

Leçon 40 - Groupes

- Problèmes
- Lois de composition interne
- 2.1. Définitions
- 2.2. Propriété
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Det & Prop
- 3.2. Groupes produits

⇒ Reconnaitre les groupes

1. Problèmes

- 2. Lois de composition internes
 - 2.1. Définitions
 - 2.2. Propriétés directes
 - 2.3. Induction
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples

- 1. Problèmes
- 2. Lois de
- composition interne
- 2.2. Propriété
- 2.3. Induction
- 3. Structure de
- 3.1. Def & Prop
- 2. Groupes produits
- .3. Exemples

Problème Structure

\Rightarrow Reconnaitre les groupes

1. Problèmes

2. Lois de

0.1 D45-11---

2.2. Propriéte

2.3. Induction

3. Structure de groupe

1 Def 8 Prop

2. Groupes produit

3.3. Exemples

Problème Structure

Problème Résolution des équations polynomiales

\Rightarrow Reconnaitre les groupes

- 1. Problèmes
- 2. Lois de
- composition in
- 2.2. Propriét
- 2.3. Induction
- 3. Structure de
- 3.1. Def & Prop
- 2. Groupes produit

4□ ト 4個 ト 4 園 ト 4 園 ト ■ 9 9 0 0 □

Problème Structure

Problème Résolution des équations polynomiales

Problème Groupe de Poincaré

$\Rightarrow \text{Reconnaitre les} \\ \text{groupes}$

1. Problèmes

2. Lois de

oompooitio

2.2. Propriét

z.z. r ropire

. Structure de

3.1. Def & Prop

2. Groupes produ

3.3. Exemples

Problème Structure

Problème Résolution des équations polynomiales

Problème Groupe de Poincaré

Problème Mariage chez les Murgin

\Rightarrow Reconnaitre les groupes

1. Problèmes

2. Lois de

aomposition

2.2 Propriét

.

. Structure de

3.1. Def & Prop

2. Groupes produit

3.3. Exemples

⇒ Reconnaitre les groupes

1. Problèmes

2. Lois de composition internes

2.1. Définitions

- 2.2. Propriétés directes
- 2.3. Induction

3. Structure de groupe

- 3.1. Définition et propriétés
- 3.2. Groupes produits
- 3.3. Exemples

\Rightarrow Reconnaitre les groupes

- Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Propriétés
- z.s. maucton
- 3. Structure de groupe
 - .1. Def & Prop
 - 2. Groupes produits
- 3.3. Exemples

Loi interne (opération)

Définition - Loi de composition interne

Une loi de composition interne sur un ensemble E est une application de $E \times E$ dans $E : \Phi : E \times E \to E, (x,y) \mapsto x \star y$. On note, pour $(x,y,z) \in E^3$,

$$(x \star y) \star z = \Phi(\Phi(x, y), z)$$
 et $x \star (y \star z) = \Phi(x, \Phi(y, z))$.

Un tel couple (E,\star) est appelé un magma.

Quand la loi interne est clairement identifiée, par abus, on peut dire que E est un magma sans précision supplémentaire.

- Problèmes
- Z. LOIS GE
- 2.1 Définitions
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de groupe
- 8.1. Def & Pr
- 3.2. Groupes produits 3.3. Exemples

Loi interne (opération)

Définition - Loi de composition interne

Une loi de composition interne sur un ensemble E est une application de $E \times E$ dans $E : \Phi : E \times E \to E, (x,y) \mapsto x \star y$. On note, pour $(x,y,z) \in E^3$,

$$(x \star y) \star z = \Phi(\Phi(x, y), z)$$
 et $x \star (y \star z) = \Phi(x, \Phi(y, z))$.

Un tel couple (E,\star) est appelé un magma.

Quand la loi interne est clairement identifiée, par abus, on peut dire que E est un magma sans précision supplémentaire.

Exemple - N.

- Problèmes
- Z. LOIS GE
- 2.1 Dáfinitions
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de groupe
- 1. Def & Pro
- 3.2. Groupes produits
 3.3. Exemples

Définition - Caractéristiques

On dit que le magma (E, \star) : \star :

- est commutatif si $\forall (x, y) \in E \times E, x \star y = y \star x$
- est associatif si $\forall (x, y, z) \in E \times E \times E, x \star (y \star z) = (x \star y) \star z$
- est unifère ou possède un élément *neutre* s'il existe $e \in E$ tel que $\forall x \in E$, $e \star x = x \star e = x$ (e est alors l'élément neutre.)

Pour x élément de E, on dit qu'un élément y de E est un symétrique ou un inverse de x pour \star si $x \star y = y \star x = e$, où e est élément neutre.

- Problèmes
- composition internes
- 2.1. Définitions
- 2.2. Propriét
- 2.5. Induction
 - 3. Structure de proupe
 - 1. Def & Prop
 - Groupes produits
 Exemples

Vocabulaire

Définition - Caractéristiques

On dit que le magma (E, \star) : \star :

- est commutatif si $\forall (x, y) \in E \times E, x \star y = y \star x$
- est associatif si $\forall (x, y, z) \in E \times E \times E, x \star (y \star z) = (x \star y) \star z$
- est unifère ou possède un élément *neutre* s'il existe $e \in E$ tel que $\forall x \in E$, $e \star x = x \star e = x$ (e est alors l'élément neutre.)

Pour x élément de E, on dit qu'un élément y de E est un symétrique ou un inverse de x pour \star si $x \star y = y \star x = e$, où e est élément neutre.

Definition - Monoïde

Un magma (M, \star) associatif et unifère est appelé un monoïde.

- Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Propriété
- 2.3. Induction
 - Structure de roupe
 - .1. Def & Prop
 - 3.2. Groupes produits
 3.3. Exemples

Remarque Notations Plusieurs remarques

\Rightarrow Reconnaitre les groupes

- Problèmes
- 2. Lois de
- 2.1. Définitions
- .2. Propriétés
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- 3.3 Exemples

Remarque Notations

Plusieurs remarques

1. Les lois de composition interne sont usuellement notées \star , \bot , \top , +, \times , en notation multiplicative $x \star y = xy$.

\Rightarrow Reconnaitre les groupes

- Problèmes
- 2. LOIS GE
- 2.1. Définitions
- 2.2. Propriétés
- 3. Structure de
 - .1. Def & Prop
 - 2. Groupes produits

Remarque Notations

Plusieurs remarques

- 1. Les lois de composition interne sont usuellement notées \star , \bot , \top , +, \times , en notation multiplicative $x \star y = xy$.
- 2. La notation additive est usuellement réservée à une loi commutative et associative, dans ce cas le symétrique de x (s'il existe) est noté -x.

- Problèmes
- 2. Lois de
- 2.1. Définitions
- .2. Propriétés
- .3. Induction
- 3. Structure de groupe
- 1. Def & Prop
- .2. Groupes produi

Remarque Notations

Plusieurs remarques

- 1. Les lois de composition interne sont usuellement notées \star , \bot , \top , +, \times , en notation multiplicative $x \star y = xy$.
- La notation additive est usuellement réservée à une loi commutative et associative, dans ce cas le symétrique de x (s'il existe) est noté -x.
- 3. Lorsque la loi est commutative et associative, on peut écrire : $\sum_{i=1}^{n} x_i = x_1 + \dots + x_n \text{ (notation additive)}$ ou $\prod_{i=1}^{n} x_i = x_1 \dots x_n \text{ (notation multiplicative)}.$

- 1. Problèmes
- 2. Lois de
- 2.1. Définitions
- .2. Propriétés
- Structure de
- groupe
- 3.1. Def & Prop
- 3.3. Exemples

Remarque Notations

Plusieurs remarques

- 1. Les lois de composition interne sont usuellement notées \star , \bot , \top , +, \times , en notation multiplicative $x \star y = xy$.
- 2. La notation additive est usuellement réservée à une loi commutative et associative, dans ce cas le symétrique de x (s'il existe) est noté -x.
- 3. Lorsque la loi est commutative et associative, on peut écrire : $\sum_{i=1}^n x_i = x_1 + \dots + x_n \text{ (notation additive)}$ ou $\prod_{i=1}^n x_i = x_1 \dots x_n \text{ (notation multiplicative)}.$
- 4. Si la loi \star est associative, on peut écrire $x^{\star n} = x \star \cdots \star x$ (n termes x), en notation multiplicative on obtient ainsi x^n et en notation additive nx.

- I. Problemes
- 2. Lois de
- 2.1 Définitions
- 2.2. Propriétés
- .3. Induction
- Structure de roupe
- .1. Def & Prop
- 3.2. Groupes produit

Distributivité

⇒ Reconnaitre les groupes

2.1 Définitions

Définition - Distributivité

Supposons que l'ensemble E est muni de deux lois internes \star et Т.

On dit que ★ est distributive par rapport à la loi interne T si : $\forall (x, y, z) \in K^3$

- $x \star (y \top z) = (x \star y) \top (x \star z)$ (distributive à gauche)
- $(x \top y) \star z = (x \star z) \top (y \star z)$ (distributive à droite)

⇒ Reconnaitre les groupes

1. Problèmes

2. Lois de composition internes

- 2.1. Définitions
- 2.2. Propriétés directes
- 2.3 Induction

3. Structure de groupe

- 3.1. Définition et propriétés
- 3.2. Groupes produits
- 3.3. Exemples

\Rightarrow Reconnaitre les groupes

- Problèmes
- 2. Lois de composition internes
- 2.2 Propriétés
-
- 3. Structure de
- roupe
- 2.2 Grouppe produit
- 3.2. Groupes produit

Premières propriétés

Proposition - Unicités (éléments neutres, symétrique)...si existence

Soit (F, T) un magma.

Si F est unifère, l'élément neutre pour \top est unique.

Soit (E, \star) un monoïde.

Si $x \in E$ admet un symétrique alors celui-ci est unique;

Si $x, y \in E$ admettent des symétriques x^{-1} et y^{-1} alors $x \star y$ admet un symétrique : $y^{-1} \star x^{-1}$.

Si x est symétrique alors x est régulier (à gauche et à droite) :

```
\forall y, z \in E, x \star y = x \star z \Rightarrow y = z \text{ et } y \star x = z \star x \Rightarrow y = z.
```

⇒ Reconnaitre les groupes

1. Problèmes

2. Lois de

2.1. Définitions

2.2. Propriétés

Structure de

roupe

3.2. Groupes produit

3.3. Exemples

Premières propriétés

Proposition - Unicités (éléments neutres, symétrique)...si existence

Soit (F, \top) un magma.

Si F est unifère, l'élément neutre pour \top est unique.

Soit (E, \star) un monoïde.

Si $x \in E$ admet un symétrique alors celui-ci est unique;

Si $x, y \in E$ admettent des symétriques x^{-1} et y^{-1} alors $x \star y$ admet un symétrique : $y^{-1} \star x^{-1}$.

Si x est symétrique alors x est régulier (à gauche et à droite) :

 $\forall y,z \in E, x \star y = x \star z \Rightarrow y = z \text{ et } y \star x = z \star x \Rightarrow y = z.$

Démonstration

\Rightarrow Reconnaitre les groupes

1. Problemes

2. Lois de

- - - - - -

2.2. Propriétés

3. Induction

Structure de

.1. Def & Prop

3.2. Groupes produits

4 D > 4 A > 4 B > 4 B > 9 Q Q

⇒ Reconnaitre les groupes

1. Problèmes

2. Lois de composition internes

- 2.1. Définitions
- 2.2. Propriétés directes
- 2.3. Induction

3. Structure de groupe

- 3.1. Définition et propriétés
- 3.2. Groupes produits
- 3.3. Exemples

\Rightarrow Reconnaitre les groupes

- Problèmes
- 2. Lois de
 - .1. Définitions
 - 2.2. Propriétés
- 2.3. Induction
- 3. Structure de aroupe
- 3.1. Def & Prop
- 2. Groupes produits
- 3.3. Exemples

Loi induite

Définition - Loi induite

Soit $A \subset E$, avec (E, \top) magma.

 \underline{A} est stable par \top (loi de composition interne sur E) si $\forall x, y \in A, x \top y \in A$.

 $\top_A = \top_{|A \times A}$ s'appelle la loi induite (par \top sur A).

- . Problèmes
- 2. Lois de
- 0.1 D45-W---
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de groupe
- 3.1 Def & Prop
- 3.2. Groupes produits

Loi induite

Définition - Loi induite

Soit $A \subset E$, avec (E, \top) magma.

 \underline{A} est stable par \top (loi de composition interne sur E) si $\forall x, y \in A, x \top y \in A$.

 $\top_A = \top_{|A \times A}$ s'appelle la loi induite (par \top sur A).

Remarque Transmission des propriétés

$\Rightarrow \text{Reconnaitre les} \\ \text{groupes}$

- Problèmes
- 2. Lois de
- 0.1 D45-W---
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- 3.2. Groupes produits

⇒ Reconnaitre les groupes

1. Problèmes

2. Lois de composition internes

- 2.1. Définitions
- 2.2. Propriétés directes
- 2.3. Induction

3. Structure de groupe

- 3.1. Définition et propriétés
- 3.2. Groupes produits
- 3.3. Exemples

\Rightarrow Reconnaitre les groupes

- Problèmes
- Lois de
 composition interne
 - 2.1. Definitions
- z.z. Proprietes
- 3 Structure de
- groupe

3.1. Def & Prop

- 2. Groupes produits
- 3.3. Exemples

Un groupe est un monoïde dont tous les éléments sont inversibles :

- . Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Propriet
- 3. Structure de
- 3.1. Def & Prop
 - 2. Groupes produits

Un groupe est un monoïde dont tous les éléments sont inversibles :

Définition - Groupe

On appelle groupe un ensemble G muni d'une loi \top vérifiant :

- ▶ ⊤ est une loi de composition interne
- ▶ la loi ⊤ est associative;
- ightharpoonup G possède un élément neutre pour \top ;
- b tout élément x de G possède un symétrique pour \top (ou tout élément de G est inversible, est symétrisable).

Si de plus la loi \top est commutative, on dit que le groupe est abélien (ou commutatif).

- l. Problèmes
- 2. Lois de
 - Jiiipositioii iii
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
 - 2. Groupes produits
- 3.3. Exemples

Un groupe est un monoïde dont tous les éléments sont inversibles :

Définition - Groupe

On appelle groupe un ensemble G muni d'une loi \top vérifiant :

- ▶ T est une loi de composition interne
- ▶ la loi ⊤ est associative;
- ▶ G possède un élément neutre pour \top ;
- b tout élément x de G possède un symétrique pour \top (ou tout élément de G est inversible, est symétrisable).

Si de plus la loi \top est commutative, on dit que le groupe est abélien (ou commutatif).

Exemple Groupes des racines de l'unité

- Problèmes
- 2. Lois de
 - omposition inte
- 2.2. Propriétés
- 2.3. Induction
- Structure de oupe
- 3.1. Def & Prop
 - 2. Groupes produits
- 3.3. Exemples

Un groupe est un monoïde dont tous les éléments sont inversibles :

Définition - Groupe

On appelle groupe un ensemble G muni d'une loi \top vérifiant :

- ▶ T est une loi de composition interne
- ▶ la loi ⊤ est associative;
- ightharpoonup G possède un élément neutre pour \top ;
- b tout élément x de G possède un symétrique pour \top (ou tout élément de G est inversible, est symétrisable).

Si de plus la loi \top est commutative, on dit que le groupe est abélien (ou commutatif).

Exemple Groupes des racines de l'unité **Remarque** Sous-groupe

⇒ Reconnaitre les groupes

Problèmes

2. Lois de

composition

2.2. Propriétés

2.3. Induction

Structure de oupe

3.1. Def & Prop

2. Groupes produits

3.3. Exemples

Régularité

Proposition - Régularité

Dans un groupe tous les éléments sont réguliers à gauche et à droite

\Rightarrow Reconnaitre les groupes

- . Problèmes
- 2. Lois de
- 2.1 Définitions
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
 - 2. Groupes produits

Régularité

Proposition - Régularité

Dans un groupe tous les éléments sont réguliers à gauche et à droite

Démonstration

$\Rightarrow \text{Reconnaitre les} \\ \text{groupes}$

- Problèmes
- 2. Lois de
- composition internes
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de
- groupe 3.1. Def & Prop
- .2. Groupes produits
- 3.3. Exemples

Propriétés immédiates

Comme les groupes sont des magmas infères, où tous les éléments sont inversibles. Nécessairement :

- Problèmes
- 2. Lois de
- 2.1 Dáfinitions
- 2.2. Propriét
-
- groupe
- 3.1. Def & Prop
 - 2. Groupes produits

Propriétés immédiates

Comme les groupes sont des magmas infères, où tous les éléments sont inversibles. Nécessairement :

Théorème - Existence et unicité

Soit (G, \top) un groupe. Alors :

- L'élément neutre est unique.
- ► Tout élément possède un unique symétrique.
- En notant x^{-1} le symétrique (l'inverse) de x, on a $(x^{-1})^{-1} = x$.
- $(x \top y)^{-1} = y^{-1} \top x^{-1}$.

⇒ Reconnaitre les groupes

- 1. Problèmes
- 2. Lois de
- composition internes
- 2.2. Propriétés
- 2.3. Induction
- Structure de roupe

3.1. Def & Prop

. Groupes produits

⇒ Reconnaitre les groupes

1. Problèmes

2. Lois de composition internes

- 2.1. Définitions
- 2.2. Propriétés directes
- 2.3. Induction

3. Structure de groupe

- 3.1. Définition et propriétés
- 3.2. Groupes produits
- 3.3. Exemples

\Rightarrow Reconnaitre les groupes

- 1. Problèmes
- 2. Lois de
 - 2.1. Définitions
- 2.2. Proprietes
- 3. Structure de
- groupe
- 3.1. Def & Prop
- 3.2. Groupes produits

Définition - Produit de groupes

Soient (G, \bot) et (H, \top) deux groupes.

On appelle groupe produit (de ces deux groupes), le groupe $(G \times H, \star)$ tel que :

$$\forall \; (x_1,y_1)(x_2,y_2) \in G \times H \qquad (x_1,y_1) \star (x_2,y_2) = (x_1 \bot x_2,y_1 \top y_2)$$

⇒ Reconnaitre les groupes

3.2. Groupes produits

Définition - Produit de groupes

Soient (G, \bot) et (H, \top) deux groupes.

On appelle groupe produit (de ces deux groupes), le groupe $(G \times H, \star)$ tel que :

$$\forall (x_1, y_1)(x_2, y_2) \in G \times H \quad (x_1, y_1) \star (x_2, y_2) = (x_1 \perp x_2, y_1 \top y_2)$$

Il s'agit bien d'un groupe

⇒ Reconnaitre les groupes

3.2. Groupes produits

Définition - Produit de groupes

Soient (G, \bot) et (H, \top) deux groupes.

On appelle groupe produit (de ces deux groupes), le groupe $(G \times H, \star)$ tel que :

$$\forall \ (x_1,y_1)(x_2,y_2) \in G \times H \qquad (x_1,y_1) \star (x_2,y_2) = (x_1 \bot x_2, y_1 \top y_2)$$

Il s'agit bien d'un groupe

Démonstration

⇒ Reconnaitre les groupes

3.2. Groupes produits

Définition - Produit de groupes

Soient (G, \bot) et (H, \top) deux groupes.

On appelle groupe produit (de ces deux groupes), le groupe $(G \times H, \star)$ tel que :

$$\forall \ (x_1, y_1)(x_2, y_2) \in G \times H \qquad (x_1, y_1) \star (x_2, y_2) = (x_1 \bot x_2, y_1 \top y_2)$$

Il s'agit bien d'un groupe

Démonstration

Remarque - Souvent G = H.

⇒ Reconnaitre les groupes

3.2. Groupes produits

⇒ Reconnaitre les groupes

1. Problèmes

2. Lois de composition internes

- 2.1. Définitions
- 2.2. Propriétés directes
- 2.3. Induction

3. Structure de groupe

- 3.1. Définition et propriétés
- 3.2. Groupes produits
- 3.3. Exemples

- Problèmes
- 2. Lois de
 - 2.1. Définitions
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de
- .1. Def & Prop
- 3.2. Groupes produits
- 3.3. Exemples

Groupes triviaux

Exemple Avec l'addition

- . Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Proprie
- 2.3. Inductio
- 3. Structure de groupe
- 3.1. Def & Prop
- .2. Groupes produits
- 3.3. Exemples

Groupes triviaux

Exemple Avec l'addition

Exemple Avec la multiplication

- Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Proprié
- 2.3. Inductio
- 3. Structure de groupe
- 3.1. Def & Prop
- .2. Groupes produits
- 3.3. Exemples

Définition - Ensemble des classes d'équivalence modulo n

Soit $n \in \mathbb{N}$, fixé.

La relation \equiv_n ou encore $\cdot \equiv \cdot [n]$ est une relation d'équivalence $\operatorname{sur} \mathbb{Z}$.

L'ensemble des classes d'équivalence associées est noté $\frac{\mathbb{Z}}{n^{\mathbb{Z}}}$.

Un système de représentant est [0, n-1] puisque

$$\frac{\mathbb{Z}}{\frac{n\mathbb{Z}}{k}} = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\} \text{ où pour tout } k \in \llbracket 0, n-1 \rrbracket,$$

$$\overline{k} = \{k, k+n, k+2n, \dots, k-n, k-2n, \dots \} = \{k+rn, r \in \mathbb{Z}\}.$$

$$k = \{k, k + n, k + 2n, \dots, k - n, k - 2n, \dots\} = \{k + rn, r \in \mathbb{Z}\}$$

On peut alors définir sur $\frac{\mathbb{Z}}{n\mathbb{Z}}$ les lois $\overline{+}$ et $\overline{\times}$ par :

$$\overline{h} + \overline{k} = \overline{h + k}$$
 $\overline{h} \times \overline{k} = \overline{h \times k}$

⇒ Reconnaitre les groupes

3.3. Exemples

Définition - Ensemble des classes d'équivalence modulo n

Soit $n \in \mathbb{N}$, fixé.

La relation \equiv_n ou encore $\cdot \equiv \cdot [n]$ est une relation d'équivalence $\operatorname{sur} \mathbb{Z}$.

L'ensemble des classes d'équivalence associées est noté $\frac{\mathbb{Z}}{n^{\mathbb{Z}}}$.

Un système de représentant est [0, n-1] puisque

$$\frac{\mathbb{Z}}{\frac{n\mathbb{Z}}{k}} = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\} \text{ où pour tout } k \in \llbracket 0, n-1 \rrbracket,$$

$$\overline{k} = \{k, k+n, k+2n, \dots, k-n, k-2n, \dots \} = \{k+rn, r \in \mathbb{Z}\}.$$

$$\overline{k} = \{k, k+n, k+2n, \dots, k-n, k-2n, \dots\} = \{k+rn, r \in \mathbb{Z}\}$$

On peut alors définir sur $\frac{\mathbb{Z}}{n\mathbb{Z}}$ les lois $\overline{+}$ et $\overline{\times}$ par :

$$\overline{h} + \overline{k} = \overline{h + k}$$
 $\overline{h} \times \overline{k} = \overline{h \times k}$

Remarque Le plus dur dans ce qui précède

- 3.3. Exemples

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{+}\right)$$

Proposition - Groupe $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{+}\right)$

Pour tout entier $n \in \mathbb{N}^*$, $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, +\right)$ est un groupe commutatif.

Son élément neutre est $\overline{0}$ et l'opposé de \overline{k} est $\overline{n-k}$.

- . Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.3. Induction
- 3. Structure de groupe
- 1 Dof 8 Prop
- 3.2. Groupes produits
- 3.3. Exemples

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{+}\right)$$

Proposition - Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}},\overline{+}\right)$$

Pour tout entier $n \in \mathbb{N}^*$, $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, +\right)$ est un groupe commutatif.

Son élément neutre est $\overline{0}$ et l'opposé de \overline{k} est $\overline{n-k}$.

Démonstration

- Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Proprietes
- 3. Structure de
- groupe
- 3.1. Det & Prop
- 3.2. Groupes produits
 3.3. Exemples

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{\times}\right)$$
?

- I. Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Propriéte
- 2.3. 1110001011
- 3. Structure de groupe
 - .1. Def & Prop
- 3.2. Groupes produ
 3.3. Exemples

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{\times}\right)$$
?

Proposition - Groupe
$$\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$$
, avec p premier

Pour tout nombre premier $p, \left(\frac{\mathbb{Z}^*}{p\mathbb{Z}^*}, \overline{\times}\right)$ est un groupe commutatif.

Son élément neutre est $\overline{1}$ et l'opposé de \overline{k} est obtenu en exploitant le théorème de Bézout (ou autre).

⇒ Reconnaitre les groupes

. Problèmes

2. Lois de

somposition interne

2.2. Propriét

2.3. Induction

3. Structure de groupe

1. Def & Prop

2. Groupes produits

3.3. Exemples

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{\times}\right)$$
?

Proposition - Groupe
$$\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$$
, avec p premier

Pour tout nombre premier p, $\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$ est un groupe commutatif.

Son élément neutre est $\overline{1}$ et l'opposé de \overline{k} est obtenu en exploitant le théorème de Bézout (ou autre).

Exercice

A démontrer

- Problèmes
- 2. Lois de
- - - -
- 2.2. Propriété
- 2.3. Induction
 - . Structure de roupe
 - 1. Def & Prop
 - 2. Groupes produits
 - 3.3. Exemples

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{\times}\right)$$
?

Proposition - Groupe
$$\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$$
, avec p premier

Pour tout nombre premier p, $\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$ est un groupe commutatif.

Son élément neutre est $\overline{1}$ et l'opposé de \overline{k} est obtenu en exploitant le théorème de Bézout (ou autre).

Exercice

A démontrer

Remarque Autre point de vue.

- Problèmes
- 2. Lois de
- omposition interne
- 2.2. Propriéte
- 2.3. Induction
 - Structure de oupe
 - oupe
 - Groupes produits
 - 3.3. Exemples

« Petits »groupes

Analyse Groupe à deux éléments

- 1. Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Propriété
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- 2. Groupes produits
- 3.3. Exemples

« Petits »groupes

Analyse Groupe à deux éléments

Exercice

Construire un groupe de 3 éléments

- I. Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Propriete
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- .2. Groupes produits
- 3.3. Exemples

 $(\mathcal{M}_{n,p}(\mathbb{K}),+)$ est un groupe?

- Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Propriét
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- 3.2. Groupes produ
 3.3. Exemples

 $(\mathcal{M}_{n,p}(\mathbb{K}),+)$ est un groupe? $(\mathcal{M}_{n}(\mathbb{K}),\times)$ est un groupe?

- 1. Problèmes
- 2. Lois de
 - 2.1. Définitions
- 2.2. Propriéte
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- 3.2. Groupes produi
 3.3. Exemples

 $(\mathcal{M}_{n,p}(\mathbb{K}),+)$ est un groupe? $(\mathcal{M}_{n}(\mathbb{K}),\times)$ est un groupe? $(GL_{n}(\mathbb{K}),\times)$? oui!

- 1. Problèmes
- 2. Lois de
 - 2.1. Définitions
- 2.2. Propriéte
- 2.5. 110000011
- 3. Structure de groupe
 - 8.1. Def & Prop
- 3.2. Groupes produits
 3.3. Exemples

```
\begin{split} &(\mathcal{M}_{n,p}(\mathbb{K}),+) \text{ est un groupe ?} \\ &(\mathcal{M}_n(\mathbb{K}),\times) \text{ est un groupe ?} \\ &(GL_n(\mathbb{K}),\times) ? \text{ oui !} \\ &\text{Autre exemple } (\mathcal{O}_n(\mathbb{K}),\times) ? \text{ où } M \in \mathcal{O}_n(\mathbb{K}) \text{ ssi } M^T \times M = I_n \end{split}
```

- 1. Problèmes
- 2. Lois de
- composition interne
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de groupe
 - upe
 - 2. Groupes produits
- 3.3. Exemples

Groupes des permutations

Un groupe très important, on reviendra sur cette notion plus tard...

Proposition - Groupe des permutations d'un ensemble

Soit X un ensemble non vide. On note S_X l'ensemble des permutations de X (c'est-à-dire des bijections de X dans X). Alors (S_X, \circ) est un groupe, généralement non commutatif, appelé groupe des permutations de X.

- Problèmes
- 2. Lois de
- 0.1 D45-11---
- 2.2. Propriété
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- 3.2. Groupes produits
- 3.3. Exemples

Groupes des permutations

Un groupe très important, on reviendra sur cette notion plus tard...

Proposition - Groupe des permutations d'un ensemble

Soit X un ensemble non vide. On note S_X l'ensemble des permutations de X (c'est-à-dire des bijections de X dans X). Alors (S_X,\circ) est un groupe, généralement non commutatif, appelé groupe des permutations de X.

Remarque Permutation

Qu'est-ce qu'une permutation de X?

- Problèmes
- 2. Lois de
- composition internes
- 2.2. Propriétés
- 2.3. Induction
- . Structure de roupe
- 3.1. Def & Prop
- 3.2. Groupes produits
- 3.3. Exemples

Groupes des permutations

Un groupe très important, on reviendra sur cette notion plus tard...

Proposition - Groupe des permutations d'un ensemble

Soit X un ensemble non vide. On note S_X l'ensemble des permutations de X (c'est-à-dire des bijections de X dans X). Alors (S_X, \circ) est un groupe, généralement non commutatif, appelé groupe des permutations de X.

Remarque Permutation Qu'est-ce qu'une permutation de *X* ? **Démonstration**

⇒ Reconnaitre les groupes

Problèmes

2. Lois de

omposition in

2.2. Propriétés

2.3. Induction

Structure de

.1. Def & Prop

.2. Groupes produits

3.3. Exemples

Groupes et géométrie

Proposition - Groupes des similitudes directes du plan ${\mathbb C}$

L'ensemble des similitudes directes est un groupe pour la loi \circ . L'élément neutre est l'identité.

L'inverse de la similitude de centre Ω , d'angle θ et de rapport k est la similitude de centre Ω , d'angle $-\theta$ et de rapport $\frac{1}{k}$. L'inverse de la translation de vecteur \overrightarrow{u} est la translation de vecteur $-\overrightarrow{u}$.

- Problèmes
- 2. Lois de
- 04 D/5 W
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de
- 3.1. Def & Prop
- 3.2. Groupes produits
- 3.3. Exemples

Groupes et géométrie

Proposition - Groupes des similitudes directes du plan ${\mathbb C}$

L'ensemble des similitudes directes est un groupe pour la loi \circ . L'élément neutre est l'identité.

L'inverse de la similitude de centre Ω , d'angle θ et de rapport k est la similitude de centre Ω , d'angle $-\theta$ et de rapport $\frac{1}{k}$. L'inverse de la translation de vecteur \overrightarrow{u} est la translation de vecteur $-\overrightarrow{u}$.

Démonstration

- 1. Problèmes
- 2. Lois de
- composition internes
- 2.2 Propriétés
- 2.3. Induction
- . Structure de
- roupe
- 3.1. Det & Prop
- 3.2. Groupes produits
- 3.3. Exemples

Objectifs

⇒ Reconnaître les groupes

- Problèmes
- 2. Lois de
- 2.1. Définitions
- 2.2. Propriéte
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- Groupes produit

Objectifs

- ⇒ Reconnaître les groupes
 - Définition avec une certaine stabilité opératoire et passage à l'inverse

- Problèmes
- 2. Lois de
 - 2.1. Définitions
- 2.2. Propriété
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- .2. Groupes produits

Objectifs

- ⇒ Reconnaître les groupes
 - Définition avec une certaine stabilité opératoire et passage à l'inverse
 - De très nombreux exemples.

- 1. Problèmes
- 2. Lois de
- 0.4 0.75 %
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de
- 3.1. Def & Prop
- .2. Groupes produits
- 3.3. Exemples

Objectifs

- ⇒ Reconnaître les groupes
 - Définition avec une certaine stabilité opératoire et passage à l'inverse
 - De très nombreux exemples.

- 1. Problèmes
- 2. Lois de
- 0.4 0.75 %
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de
- 3.1. Def & Prop
- .2. Groupes produits
- 3.3. Exemples

Objectifs

- ⇒ Reconnaître les groupes
 - Définition avec une certaine stabilité opératoire et passage à l'inverse
 - De très nombreux exemples.

- . Problèmes
- 2. Lois de
- 0.1 D45-31---
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de groupe
- 3.1. Def & Prop
- .2. Groupes produits
- 3.3. Exemples

Objectifs

- ⇒ Reconnaître les groupes
 - Définition avec une certaine stabilité opératoire et passage à l'inverse
 - De très nombreux exemples.

Pour la prochaine fois

- Lecture du cours : chapitre 13 Groupes
- Exercices N°272 & 275

- . Problèmes
- 2. Lois de
- 2.2. Propriétés
- 2.3. Induction
- 3. Structure de proupe
- 3.1. Def & Prop
- .2. Groupes produits
- 3.3. Exemples