

Leçon 31 - Fonctions primitives et équations différentielles

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- Problèmes
- Primitives
- 3. Intégrales oprimitives
- 4. Equations différentielles (dérivation/intégration tordue)
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3. EDL2 à coeff, constants

⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

- 1. Problèmes
- 2. Primitives
- 3. Intégrales et primitives
- 4. Equations différentielles (dérivation/intégration tordue)
 - 4.1. Vocabulaire
 - 4.2. Equation différentielle linéaire d'ordre 1
 - 4.3. Equations différentielles linéaires du second ordre à coefficients constants

Leçon 31 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- . Problèmes
- Primitives
- Intégrales et
- 4. Equations
 différentielles
 (dérivation/intégratio
 - .1. Vocabulaire
- 1.2. Equation différentielle
- 4.3 EDI 2 à coeff constants

- 1. Problèmes
- 2. Primitives
- 3. Intégrales et primitives
- 4. Equations différentielles (dérivation/intégration tordue)
 - 4.1. Vocabulaire
 - 4.2. Equation différentielle linéaire d'ordre 1
 - 4.3. Equations différentielles linéaires du second ordre à coefficients constants

Leçon 31 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff

- Problèmes
- Primitives
- Intégrales et
- I. Equations différentielles dérivation/intégration
- Vocabulaire
- 4.2. Equation différentielle
- 4.3. EDL2 à coeff. constants

Remarque!!

 \mathbb{K} désigne toujours \mathbb{R} ou \mathbb{C} . Insistons : ici a,b,c sont constants (l'année prochaine, vous élargirez ce point de vue)

Leçon 31 - Fonctions primitives et équations différentielles

 \Rightarrow Vocabulaire équa. diff.

- Problèmes
- Primitives
- Intégrales et
- 4. Equations
 différentielles
 (dérivation/intégratio
 tordue)
- .1. Vocabulaire
- 4.2. Equation différentielle
- 4.3. EDL2 à coeff. constants

Définition - Equations différentielles linéaires du second ordre à coefficients constants

Soient $(a,b,c) \in \mathbb{K}^3$, $a \neq 0$ et $u:I \to \mathbb{K}$ une fonction continue sur l'intervalle I de \mathbb{R} .

On dit qu'une fonction $f:I\to\mathbb{K}$ est solution de l'équation différentielle du second ordre à coefficients constants

(E)
$$ay'' + by' + cy = u(t)$$
 si

- 1. f est deux fois dérivable sur I
- 2. $\forall t \in I, af''(t) + bf'(t) + cf(t) = u(t)$

 \Rightarrow Vocabulaire équa. diff.

- 1. Problèmes
- . Primitives
- Intégrales et primitives
- 4. Equations différentielles (dérivation/intégration torque)
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

On considère donc l'équation homogène (H) ay'' + by' + cy = 0 $a \ne 0$.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - Intégrales et primitives
- 4. Equations
 différentielles
 (dérivation/intégratio
 tordue)
 - .1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3. EDL2 à coeff. constants

On considère donc l'équation homogène (H) ay'' + by' + cy = 0 $a \neq 0$. **Analyse** Composition $F_{-\alpha} \circ F_{-\beta}$

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - . Intégrales e rimitives
 - Equations différentielles dérivation/intégration ordue)
 - I.1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

On considère donc l'équation homogène (H) ay'' + by' + cy = 0 $a \neq 0$. **Analyse** Composition $F_{-\alpha} \circ F_{-\beta}$ Cette analyse ne marche pas si $\alpha = \beta$.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - l. Intégrales et
 - I. Equations
 différentielles
 dérivation/intégration
 - l.1. Vocabulaire
- 4.2. Equation différentielle
- 4.3 EDI 2 à coeff constants

On considère donc l'équation homogène

(*H*)
$$ay'' + by' + cy = 0$$
 $a \neq 0$.

Analyse Composition $F_{-lpha}\circ F_{-eta}$

Cette analyse ne marche pas si $\alpha = \beta$.

Théorème - Cas complexe

- Si $ar^2 + br + c = 0$ possède deux racines distinctes r_1 et r_2 alors l'ensemble des solutions à valeurs dans $\mathbb C$ est :
 - $S_H = \left\{ t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}; (\lambda, \mu) \in \mathbb{C}^2 \right\}$
- Si $ar^2+br+c=0$ possède une racine double $r_0\in\mathbb{C}$ alors l'ensemble des solutions à valeurs dans \mathbb{C} est :

$$S_H = \left\{ t \mapsto (\lambda + \mu t)e^{r_0 t}; (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

⇒ Vocabulaire équa. diff.

- Problèmes
- . Primitives
- Intégrales et primitives
- Equations différentielles (dérivation/intégration tordue)
- 4.1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

On considère donc l'équation homogène

$$(H) \quad ay'' + by' + cy = 0 \quad a \neq 0.$$

Analyse Composition $F_{-\alpha} \circ F_{-\beta}$

Cette analyse ne marche pas si $\alpha = \beta$.

Théorème - Cas complexe

- Si $ar^2 + br + c = 0$ possède deux racines distinctes r_1 et r_2 alors l'ensemble des solutions à valeurs dans $\mathbb C$ est :
 - $S_H = \left\{ t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}; (\lambda, \mu) \in \mathbb{C}^2 \right\}$
- Si $ar^2 + br + c = 0$ possède une racine double $r_0 \in \mathbb{C}$ alors l'ensemble des solutions à valeurs dans \mathbb{C} est :

$$S_H = \left\{ t \mapsto (\lambda + \mu t)e^{r_0 t}; (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

Démonstration

Leçon 31 - Fonctions primitives et équations différentielles

 \Rightarrow Vocabulaire équa. diff.

- Problèmes
- . Primitives
- Intégrales et primitives
- Equations différentielles dérivation/intégration ordue)
- 4.1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3. EDL2 à coeff. constants

$(\Delta < 0)$ est plus subtile. Théorème - Cas réel

On suppose ici a, b, c réels, $a \neq 0$.

- Si $ar^2+br+c=0$ possède deux racines réelles distinctes r_1 et r_2 alors l'ensemble des solutions à valeurs dans $\mathbb R$ est : $S_H = \left\{t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}; (\lambda, \mu) \in \mathbb R^2 \right\}$
- Si $ar^2 + br + c = 0$ possède une racine double $r_0 \in \mathbb{R}$ alors l'ensemble des solutions à valeurs dans \mathbb{R} est :

$$S_H = \left\{ t \mapsto (\lambda + \mu t)e^{r_0 t}; (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

Si $ar^2 + br + c = 0$ possède deux racines complexes conjuguées $\alpha + i\beta$ et $\alpha - i\beta$ alors l'ensemble des solutions à valeurs dans $\mathbb R$ est :

$$S_{H} = \left\{ t \mapsto \lambda e^{\alpha t} \cos \beta t + \mu e^{\alpha t} \sin \beta t; (\lambda, \mu) \in \mathbb{R}^{2} \right\}$$

Leçon 31 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff.

- Problèmes
- . Primitives
- . Intégrales el rimitives
- 4. Equations différentielles dérivation/intégration ordue)
- 4.1. Vocabulaire
- 4.2. Equation différentiel linéaire d'ordre 1
- 4.3. EDL2 à coeff. constants

Lemme - Solution réelle d'une équation réelle

Soit (*H*) l'équation différentielle homogène ay'' + by' + cy = 0 où $(a,b,c) \in \mathbb{R}^3, a \neq 0$.

Si f est solution de (H) à valeurs dans $\mathbb C$ alors $\mathbf{Re} f$ est solution de (H) à valeurs réelles.

Plus précisément l'ensemble des solutions réelles de (H) est exactement l'ensemble des parties réelles des solutions complexes de (H).

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - . Problèmes
 - . Primitives
 - Intégrales et primitives
- 4. Equations différentielles (dérivation/intégration torque)
 - I. Vocabulaire
 - 2. Equation différentielle
- 4.3. EDL2 à coeff. constants

Lemme - Solution réelle d'une équation réelle

Soit (*H*) l'équation différentielle homogène ay'' + by' + cy = 0 où $(a,b,c) \in \mathbb{R}^3, a \neq 0$.

Si f est solution de (H) à valeurs dans $\mathbb C$ alors $\mathbf{Re} f$ est solution de (H) à valeurs réelles.

Plus précisément l'ensemble des solutions réelles de (H) est exactement l'ensemble des parties réelles des solutions complexes de (H).

Démonstrations

⇒ Vocabulaire équa. diff.

- . Problèmes
- Primitives
- Intégrales et rimitives
- Equations différentielles (dérivation/intégration tordue)
 - Vocabulaire
 - Equation différentielle éaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Selon le signe de Δ . Sur $\mathbb R$

Remarque Autre expression pour le cas $\Delta < 0$

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - Intégrales et rimitives
 - I. Equations différentielles dérivation/intégration
 - 1. Vocabulaire
- 4.2. Equation différentielle
- 4.3. EDL2 à coeff. constants

Selon le signe de Δ . Sur $\mathbb R$

Remarque Autre expression pour le cas $\Delta < 0$ Remarque Base d'une espace vectoriel

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - . Intégrales el
 - Equations
 différentielles
 dérivation/intégration
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3. EDL2 à coeff. constants

1.1. Vocabulaire

4.2. Equation différentielle

4.3. EDL2 à coeff, constants

Remarque Autre expression pour le cas $\Delta < 0$ **Remarque** Base d'une espace vectoriel

Exercice

Résoudre les équations différentielles suivantes (on cherchera les solutions réelles).

1.
$$y'' = \omega^2 y$$

2.
$$y'' = -\omega^2 y$$

3.
$$y'' - 4y' + 13y = 0$$

4.
$$y'' - 4y' + 4y = 0$$

On considère l'équation complète (E) ay'' + by' + cy = u(t)avec $(a,b,c) \in \mathbb{K}^3, a \neq 0$.

⇒ Vocabulaire égua. diff

Théorème - Structure de l'ensemble S_E

⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

La solution générale de l'équation (E) est la somme d'une solution particulière et de la solution générale de l'équation homogène associée (H), ce qui peut aussi s'écrire : Si \widetilde{y} est une solution particulière de l'équation (E) et (f_1, f_2) une base de S_H alors

4.3 EDI 2 à coeff constants

$$S_E = \left\{ t \mapsto \lambda f_1(t) + \mu f_2(t) + \widetilde{y}(t); (\lambda, \mu) \in \mathbb{K}^2 \right\}.$$

⇒ Vocabulaire équa. diff.

⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

Théorème - Structure de l'ensemble S_E

La solution générale de l'équation (E) est la somme d'une solution particulière et de la solution générale de l'équation homogène associée (H), ce qui peut aussi s'écrire : Si \widetilde{y} est une solution particulière de l'équation (E) et (f_1,f_2) une base de S_H alors

$$S_E = \Big\{ t \mapsto \lambda f_1(t) + \mu f_2(t) + \widetilde{y}(t); (\lambda, \mu) \in \mathbb{K}^2 \Big\}.$$

- Problèmes
 - Primitives
 - . Intégrales et rimitives
- différentielles (dérivation/intégration tordue)
 - Vocabulaire
 - .2. Equation différentielle néaire d'ordre 1
- 4.3. EDL2 à coeff. constants

Démonstration

Principe général

Proposition - Principe de superposition des solutions

Si le second membre de l'équation (E) est de la forme $u(t) = u_1(t) + \dots + u_n(t)$ et si l'on connaît des solutions particulières $\widetilde{y}_1, \dots, \widetilde{y}_n$ des équations avec les seconds membres $u_1(t), \dots, u_n(t)$, alors une solution particulière de (E) est $\widetilde{y} = \widetilde{y}_1 + \dots + \widetilde{y}_n$.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problème
- 2. Primitives
- 8. Intégrales et
- 4. Equations différentielles (dérivation/intégration tardus)
 - Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Principe général

Proposition - Principe de superposition des solutions

Si le second membre de l'équation (E) est de la forme $u(t) = u_1(t) + \dots + u_n(t)$ et si l'on connaît des solutions particulières $\widetilde{y}_1, \dots, \widetilde{y}_n$ des équations avec les seconds membres $u_1(t), \dots, u_n(t)$, alors une solution particulière de (E) est $\widetilde{y} = \widetilde{y}_1 + \dots + \widetilde{y}_n$.

Remarque Démonstration

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- 2. Primitives
- . Intégrales e
- 4. Equations différentielles (dérivation/intégration
 - I. Vocabulaire
 - .2. Equation différentielle néaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Avec second membre : exponentielle-polynôme

On va s'intéresser au cas où $u(t)=e^{mt}P(t)$ avec $m\in\mathbb{C}$ et P une fonction polynomiale à valeurs complexes.

Le théorème qui suit peut être lu comme un savoir-faire.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - . Problèmes
 - Primitives
- Intégrales et primitives
- différentielles dérivation/intégration ordue)
- 1.1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

On va s'intéresser au cas où $u(t) = e^{mt}P(t)$ avec $m \in \mathbb{C}$ et P une fonction polynomiale à valeurs complexes.

Le théorème qui suit peut être lu comme un savoir-faire.

Théorème - Second membre $e^{mt}P(t)$

Soit $m \in \mathbb{C}$ et P une fonction polynomiale de degré n. Alors on peut trouver une solution particulière de l'équation

$$(E) \quad ay'' + by' + cy = e^{mt}P(t)$$

de la forme $\tilde{\gamma}(t) = e^{mt}Q(t)$ où Q est une fonction polynomiale

- de degré n si m n'est pas racine de $ar^2 + br + c = 0$
- de degré n+1 si m est racine simple de $ar^2+br+c=0$
- de degré n+2 si m est racine double de $ar^2+br+c=0$

Lecon 31 - Fonctions primitives et équations différentielles

⇒ Vocabulaire égua. diff

- 4.3 EDI 2 à coeff constants

Le théorème qui suit peut être lu comme un savoir-faire.

Théorème - Second membre $e^{mt}P(t)$

Soit $m \in \mathbb{C}$ et P une fonction polynomiale de degré n. Alors on peut trouver une solution particulière de l'équation

$$(E) \quad ay'' + by' + cy = e^{mt}P(t)$$

de la forme $\widetilde{y}(t) = e^{mt}Q(t)$ où Q est une fonction polynomiale

- b de degré n si m n'est pas racine de $ar^2 + br + c = 0$
- b de degré n+1 si m est racine simple de $ar^2 + br + c = 0$
- de degré n+2 si m est racine double de $ar^2+br+c=0$

Leçon 31 - Fonctions primitives et équations différentielles

⇒ Vocabulaire équa. diff

⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

- Problèmes
- . Primitives
- . Intégrales e rimitives
- différentielles (dérivation/intégration tordue)
 - 1.1. Vocabulaire
- 4.2. Equation différentiell linéaire d'ordre 1
- 4.3. EDL2 à coeff. constants

Démonstration

Polynôme× fonction trigonométrique

Analyse Polynôme trigonométrique

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitives
 - Intégrales et primitives
- Equations
 différentielles
 (dérivation/intégration tordue)
 - I.1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3. EDL2 à coeff. constants

Savoir-faire. Second membre de la forme $e^{\alpha t}(P(t)\cos\beta t + Q(t)\sin\beta t)$

On peut trouver (par identification) une solution particulière de l'équation

(E)
$$ay'' + by' + cy = e^{\alpha t}(P(t)\cos t\beta t) + Q(t)\sin t\beta t)$$

de la forme $\widetilde{y}(t) = e^{\alpha t} (T(t) \cos t \beta t) + R(t) \sin t \beta t)$) où T et Rsont des fonctions polynomiales

- de degré $n = \max(\deg(P), \deg(Q))$ si $\alpha + i\beta$ n'est pas racine de $ar^2 + br + c = 0$
- de degré $n+1 = \max(\deg(P), \deg(Q)) + 1$ si $\alpha + i\beta$ est racine simple de $ar^2 + br + c = 0$

- ⇒ Vocabulaire égua. diff
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

- 4.3 FDI 2 à coeff constants

Exercices

Exercice

- 1. Résoudre $y'' y' 2y = 3e^{-t} + 1$.
- 2. Résoudre $y'' + 2y' + 5y = \cos^2 t$.

- ⇒ Vocabulaire équa.diff.⇒Méthode de
- résolution des équations différentielles linéaire d'ordre 1
 - . Problèmes
 - 2. Primitives
- 3. Intégrales et
- Equations
 différentielles
 (dérivation/intégration)
- l.1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Avec conditions initiales (problème de Cauchy)

Théorème - Conditions initiales

Soit (*E*) ay'' + by' + cy = u(t) avec $(a,b,c) \in \mathbb{K}^3, a \neq 0$ et $u:I \to \mathbb{K}$ de l'une des formes précédentes. Soit $(t_0,y_0,y_0') \in I \times \mathbb{K} \times \mathbb{K}$.

Alors il existe une unique solution $f: I \to \mathbb{K}$ telle que $f(t_0) = y_0$ et $f'(t_0) = y'_0$.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- . Primitives
- . Intégrales el
- Equations différentielles (dérivation/intégration tordue)
 - 1. Vocabulaire
- 4.2. Equation différentielle
- 4.3 EDI 2 à coeff constants

Leçon 31 - Fonctions primitives et équations différentielles

Théorème - Conditions initiales

Soit (E) ay'' + by' + cy = u(t) avec $(a,b,c) \in \mathbb{K}^3, a \neq 0$ et $u:I \to \mathbb{K}$ de l'une des formes précédentes. Soit $(t_0,y_0,y_0') \in I \times \mathbb{K} \times \mathbb{K}$.

Alors il existe une unique solution $f: I \to \mathbb{K}$ telle que $f(t_0) = y_0$ et $f'(t_0) = y_0'$.

La démonstration est simple : les deux conditions initiales fixent les deux valeurs des deux variables libres λ et μ .

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- 2. Primitives
- Intégrales et
- 4. Equations différentielles (dérivation/intégration tordue)
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 FDI 2 à coeff constants

⇒ Vocabulaire équa. diff.

⇒Méthode de résolution des équations différentielles linéaire d'ordre 1

1. Problèmes

2. Primitives

. Intégrales e rimitives

4. Equations différentielles (dérivation/intégratio

- .1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3. EDL2 à coeff, constants

Théorème - Conditions initiales

Soit (*E*) ay'' + by' + cy = u(t) avec $(a, b, c) \in \mathbb{K}^3, a \neq 0$ et $u: I \to \mathbb{K}$ de l'une des formes précédentes. Soit $(t_0, y_0, y_0') \in I \times \mathbb{K} \times \mathbb{K}$.

Alors il existe une unique solution $f: I \to \mathbb{K}$ telle que $f(t_0) = y_0$ et $f'(t_0) = y'_0$.

La démonstration est simple : les deux conditions initiales fixent les deux valeurs des deux variables libres λ et μ .

Exercice

Résoudre le problème de Cauchy : $y'' - 2y' + y = te^t$ avec les conditions y(0) = 0 et y'(0) = 1.

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
- ⇒ Méthode de résolution des équations différentielles linéaire d'ordre 2 à coefficients constants

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- Drimitivoo
- Intégrales et
- 4. Equations différentielles (dérivation/intégration
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
 - Recollement

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - Problèmes
 - Primitivos
 - Intégrales et primitives
- 4. Equations
 différentielles
 (dérivation/intégratio
 tordue)
- .1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
 - Recollement
 - Application aux inégalités différentielles : rectification de la torsion, et exploitant la positivité d'une dérivée.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - 1. Problèmes
 - . Primitives
 - Intégrales et
 - 4. Equations différentielles dérivation/intégration
 - .1. Vocabulaire
 - 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
 - Recollement
 - Application aux inégalités différentielles : rectification de la torsion, et exploitant la positivité d'une dérivée.

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
 - 1. Problèmes
 - . Primitives
 - Intégrales et
 - 4. Equations différentielles dérivation/intégration
 - .1. Vocabulaire
 - 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
- ⇒ Méthode de résolution des équations différentielles linéaire d'ordre 2 à coefficients constants

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- Drimitivoo
- Intégrales et
- 4. Equations différentielles (dérivation/intégration
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
- ⇒ Méthode de résolution des équations différentielles linéaire d'ordre 2 à coefficients constants
 - ► Structure des solutions : espace affine

Leçon 31 - Fonctions primitives et équations différentielles

 \Rightarrow Vocabulaire équa. diff.

- . Problèmes
- Primitives
- Intégrales et
- Equations différentielles dérivation/intégration ordue)
- .1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
- ⇒ Méthode de résolution des équations différentielles linéaire d'ordre 2 à coefficients constants
 - ► Structure des solutions : espace affine
 - Equation homogène

Leçon 31 - Fonctions primitives et équations différentielles

 \Rightarrow Vocabulaire équa. diff.

- . Problèmes
- Primitives
- Intégrales et
- Equations différentielles dérivation/intégration ordue)
- I.1. Vocabulaire
- 4.2. Equation différentielle
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
- ⇒ Méthode de résolution des équations différentielles linéaire d'ordre 2 à coefficients constants
 - ► Structure des solutions : espace affine
 - Equation homogène
 - ► Résolution explicite : résolution d'un trinôme à coefficients constants (cas sur C)

Leçon 31 - Fonctions primitives et équations différentielles

 \Rightarrow Vocabulaire équa. diff.

- . Problèmes
- Primitives
- l. Intégrales et
- i. Equations différentielles dérivation/intégration ordue)
- Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
- ⇒ Méthode de résolution des équations différentielles linéaire d'ordre 2 à coefficients constants

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- Drimitivoo
- Intégrales et
- 4. Equations différentielles (dérivation/intégration
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
- ⇒ Méthode de résolution des équations différentielles linéaire d'ordre 2 à coefficients constants

- ⇒ Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
 - Primitives
 - Intégrales et
- Equations
 différentielles
 (dérivation/intégration)
 - 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants

Objectifs

- ⇒ Inégalité différentielle (d'ordre 1)
- ⇒ Méthode de résolution des équations différentielles linéaire d'ordre 2 à coefficients constants

Pour la prochaine fois

► Exercice nº212

- \Rightarrow Vocabulaire équa. diff.
- ⇒Méthode de résolution des équations différentielles linéaire d'ordre 1
- 1. Problèmes
- Primitives
- Intégrales et primitives
- Equations différentielles dérivation/intégration ordue)
- 1. Vocabulaire
- 4.2. Equation différentielle linéaire d'ordre 1
- 4.3 EDI 2 à coeff constants