauchy du premier ordre la donnée d'une équation différentielle du premier ordre et d'une condition initiale $y(t_0)=y_0$ où $t_0\in\mathbb{R}$ et $y_0\in\mathbb{C}$ (ou \mathbb{R}).

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- I. Problèmes
- Primitives
- . Intégrales et
- l. Equations lifférentielles dérivation/intégration
- 4.1. Vocabulaire
- 4.2. Equation différentielle

On appelle problème de Cauchy du premier ordre la donnée d'une équation différentielle du premier ordre et d'une condition initiale $y(t_0) = y_0$ où $t_0 \in \mathbb{R}$ et $y_0 \in \mathbb{C}$ (ou \mathbb{R}).

⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

Définition - Solutions

Soit f une fonction de I dans \mathbb{C} . f est solution de (E) $\alpha(t)y' + \beta(t)y = \gamma(t)$ si

- 1. f est dérivable sur I,
- 2. $\forall t \in I$, $\alpha(t)f'(t) + \beta(t)f(t) = \gamma(t)$.

On pourra noter S_E l'ensemble des solutions de (E).

Résoudre l'équation différentielle (E) c'est donc déterminer l'ensemble S_E , c'est-à-dire trouver toutes les solutions sur I.

On appelle *courbe intégrale* de (E) la courbe représentative d'une solution de (E).

. Problèmes

Primitivos

. Intégrales et

. Equations lifférentielles dérivation/intégration

4.1. Vocabulaire

4.2. Equation différentielle linéaire d'ordre 1

Remarque Convention réelle

- Leçon 30 Fonctions primitives et équations différentielles
- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - . Primitives
- Intégrales en la communication de la
- Equations différentielles (dérivation/intégratio tordue)
- 4.1. Vocabulaire
- 4.2. Equation différentielle

Remarque Convention réelle

Définition - Solution d'un problème de Cauchy

Résoudre le problème de Cauchy défini par (E) et $y(t_0) = y_0$, c'est déterminer toutes les solutions f de (E) vérifiant $f(t_0) = y_0$.

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - . Problèmes
 - Primitives
 - Intégrales et imitives
 - . Equations lifférentielles dérivation/intégration produe)
- 4.1. Vocabulaire
- 4.2. Equation différentielle

Remarque Convention réelle

Définition - Solution d'un problème de Cauchy

Résoudre le problème de Cauchy défini par (E) et $y(t_0) = y_0$, c'est déterminer toutes les solutions f de (E) vérifiant $f(t_0) = y_0$.

Remarque Une/la solution?

- Leçon 30 Fonctions primitives et équations différentielles
- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - . Problèmes
 - Primitives
 - Intégrales et
 - l. Equations lifférentielles dérivation/intégration
- 4.1. Vocabulaire
- 4.2. Equation différentielle

Remarque Convention réelle

Définition - Solution d'un problème de Cauchy

Résoudre le problème de Cauchy défini par (E) et $y(t_0) = y_0$, c'est déterminer toutes les solutions f de (E) vérifiant $f(t_0) = y_0$.

Remarque Une/la solution?

Savoir-faire. Découper I pour avoir des équations normalisées

Si α s'annule sur I, on cherchera à découper I en plusieurs intervalles ouverts sur lesquels elle ne s'annule pas pour se ramener à des équations normalisées.

Ensuite on cherchera les solutions sur I par « recollement », c'est-à-dire que l'on regardera, parmi les fonctions définies par morceaux sur chacun des intervalles, celles qui sont dérivables sur I (problème aux points de recollement, c'est-à-dire ceux où α s'annulait) et vérifient (E) sur I.

40 + 40 + 40 + 40 + 40 +

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- 1. Problème
- Primitives
- . Intégrales e rimitives
- 4. Equations différentielles (dérivation/intégration tordue)
- 4.1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Proposition - Principe de superposition des solutions

Si le second membre de l'équation (E) est de la forme $b(t)=b_1(t)+\cdots+b_n(t)$ et si l'on connaît des solutions particulières $\widetilde{y}_1,\ldots,\widetilde{y}_n$ des équations avec les seconds membres $b_1(t),\ldots,b_n(t)$, alors une solution particulière de (E) est $\widetilde{y}=\widetilde{y}_1+\cdots+\widetilde{y}_n$.

⇒ Vocabulaire équa. diff.

- 1. Problème:
- . Primitives
- . Intégrales el rimitives
- Equations
 différentielles
 (dérivation/intégration)
- 4.1. Vocabulaire
- I.2. Equation différentielle

⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

1. Problèmes

. Primitives

. Intégrales e

 Equations différentielles dérivation/intégration

4.1. Vocabulaire

4.2. Equation différentielle

Le principe suivant est d'usage fréquent en physique : il permet de s'intéresser à des seconds membres simples.

Proposition - Principe de superposition des solutions

Si le second membre de l'équation (E) est de la forme $b(t) = b_1(t) + \dots + b_n(t)$ et si l'on connaît des solutions particulières $\widetilde{y}_1, \dots, \widetilde{y}_n$ des équations avec les seconds membres $b_1(t), \dots, b_n(t)$, alors une solution particulière de (E) est $\widetilde{y} = \widetilde{y}_1 + \dots + \widetilde{y}_n$.

Démonstration

- ⇒Définir le vocabulaire associé aux équations différentielles
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

- 1. Problèmes
- 2. Primitives
- 3. Intégrales et primitives
- 4. Equations différentielles (dérivation/intégration tordue)
 - 4.1. Vocabulaire
 - 4.2. Equation différentielle linéaire d'ordre 1

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- . Problèmes
- Drimitivoo
- . Intégrales et
- Equations
 différentielles
 (dérivation/intégration)
 - 1 Moonbulning
- 4.2. Equation différentielle

Convention

On considère désormais l'équation différentielle linéaire normalisée

$$(E) y' + a(t)y = b(t)$$

où a et b sont continues sur I, intervalle de $\mathbb R$. Dans la suite $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - . Problèmes
 - Primitives
 - . Intégrales el
 - Equations différentielles dérivation/intégration ordue)
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Convention

On considère désormais l'équation différentielle linéaire normalisée

$$(E) y' + a(t)y = b(t)$$

où a et b sont continues sur I, intervalle de $\mathbb R$. Dans la suite $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$.

Heuristique. Démonstration et savoir-faire. Que retenir?

Pour les démonstrations, nous allons décomposer l'application $F_a: \mathscr{F}(\mathbb{R}) \to \mathscr{F}(\mathbb{R}), \ y \mapsto y' + ay$ en applications, plus ou moins inversible. Nous verrons alors que l'équation différentielle est une dérivation « tordue ».

A la fin du cours, nous donnerons une méthode qu'on pourra appliquer directement lors des exercices. Sauf pour les exercices théoriques (du type inégalités différentielles).

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- Problèmes
- Primitives
- Intégrales et imitives
- I. Equations différentielles dérivation/intégration ordue)
 - Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Analyse Décomposition de F_a .

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - . Primitives
- 3. Intégrales e
- 4. Equations différentielles (dérivation/intégrationtordue)
 - .1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Analyse Décomposition de F_a . Remarque Non commutativité de D et de φ_A .

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - Intégrales et primitives
 - I. Equations différentielles dérivation/intégration ordue)
 - .1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Analyse Décomposition de F_a .

Remarque Non commutativité de D et de φ_A .

Exercice

Résoudre (E): $(1+t^2)y'+4ty=0$ sur $I=\mathbb{R}$.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - Intégrales et primitives
 - I. Equations différentielles dérivation/intégration ordue)
 - Vacabulaira
- 4.2. Equation différentielle linéaire d'ordre 1

Analyse Décomposition de F_a .

Remarque Non commutativité de D et de φ_A .

Exercice

Résoudre (E): $(1+t^2)y'+4ty=0$ sur $I=\mathbb{R}$.

Remarque Comment retenir l'ensemble des solutions?

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - . Intégrales e
 - I. Equations différentielles dérivation/intégration ordue)
 - 1 Vonabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Analyse Décomposition de F_a .

Remarque Non commutativité de D et de φ_A .

Exercice

Résoudre (E): $(1+t^2)y'+4ty=0$ sur $I=\mathbb{R}$.

Remarque Comment retenir l'ensemble des solutions?

Attention. Variable x, variable t?

Nous avons noté y la fonction de la variable t, mais l'on peut bien évidemment avoir d'autres notations, par exemple y fonction de la variable x (équations différentielles donnant l'ordonnée en fonction de l'abscisse) ou x en fonction de t (équations différentielles donnant l'abscisse en fonction du temps) ou encore z en fonction de t (équations différentielles donnant l'affixe en fonction du temps).

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
 - 2. Primitives
 - B. Intégrales et primitives
- 4. Equations différentielles (dérivation/intégration torque)
 - Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Structures des solutions et méthodes

Théorème - Structure de l'ensemble S_E

La solution générale de l'équation (E) est la somme d'une solution particulière et de la solution générale de l'équation homogène associée (H), ce qui peut aussi s'écrire : Si \widetilde{y} (à lire « y tilde ») est une solution particulière de l'équation (E) alors

$$S_E = \Big\{ t \mapsto C e^{-A(t)} + \widetilde{y}(t); C \in \mathbb{K} \Big\}.$$

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- 2. Primitives
- Intégrales et
- 4. Equations différentielles (dérivation/intégration tardus)
 - I. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Structures des solutions et méthodes

Théorème - Structure de l'ensemble S_E

La solution générale de l'équation (E) est la somme d'une solution particulière et de la solution générale de l'équation homogène associée (H), ce qui peut aussi s'écrire : Si \widetilde{y} (à lire « y tilde ») est une solution particulière de l'équation (E) alors

$$S_E = \Big\{ t \mapsto C e^{-A(t)} + \widetilde{y}(t); C \in \mathbb{K} \Big\}.$$

Remarque Existence

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- I. Problèmes
- . Primitives
- Intégrales et
- différentielles (dérivation/intégration torque)
 - 1. Vocabulaire
- 4.2. Equation différentielle

Structures des solutions et méthodes

Théorème - Structure de l'ensemble S_E

La solution générale de l'équation (E) est la somme d'une solution particulière et de la solution générale de l'équation homogène associée (H), ce qui peut aussi s'écrire : Si \widetilde{y} (à lire « y tilde ») est une solution particulière de l'équation (E) alors

$$S_E = \Big\{ t \mapsto C e^{-A(t)} + \widetilde{y}(t); C \in \mathbb{K} \Big\}.$$

Remarque Existence Démonstration

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - . Problèmes
 - . Primitives
 - Intégrales et
- 4. Equations différentielles (dérivation/intégration tordue)
 - . Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Trouver une solution particulière \tilde{y}

Analyse Résoudre l'équation.

- Leçon 30 Fonctions primitives et équations différentielles
- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - . Intégrales et
- I. Equations différentielles dérivation/intégration
- 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Trouver une solution particulière \tilde{y}

Analyse Résoudre l'équation.

L'enjeu est donc maintenant de trouver une solution particulière. On doit à Lagrange la méthode de la variation de la constante qui répond explicitement à cette question (parmi d'autres méthodes).

- Leçon 30 Fonctions primitives et équations différentielles
- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- I. Problèmes
- ____
- . Intégrales et
- I. Equations différentielles dérivation/intégration
 - Voonbulnin
- 4.2. Equation différentielle

Savoir-faire. Comment trouver une équation particulière? Méthode de « variation de la constante »

D'après le théorème, il reste à trouver une solution particulière. Sans indication, la méthode classique à suivre est la suivante : Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- I. Problèmes
- Primitives
- Intégrales et
- Equations
 différentielles
 (dérivation/intégration)
 - I. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Savoir-faire. Comment trouver une équation particulière ? Méthode de « variation de la constante »

D'après le théorème, il reste à trouver une solution particulière. Sans indication, la méthode classique à suivre est la suivante :

1. On normalise l'équation différentielle (plusieurs intervalles?)

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- . Problèmes
- Primitives
- Intégrales et
- I. Equations différentielles dérivation/intégration
 - I. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Savoir-faire. Comment trouver une équation particulière? Méthode de « variation de la constante »

D'après le théorème, il reste à trouver une solution particulière. Sans indication, la méthode classique à suivre est la suivante :

- 1. On normalise l'équation différentielle (plusieurs intervalles?)
- 2. On résout l'équation différentielle homogène : $y = Ce^{-A(t)}$

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- . Problèmes
- . Primitives
- . Intégrales e
- I. Equations différentielles dérivation/intégration
 - I. Vocabulaire
- 4.2. Equation différentielle

Savoir-faire. Comment trouver une équation particulière? Méthode de « variation de la constante »

D'après le théorème, il reste à trouver une solution particulière. Sans indication, la méthode classique à suivre est la suivante :

- 1. On normalise l'équation différentielle (plusieurs intervalles?)
- 2. On résout l'équation différentielle homogène : $y = Ce^{-A(t)}$
- 3. On cherche une solution particulière :
 - en cherchant une solution évidente,
 - en utilisant le principe de superposition des solutions,
 - en essayant des fonctions simples (polynomiales lorsque a et b le sont, trigonométriques lorsque a et b le sont...),

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- I. Problèmes
- 2. Primitives
- . Intégrales el rimitives
- 4. Equations
 différentielles
 (dérivation/intégratio
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Savoir-faire. Comment trouver une équation particulière? Méthode de « variation de la constante »

D'après le théorème, il reste à trouver une solution particulière. Sans indication, la méthode classique à suivre est la suivante :

- 1. On normalise l'équation différentielle (plusieurs intervalles?)
- 2. On résout l'équation différentielle homogène : $y = Ce^{-A(t)}$
- 3. On cherche une solution particulière :
 - en faisant varier la constante C, c'est-à-dire sous la forme $\widetilde{y}: t \mapsto C(t)e^{-A(t)}$ (La constante C devient variable : « méthode de la variation de la constante »). Le calcul (à refaire à chaque fois il permet de vérifier la bonne résolution de l'équation homogène) conduit à :

$$C'(t) = b(t)e^{A(t)}$$

C'est un « simple » calcul de primitive

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- I. Problèmes
- 2. Primitives
- Intégrales e primitives
- 4. Equations différentielles (dérivation/intégration tordue)
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Savoir-faire. Comment trouver une équation particulière? Méthode de « variation de la constante »

D'après le théorème, il reste à trouver une solution particulière. Sans indication, la méthode classique à suivre est la suivante :

- 1. On normalise l'équation différentielle (plusieurs intervalles?)
- 2. On résout l'équation différentielle homogène : $y = Ce^{-A(t)}$
- 3. On cherche une solution particulière
- 4. Les solutions générales sont alors de la forme

$$y: t \mapsto (K + C(t))e^{-A(t)}$$

avec C définie au points précédent

⇒ Vocabulaire équa. diff.

- . Problèmes
- . Primitives
- Intégrales et imitives
- i. Equations différentielles dérivation/intégration ordue)
 - . Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Problème de Cauchy (linéaire d'ordre 1)

Théorème - Problème de Cauchy

Soit $t_0 \in I$ et $y_0 \in \mathbb{K}$.

Il existe une unique solution sur I de l'équation linéaire normalisée (E) y' + a(t)y = b(t) vérifiant la condition initiale $y(t_0) = y_0$.

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- 2. Primitives
- . Intégrales el
- 4. Equations différentielles (dérivation/intégration
 - 1 Manahulain
- 4.2. Equation différentielle linéaire d'ordre 1

Problème de Cauchy (linéaire d'ordre 1)

Théorème - Problème de Cauchy

Soit $t_0 \in I$ et $y_0 \in \mathbb{K}$.

Il existe une unique solution sur I de l'équation linéaire normalisée (E) y' + a(t)y = b(t) vérifiant la condition initiale $y(t_0) = y_0$.

Démonstration

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- 2. Primitives
- . Intégrales e
- Equations
 ifférentielles
 dérivation/intégration
- Vanabulaira
- 4.2. Equation différentielle

Problème de Cauchy (linéaire d'ordre 1)

Théorème - Problème de Cauchy

Soit $t_0 \in I$ et $y_0 \in \mathbb{K}$.

Il existe une unique solution sur I de l'équation linéaire normalisée (E) y' + a(t)y = b(t) vérifiant la condition initiale $y(t_0) = y_0$.

Démonstration

Remarque Résoudre un problème de Cauchy

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- 2. Primitives
- . Intégrales e
- Equations

 différentielles

 dérivation/intégration

 ardus)
- 1. Vocabulaire
- 4.2. Equation différentielle

Exercice

Résoudre (E) y' + ty = t.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - . Primitives
 - 3. Intégrales et
- 4. Equations différentielles (dérivation/intégration torque)
 - 1 Vonabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Exercice

Résoudre (E) y' + ty = t.

Exercice

Résoudre (*E*) $z' = (1+i)z - 2it^2 + 2$.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - . Intégrales el
 - I. Equations différentielles dérivation/intégration ordue)
 - . Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Exercice

Résoudre (E) y' + ty = t.

Exercice

Résoudre (*E*) $z' = (1+i)z - 2it^2 + 2$.

Attention. Ensemble des solutions particulières selon le second membre

Attention, si le second membre est colinéaire à la solution homogène, il faut alors chercher une solution particulière de « degré » plus élevé...

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- Primitives
- . Intégrales et
- 4. Equations différentielles (dérivation/intégration
 - Vacabulaira
- 4.2. Equation différentielle linéaire d'ordre 1

Exercice

Résoudre (*E*) y' + ty = t.

Exercice

Résoudre (*E*) $z' = (1+i)z - 2it^2 + 2$.

Attention. Ensemble des solutions particulières selon le second membre

Attention, si le second membre est colinéaire à la solution homogène, il faut alors chercher une solution particulière de « degré » plus élevé...

Exercice

Résoudre (E): $y' + y = 2e^x + 4\sin x + 3\cos x$.

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- 1. Problèmes
- Primitives
- Intégrales et
- 4. Equations
 différentielles
 (dérivation/intégration)
 tordue)
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Supposons qu'on ait l'inéquation $y' + ay \le b$.

On reprend les notations précédentes avec

$$\varphi_h: y \mapsto (t \mapsto e^{h(t)} \times y(t)).$$

On a $\varphi_{-A} \circ D \circ \varphi_A \circ y \leq b$, ou encore :

$$\forall \ u \in I, (D \circ \varphi_A)(y)(u) \leqslant e^{A(u)}b(u) \text{ car } e^x > 0.$$

Puis par croissance de l'intégration :

$$\varphi_A(y)(t) - \varphi_A(y)(t_0) \le \int_{t_0}^t b(u)e^{A(u)} du.$$

Et donc
$$y(t) \le y(t_0)e^{A(t_0)-A(t)} + (B(t_0)-B(t))e^{-A(t)}$$
.

La constante t_0 est arbitraire, il faut nécessairement en fixer une!).

On reconnait une solution de l'équation différentielle (cas frontière - d'égalité).

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - . Problèmes
 - Primitives
 - . Intégrales el rimitives
- différentielles (dérivation/intégration tordue)
 - . Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Savoir-faire. Cas non résolue

A résoudre une équation a(t)y' + b(t)y = c(t) sur I avec a qui s'annule sur I.

- 1. On étudie l'équation sur des sous-intervalles de I où α ne s'annule pas.
- 2. On obtient une famille de solutions, paramétrée sur chacun des sous-intervalles par une variable.
- 3. On essaye de « recoller »les solutions. Pour cela, on regarde les limites de y et de y' au voisinage du point t_0 qui annule a de manière à étudier la continuité et la dérivabilité de y en t_0 .

Souvent ces limites dépendent de la valeur du paramètre.

Dans la suite du cours : les théorème de prolongement de classe \mathscr{C}^1 et les méthodes de calcul asymptotiques seront très utiles pour résoudre ce problème.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- Problèmes
- 2. Primitives
- Intégrales et rimitives
- Equations différentielles (dérivation/intégration tordue)
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1

Avec recollement

Exercice

Résoudre l'équation $t^2y' + y = 1$ sur un intervalle I de \mathbb{R} (on discutera suivant la position de 0 par rapport à I).

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- 2. Primitive
- . Intégrales el
- Equations différentielles dérivation/intégration ordue)
 - Vacabulaira
- 4.2. Equation différentielle linéaire d'ordre 1

Avec recollement

Exercice

Résoudre l'équation $t^2y'+y=1$ sur un intervalle I de $\mathbb R$ (on discutera suivant la position de 0 par rapport à I).

Remarque Règle de L'Hospital

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- Primitive
- l. Intégrales et
- Equations différentielles dérivation/intégration ordue)
 - Vacabulaira
- 4.2. Equation différentielle linéaire d'ordre 1

Objectifs

- ⇒ Définir le vocabulaire associé aux équations différentielles
- \Rightarrow Méthode de résolution des équations différentielles linéaire d'ordre 1

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - Intégrales et primitives
- I. Equations
 différentielles
 dérivation/intégration
 ordue)
- 1. Vocabulaire
- 4.2. Equation différentielle

Objectifs

- ⇒ Définir le vocabulaire associé aux équations différentielles
 - Equation différentielle LINEAIRE?
 - de la forme F(ay) = aF(y)...
 - principe de superposition et structure de l'ensemble des solutions

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- Problèmes
- Primitives
- Intégrales et primitives
- i. Equations différentielles dérivation/intégration ordue)
- I.1. Vocabulaire
- 4.2. Equation différentielle

Objectifs

- ⇒ Définir le vocabulaire associé aux équations différentielles
 - Equation différentielle LINEAIRE?
 - de la forme F(ay) = aF(y)...
 - principe de superposition et structure de l'ensemble des solutions
 - Equation différentielle d'ordre 1, 2....

Leçon 30 - Fonctions primitives et équations différentielles

 \Rightarrow Vocabulaire équa. diff.

- I. Problèmes
- Primitives
- Intégrales et
- l. Equations lifférentielles dérivation/intégration
- .1. Vocabulaire
- 4.2. Equation différentielle

Objectifs

- ⇒ Définir le vocabulaire associé aux équations différentielles
 - Equation différentielle LINEAIRE?
 - de la forme F(ay) = aF(y)...
 - principe de superposition et structure de l'ensemble des solutions
 - Equation différentielle d'ordre 1, 2....
 - Equation différentielle homogène (= 0) ou normalisé (a = 1)

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - . Problèmes
 - Primitives
 - Intégrales et
 - I. Equations
 différentielles
 dérivation/intégration
 - Vocabulaire
- 4.2. Equation différentielle

Objectifs

- ⇒ Définir le vocabulaire associé aux équations différentielles
- \Rightarrow Méthode de résolution des équations différentielles linéaire d'ordre 1

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - . Intégrales el rimitives
 - Equations différentielles dérivation/intégration ordue)
 - 1. Vocabulaire
 - 4.2. Equation différentielle

Objectifs

- ⇒ Définir le vocabulaire associé aux équations différentielles
- \Rightarrow Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Nomalisation

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- Problèmes
- Primitives
- . Intégrales el rimitives
- I. Equations différentielles dérivation/intégration ordue)
- .1. Vocabulaire
- 4.2. Equation différentielle

Objectifs

- ⇒ Définir le vocabulaire associé aux équations différentielles
- \Rightarrow Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Nomalisation
 - Résolution explicite de l'équation homogène

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- Problèmes
- Primitives
- Intégrales et
- Vocabulaire
- 4.2. Equation différentielle

Objectifs

- ⇒ Définir le vocabulaire associé aux équations différentielles
- \Rightarrow Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Nomalisation
 - Résolution explicite de l'équation homogène
 - Une solution particulière

Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- Problèmes
- Primitives
- Intégrales et
- I. Equations
 différentielles
 dérivation/intégration
- Vocabulaire
- 4.2. Equation différentielle

Objectifs

- ⇒ Définir le vocabulaire associé aux équations différentielles
- \Rightarrow Méthode de résolution des équations différentielles linéaire d'ordre 1

Pour la prochaine fois

- Lecture du cours : chapitre 7
 - Équations différentielles du second ordre à coefficients constants
- Exercice n° 206, 217
- TD de jeudi 12:

8h-10h : 207, 211, 213, 214, 215, 223 10h-12h : 209, 208, 216, 224, 219, 222 Leçon 30 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- . Problèmes
- . Primitives
- Intégrales orimitives
- l. Equations lifférentielles dérivation/intégration product
- Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1