

Leçon 41 - Groupes

- Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
- .1. Def & Prop
- 3.2. Groupes produit
- 3.3. Exemples
- 4. Sous-group
 - .1. Définition et
- 4.2. Intersection
- 4.3. S-G engend
- _ ...
- 5.1. Def & Prop
- 5.2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
- i.2. Sous-groupe distingué
- 6.3. Premier théorèm d'isomorphisme

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples
- 4. Sous-groupe
 - 4.1. Définition et caractérisations
 - 4.2. Intersection
 - 4.3. Sous-groupe engendré
- 5. Morphismes de groupes
 - 5.1. Définition et propriété immédiate
 - 5.2. Image et noyau d'un morphisme
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 6.2. Sous-groupe distingué
 - 6.3. Premier théorème d'isomorphisme

- 3.3 Exemples

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples
- 4. Sous-groupe
 - 4.1. Définition et caractérisations
 - 4.2. Intersection
 - 4.3. Sous-groupe engendré
- 5. Morphismes de groupes
 - 5.1. Définition et propriété immédiate
 - 5.2. Image et noyau d'un morphisme
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 6.2. Sous-groupe distingué
 - 6.3. Premier théorème d'isomorphisme

- Problèmes
- Lois de mposition internes
- Structure de oupe
- .1. Def & Prop
- .2. Groupes produits
- 3.3. Exemples
- . Sous-groupe
- Définition et
- 2 Intersection
- .3. S-G engendré
- Morphismes
- 1 Def & Prop
- 2 Im at Kan
- 5.2. Im et Ker
- groupe
- 6.1. Théorème de Lagrange
 - 2. Sous-groupe distingular
- 6.3. Premier théorème d'isomorphisme

Groupes triviaux

Exemple Avec l'addition

- Problèmes
- 2. Lois de composition internes
- 3. Structure de aroupe
- .1. Def & Prop
- 3.2. Groupes produi
- 3.3. Exemples
- 4 Sour-groups
 - Sous-groupe
 - Définition et
 - ractérisations
- 4.3. S-G engendn
- 1 D-1 0 D---
- . Def & Prop
- 5.2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
 - 2. Sous-groupe distinc
- 6.3. Premier théorème

Groupes triviaux

Exemple Avec l'addition

Exemple Avec la multiplication

- 3.3. Exemples

Définition - Ensemble des classes d'équivalence modulo n

Soit $n \in \mathbb{N}$, fixé.

La relation \equiv_n ou encore $\cdot \equiv \cdot [n]$ est une relation d'équivalence $\operatorname{sur} \mathbb{Z}$.

L'ensemble des classes d'équivalence associées est noté $\frac{\mathbb{Z}}{n\mathbb{Z}}$.

Un système de représentant est [0, n-1] puisque

$$\frac{\mathbb{Z}}{n\mathbb{Z}} = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\} \text{ où pour tout } k \in [[0, n-1]],$$

$$\overline{k} = \{k, k+n, k+2n, \dots, k-n, k-2n, \dots\} = \{k+rn, r \in \mathbb{Z}\}.$$

$$\overline{k} = \{k, k+n, k+2n, \dots, k-n, k-2n, \dots\} = \{k+rn, r \in \mathbb{Z}\}.$$

On peut alors définir sur $\frac{\mathbb{Z}}{n\mathbb{Z}}$ les lois $\overline{+}$ et $\overline{\times}$ par :

$$\overline{h} + \overline{k} = \overline{h + k}$$
 $\overline{h} \times \overline{k} = \overline{h \times k}$

- 3.3. Exemples

Définition - Ensemble des classes d'équivalence modulo n

Soit $n \in \mathbb{N}$, fixé.

La relation \equiv_n ou encore $\cdot \equiv \cdot [n]$ est une relation d'équivalence $\operatorname{sur} \mathbb{Z}$.

L'ensemble des classes d'équivalence associées est noté $\frac{\mathbb{Z}}{n^{\mathbb{Z}}}$.

Un système de représentant est [0, n-1] puisque

$$\frac{\mathbb{Z}}{n\mathbb{Z}} = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\} \text{ où pour tout } k \in [[0, n-1]],$$

$$\overline{k} = \{k, k+n, k+2n, \dots, k-n, k-2n, \dots\} = \{k+rn, r \in \mathbb{Z}\}.$$

$$\overline{k} = \{k, k+n, k+2n, \dots, k-n, k-2n, \dots\} = \{k+rn, r \in \mathbb{Z}\}.$$

On peut alors définir sur $\frac{\mathbb{Z}}{n\mathbb{Z}}$ les lois $\overline{+}$ et $\overline{\times}$ par :

$$\overline{h} + \overline{k} = \overline{h + k}$$
 $\overline{h} \times \overline{k} = \overline{h \times k}$

Remarque Le plus dur dans ce qui précède

- 3.3. Exemples

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{+}\right)$$

Proposition - Groupe $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{+}\right)$

Pour tout entier $n \in \mathbb{N}^*$, $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, +\right)$ est un groupe commutatif.

Son élément neutre est $\overline{0}$ et l'opposé de \overline{k} est $\overline{n-k}$.

$\Rightarrow {\sf Decomposer} \; {\sf les} \\ {\sf groupes}$

- 1. Problèmes
- Lois de composition internes
 - 3. Structure de proupe
- 3.1. Def & Prop
- 3.3. Exemples
- ----
- 4. Sous-groupe
 - I.1. Définition et
- 4.2. Intersection
- 4.3. S-G engend
 - Morphismes
 - Def & Prop
 - 5.1. Det & Prop 5.2 Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
 - 2. Sous-groupe distingué
- 6.3. Premier théorème d'isomorphisme

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{+}\right)$$

Proposition - Groupe $\left(\frac{\mathbb{Z}}{n\mathbb{Z}},\overline{+}\right)$

Pour tout entier $n \in \mathbb{N}^*$, $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, +\right)$ est un groupe commutatif.

Son élément neutre est $\overline{0}$ et l'opposé de \overline{k} est $\overline{n-k}$.

Démonstration

- I. Problèmes
- 2. Lois de composition internes
- 8. Structure de
- 3.1. Def & Prop
- 3.2. Groupes produits
 3.3. Exemples
- 4. Sous-groupe
 - I.1. Définition et
- 4.2. Intersection
- 4.3. S-G engend
 - Morphisme
 - Def & Prop
 - Del & Prop
 Tm at Kar
- 6. Démontage d'un
- 6.1. Théorème de Lagrange
 - Sourcemoune distinguis
- 6.3. Premier théorème

- Problèmes
- 2. Lois de
- 3. Structure de
- 3.1. Def & Prop
- 3.2. Groupes produ
- 3.3. Exemples
- 4 Sous-groups
 - D45-16-- -4
 - ractérisations
- 4.2. Intersection
- - Def & Prop
- 2 Im at Kan
- 6. Démontage d'
- 6.1. Théorème de Lagrang
 - .2. Sous-groupe distin
- 6.3. Premier théorèn d'isomorphisme

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{\times}\right)$$
?

Proposition - Groupe
$$\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$$
, avec p premier

Pour tout nombre premier p, $\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$ est un groupe commutatif.

Son élément neutre est $\overline{1}$ et l'opposé de \overline{k} est obtenu en exploitant le théorème de Bézout (ou autre).

- . Problèmes
- Lois de composition internes
- 3. Structure de
- 3.1. Det & Prop
- 3.3. Exemples
- 1 Cours groups
 - Sous-groupe
- 4.2. Intersection
- 4.3. S-G engendr
- i. Morphisme
- 1. Def & Prop
- . Démontage d'un
- 0 1 Tháinh de l
- I neoreme de Lagrange
- 6.2. Sous-groupe distin

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{\times}\right)$$
?

Proposition - Groupe
$$\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$$
, avec p premier

Pour tout nombre premier p, $\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$ est un groupe commutatif.

Son élément neutre est $\overline{1}$ et l'opposé de \overline{k} est obtenu en exploitant le théorème de Bézout (ou autre).

Exercice

A démontrer

- Problèmes
- 2. Lois de composition internes
- 3. Structure de
- 3.1. Def & Prop
- 3.3. Exemples
- 4. Sous-groupe
 - Definition et tractérisations
- 4.2. Intersection
 4.3. S-G engendi
- 4.3. S-G engendr
 - Morphisme
 - 1. Def & Prop
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 1. Theoreme de Lagrange
- 6.3. Premier théorème

Groupe
$$\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \overline{\times}\right)$$
?

Proposition - Groupe
$$\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$$
, avec p premier

Pour tout nombre premier p, $\left(\frac{\mathbb{Z}}{p\mathbb{Z}}^*, \overline{\times}\right)$ est un groupe commutatif.

Son élément neutre est $\overline{1}$ et l'opposé de \overline{k} est obtenu en exploitant le théorème de Bézout (ou autre).

Exercice

A démontrer

Remarque Autre point de vue.

- Problèmes
- Lois de composition internes
- 3. Structure de
- 3.1. Def & Prop
- 3.2. Groupes produits
 3.3. Exemples
- o.o. Exemples
- 4. Sous-groupe
 - ractérisations
- 4.2. Intersection
 4.3. S-G engendi
- 4.0. O-Ci engenui
 - Def & Prop
 - 1. Def & Prop
- 6. Démontage d'un
- S.1. Théorème de Lagrange
- Cour groupe distingué
- 6.3. Premier théorème

« Petits »groupes

Analyse Groupe à deux éléments

- 3.3. Exemples

« Petits »groupes

Analyse Groupe à deux éléments

Exercice

Construire un groupe de 3 éléments

- 3.3. Exemples

 $(\mathcal{M}_{n,p}(\mathbb{K}),+)$ est un groupe?

$\Rightarrow {\sf Decomposer} \; {\sf les} \\ {\sf groupes}$

- Problèmes
- 2. Lois de composition internes
- 3. Structure de
- 3.1. Def & Prop
- 3.2. Groupes produi
- 3.3. Exemples
- 4. Sous-groupe
 - 1 Définition et
 - ractérisations
- 4.2. Intersection
- 4.3. S-G engendré
 - worphismes
 - . Def & Prop
- 5.2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
 - Sous-groupe disting
- 6.3. Premier théorème
 d'isomorphisme

 $(\mathcal{M}_{n,p}(\mathbb{K}),+)$ est un groupe? $(\mathcal{M}_n(\mathbb{K}), \times)$ est un groupe?

- 3.3. Exemples

```
(\mathcal{M}_{n,p}(\mathbb{K}),+) est un groupe?

(\mathcal{M}_{n}(\mathbb{K}),\times) est un groupe?

(GL_{n}(\mathbb{K}),\times)? oui!
```

- Problèmes
- 2. Lois de composition internes
- 3. Structure de proupe
- 3.1. Def & Prop
- 3.2. Groupes produ
- 3.3. Exemples
- 4 Sous-groups
- Sous-groupe
 - 1. Définition et
 - 2. Intersection
- 4.3. S-G engendr
- Morphisme
 - Def & Prop
- 2 Im at Kon
- Dámantana d'
- groupe
- 6.1. Théorème de Lagrange
 - 2. Sous-groupe disting
- 6.3. Premier théorème d'isomorphisme

```
\begin{split} &(\mathscr{M}_{n,p}(\mathbb{K}),+) \text{ est un groupe ?} \\ &(\mathscr{M}_{n}(\mathbb{K}),\times) \text{ est un groupe ?} \\ &(GL_{n}(\mathbb{K}),\times) \text{? oui !} \\ &\text{Autre exemple } (\mathscr{O}_{n}(\mathbb{K}),\times) \text{? où } M \in \mathscr{O}_{n}(\mathbb{K}) \text{ ssi } M^{T} \times M = I_{n} \end{split}
```

$\Rightarrow {\sf Decomposer} \; {\sf les} \\ {\sf groupes}$

- . Problèmes
- 2. Lois de composition internes.
 - . Structure de
 - .1. Def & Prop
- 3.2. Groupes produit
- 3.3. Exemples
- 4 Sous-groupe
 - 1 Définition et
- 4.2. Intersection
- 4.3. S-G engend
- - worphisme
- 5.1. Def & Prop
- Dámantana d'
- groupe
- 6.1. Théorème de Lagrange
 - . Sous-groupe distingu
- 6.3. Premier théorème d'isomorphisme

Groupes des permutations

Un groupe très important, on reviendra sur cette notion plus tard...

Proposition - Groupe des permutations d'un ensemble

Soit X un ensemble non vide. On note S_X l'ensemble des permutations de X (c'est-à-dire des bijections de X dans X). Alors (S_X, \circ) est un groupe, généralement non commutatif, appelé groupe des permutations de X.

- 3.3. Exemples

Groupes des permutations

Un groupe très important, on reviendra sur cette notion plus tard...

Proposition - Groupe des permutations d'un ensemble

Soit X un ensemble non vide. On note S_X l'ensemble des permutations de X (c'est-à-dire des bijections de X dans X). Alors (S_X, \circ) est un groupe, généralement non commutatif, appelé groupe des permutations de X.

Remarque Permutation

Qu'est-ce qu'une permutation de X?

- . Problèmes
- Lois de composition internes
- 3. Structure d groupe
- 3.2. Groupes produits
- 3.3. Exemples
- 1. Sous-groupe
 - Définition et
- 4.2. Intersection
- 4.3. S-G engend
 - Morphism
 - Def & Prop
 - .1. Def & Prop .2. Im et Ker
- 6. Démontage d'un groupe
- .1. Théorème de Lagrange
 - Sous-groupe disting
- 6.3. Premier théorème

Groupes des permutations

Un groupe très important, on reviendra sur cette notion plus tard...

Proposition - Groupe des permutations d'un ensemble

Soit X un ensemble non vide. On note S_X l'ensemble des permutations de X (c'est-à-dire des bijections de X dans X). Alors (S_X, \circ) est un groupe, généralement non commutatif, appelé groupe des permutations de X.

Remarque Permutation Qu'est-ce qu'une permutation de X? Démonstration

- Problèmes
- Lois de composition internes
- 3. Structure d groupe
- 8.1. Det & Prop 8.2. Grounes produits
- 3.3. Exemples
- 4. Sous-aroupe
- .1. Définition et
- 4.2. Intersection
- 4.3. S-G engendi
 -
 - 1. Def & Prop
 - 1. Def & Prop 2. Im et Ker
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 2. Sous-groupe disting
- 6.3. Premier théorème

Groupes et géométrie

Proposition - Groupes des similitudes directes du plan ${\mathbb C}$

L'ensemble des similitudes directes est un groupe pour la loi \circ . L'élément neutre est l'identité.

L'inverse de la similitude de centre Ω , d'angle θ et de rapport k est la similitude de centre Ω , d'angle $-\theta$ et de rapport $\frac{1}{k}$. L'inverse de la translation de vecteur \overrightarrow{u} est la translation de vecteur $-\overrightarrow{u}$.

- . Problèmes
- 2. Lois de composition internes
 - . Structure de roupe
- 3.1. Det & Prop
- 3.3. Exemples
- 1 Sous-groups
- . Sous-groupe
- caractérisations
- 4.3. S-G engeno
 - Manahiana
 - . Def & Prop
 - Démontage d'u
- 6. Démontage d'un groupe
 - 1. Théorème de Lagrange
 - 2. Sous-groupe distingu
- 6.3. Premier théorème

Groupes et géométrie

Proposition - Groupes des similitudes directes du plan ${\mathbb C}$

L'ensemble des similitudes directes est un groupe pour la loi \circ . L'élément neutre est l'identité.

L'inverse de la similitude de centre Ω , d'angle θ et de rapport k est la similitude de centre Ω , d'angle $-\theta$ et de rapport $\frac{1}{k}$. L'inverse de la translation de vecteur \overrightarrow{u} est la translation de vecteur $-\overrightarrow{u}$.

Démonstration

- 1. Problèmes
- 2. Lois de composition internes
- 8. Structure de
- 3.1. Def & Prop
- 3.2. Groupes produits
 3.3 Exemples
- Caus availba
- 4. Sous-groupe
 - aractérisations
- 4.3. S-G engend
- - 1 Def & Pron
 - 1. Def & Prop 2. Im et Ker
- 6. Démontage d'un
- 3.1 Thánràma da Lagranga
 - Carrage de Lagrang
- 6.3. Premier théorème

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples
- 4. Sous-groupe
 - 4.1. Définition et caractérisations
 - 4.2. Intersection
 - 4.3. Sous-groupe engendré
- 5. Morphismes de groupes
 - 5.1. Définition et propriété immédiate
 - 5.2. Image et noyau d'un morphisme
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 6.2. Sous-groupe distingué
 - 6.3. Premier théorème d'isomorphisme

- . Problèmes
- Lois de omposition internes
- Structure de roupe
- . Def & Prop
- 2. Groupes produits
- . Sous-group
- 4.1. Définition et caractérisations
- I.2. Intersection
- 4.3. S-G engendré
- . Morphismes
- 1 Def & Prop
- 5.2. Im et Ker
- J.2. IIII 61
- groupe
 - 6.1. Théorème de Lagrange
 - Sous-groupe disting:
 - d'isomorphisme

Par la suite, on considérera (G, T) un groupe.

- 4.1. Définition et
- caractérisations

Par la suite, on considérera (G, T) un groupe.

Définition - Sous-groupe

 $H \subset G$ (non vide) est un sous-groupe de G si H est stable pour la loi interne et si la loi induite (restriction de la loi à H) munit H d'une structure de groupe. On note H < G

- . Problèmes
- Lois de composition internes
- 3. Structure de
- 3.1. Def & Prop
- 3.2. Groupes produits
 3.3. Exemples
- 4. Sous-group
- 4.1. Définition et
- caractérisations
- 4.3. S-G engendré
- . Morphismes
 - . Def & Prop
- 5.2. Im et Ker
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 2. Sous-groupe disting
- 6.3. Premier théorème d'isomorphisme

Par la suite, on considérera (G, T) un groupe.

Définition - Sous-groupe

 $H \subset G$ (non vide) est un sous-groupe de G si H est stable pour la loi interne et si la loi induite (restriction de la loi à H) munit H d'une structure de groupe. On note H < G

Proposition - Elément neutre et symétriques

Soit H < G. Alors l'élément neutre de H est l'élément neutre de G.

Si $x \in H$, le symétrique de x dans H est le symétrique de x dans G.

- Problèmes
- 2. Lois de composition internes
- 3. Structure of groupe
- 8.1. Def & Prop
- .3. Exemples
- . Sous-group
- 4.1. Définition et
- 4.1. Definition et caractérisations
- 4.3. S-G engendr
- 5 Morphisme
 - .1. Def & Prop
 - 1. Det & Prop 2. Im et Ker
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 2. Sous-groupe distingui
- 6.3. Premier théorème

Par la suite, on considérera (G, T) un groupe.

Définition - Sous-groupe

 $H \subset G$ (non vide) est un sous-groupe de G si H est stable pour la loi interne et si la loi induite (restriction de la loi à H) munit H d'une structure de groupe. On note H < G

Proposition - Elément neutre et symétriques

Soit H < G. Alors l'élément neutre de H est l'élément neutre de G.

Si $x \in H$, le symétrique de x dans H est le symétrique de x dans G.

Démonstration

⇒ Decomposer les groupes

- Problèmes
- 2. Lois de composition internes
- 3. Structure o
- 8.1. Def & Prop
- 3. Exemples
- l. Sous-groupe

4.1. Définition et caractérisations

- I.2. Intersection
- 4.3. S-G engendr
- 5. Morphisme
 - 1. Def & Prop
 - 2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
- 2 Sous-groupe distingué
- 6.3. Premier théorème

Caractérisations

Théorème - Caractérisation 1

Soit $H \subset G$. H est un sous-groupe de G si et seulement si il vérifie :

- $\vdash H \neq \emptyset$
- $\forall (x, y) \in H^2, x \top y \in H$
- $\forall x \in H, x^{-1} \in H$

- 4.1 Définition et caractérisations

Théorème - Caractérisation 1

Soit $H \subset G$. H est un sous-groupe de G si et seulement si il vérifie :

- $\vdash H \neq \emptyset$
- $\forall (x, y) \in H^2, x \top y \in H$
- $\forall x \in H, x^{-1} \in H$

Théorème - Caractérisation 2

Soit $H \subset G$. H est un sous-groupe de G si et seulement si il vérifie :

- $\vdash H \neq \emptyset$
- $\forall (x,y) \in H^2, x \top y^{-1} \in H$ (en notation multiplicative : $\forall (x,y) \in H^2, xy^{-1} \in H$; en notation additive : $\forall (x, y) \in H^2, x - y \in H$)

- 4.1 Définition et
- caractérisations

⇒ Decomposer les groupes

- . Problemes
- 2. Lois de composition internes
- 3. Structure de groupe
- 2.2 Groupos produ
- 3.3. Exemples
- 4. Sous-groupe
- 4.1. Définition et caractérisations
- 4.2. Intersection
- 4.3. S-G engendré
 - Morphisme
 - 1. Def & Prop
- 6. Démontage d'un
- 3.1. Théorème de Lagrange
- 2. Sous-groupe disting
- 6.3. Premier théorème d'isomorphisme

Savoir-faire. Démontrer que H est un (sous-)groupe

Dans la pratique, lorsque H est une partie de E, groupe. On démontre qu'il s'agit d'un sous-groupe de E

- ightharpoonup avec la caractérisation 1, lorsque H et E sont explicites
- ightharpoonup avec la caractérisation 2, lorsque H et E sont théoriques

Théorème - Caractérisation 1

Soit $H \subset G$. H est un sous-groupe de G ssi il vérifie :

- H ≠ Ø
- $\forall (x,y) \in H^2, x \top y \in H$
- $\forall x \in H, x^{-1} \in H$

Théorème - Caractérisation 2

Soit $H \subset G$. H est un sous-groupe de G ssi il vérifie :

- $ightharpoonup H \neq \emptyset$
- $\forall (x,y) \in H^2, x \top y^{-1} \in H$ (en notation multiplicative : $\forall (x,y) \in H^2, xy^{-1} \in H$; en notation additive : $\forall (x,y) \in H^2, x-y \in H$)

Démonstration

- . Problèmes
- 2. Lois de composition internes
- . Structure o
- Det & Prop
 Groupes produits
- .3. Exemples
- 4.1 Définition et
- 4.1. Définition et caractérisations
- 4.2. Intersection
- 4.3. S-G engendr
 - i. Morphisme
 - 5.1. Def & Prop
 - 5.2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
 - .2. Sous-groupe disting
- 6.3. Premier théorème d'isomorphisme

Caractérisations

Théorème - Caractérisation 1

Soit $H \subset G$. H est un sous-groupe de G ssi il vérifie :

- $ightharpoonup H \neq \emptyset$
- $\forall (x,y) \in H^2, x \top y \in H$
- $\forall x \in H, x^{-1} \in H$

Théorème - Caractérisation 2

Soit $H \subset G$. H est un sous-groupe de G ssi il vérifie :

- **►** *H* ≠ Ø
- $\forall (x,y) \in H^2, x \top y^{-1} \in H$ (en notation multiplicative : $\forall (x,y) \in H^2, xy^{-1} \in H$; en notation additive : $\forall (x,y) \in H^2, x-y \in H$)

Démonstration

Exercice Montrer que si $H_1 < G_1$ et $H_2 < G_2$, alors $H_1 \times H_2 < G_1 \times G_2$.

- ⇒ Decomposer les groupes
- . Problemes
- 2. Lois de composition internes
- Structure d
- . Groupes produits
- 3. Exemples
- . Sous-groupe
- 4.1. Définition et caractérisations
- 4.2. Intersection
- 4.3. S-G engend
 - Morphismes
 - 1. Def & Prop
 - 2. Im et Ker
- groupe
- 6.1. Théorème de Lagrange
- Sous-groupe disting
- 6.3. Premier theorem d'isomorphisme

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples
- 4. Sous-groupe
 - 4.1. Définition et caractérisations
 - 4.2. Intersection
 - 4.3. Sous-groupe engendré
- 5. Morphismes de groupes
 - 5.1. Définition et propriété immédiate
 - 5.2. Image et noyau d'un morphisme
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 6.2. Sous-groupe distingué
 - 6.3. Premier théorème d'isomorphisme

- . Problèmes
- Lois de omposition internes
- Structure de oupe
 - Def & Prop
- 2. Groupes produits
- 3.3. Exemples
- . Sous-groupe
- 1 Définition et
- 4.2. Intersection
- 3 S.G angandrá
- o. o a originaro
- . Morphismes
- .1. Def & Prop
- 5.2. Im et K
- groupe
- 6.1. Théorème de Lagrange
 - Sous-groupe disting:
- d'isomorphisme

Deux groupes

Théorème - Intersection

Soit H et K < G. Alors $H \cap K$ est un sous-groupe de G.

- . Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
- 3.1. Def & Prop
- 3.2. Groupes produits
- 4 Sous-groups
- +. Sous-groupe
 - . Définition et actérisations
- 4.2. Intersection
- 4.3. S-G engendi
- 4.0. O G Grigoria
- 1. Def & Prop
- 1. Def & Prop
- 5.2. Im et Ker
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 2. Sous-groupe disting:
 - 6.3. Premier théorème d'isomorphisme

Deux groupes

Théorème - Intersection

Soit H et K < G. Alors $H \cap K$ est un sous-groupe de G.

Démonstration

- Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
- 3.1. Def & Prop
- 3.2. Groupes produits
- 1 Sous-groupe
- . Jous-groupe
- Définition et ractérisations
- 4.2. Intersection
- .3. S-G engendre
- Morphisme
- 1. Def & Prop
- 2 Im at Kon
- 6. Démontage d'ui
- 6.1. Théorème de Lagrange
- 6.2. Sous-groupe distin

Deux groupes

Théorème - Intersection

Soit H et K < G. Alors $H \cap K$ est un sous-groupe de G.

Démonstration

L'exercice suivant donne TOUS les sous-groupes de $(\mathbb{Z},+)$: Exercice

- 1. Soit $a \in \mathbb{Z}$. Montrer que $a\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.
- 2. Soit G un sous-groupe de $(\mathbb{Z}, +)$, $G \neq \{0\}$. Justifier que $G \cap \mathbb{N}^*$ a un plus petit élément a > 0. Montrer que $G = a\mathbb{Z}$ (utiliser la division euclidienne).

- 4.2. Intersection

Famille de groupes

Théorème - Intersection de sous-groupes

Soit $(H_i)_{i \in I}$ une famille de sous-groupes de (G, \top) . Alors $\bigcap_{i \in I} H_i$ est un sous-groupe de G.

- 4.2. Intersection

Famille de groupes

Théorème - Intersection de sous-groupes

Soit $(H_i)_{i \in I}$ une famille de sous-groupes de (G, \top) . Alors $\bigcap_{i \in I} H_i$ est un sous-groupe de G.

Démonstration

- 4.2. Intersection

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples

4. Sous-groupe

- 4.1. Définition et caractérisations
- 4.2. Intersection
- 4.3. Sous-groupe engendré

5. Morphismes de groupes

- 5.1. Définition et propriété immédiate
- 5.2. Image et noyau d'un morphisme

6. Démontage d'un groupe

- 6.1. Théorème de Lagrange
- 6.2. Sous-groupe distingué
- 6.3. Premier théorème d'isomorphisme

- . Problèmes
- Lois de omposition internes
- Structure de roupe
- . Def & Prop
- .2. Groupes produits
- 3.3. Exemples
- . Sous-groupe
 - Définition et
- .2. Intersection
- 4.3. S-G engendré
- Morphismes
- 1 Def & Prop
- 5.2. Im et Ker
- J.2. IIII
- groupe
- 6.1. Théorème de Lagrange
 - Sous-groupe disting:
- d'isomorphisme

Trouver un candidat!

Analyse Plus petit groupe contenant une partie A de G

- 4.3. S-G engendré

Trouver un candidat!

Analyse Plus petit groupe contenant une partie A de G

Définition - Groupe engendré

Soit (G, \top) un groupe. Soit A une partie de G.

On appelle groupe engendré par A, le plus petit sous-groupe de G, parmi les sous-groupes de G contenant A.

On le note < A >. On a donc < A >= $\bigcap_{H \in \mathscr{A}} H = \min \mathscr{A}$

(où $\mathscr{A} = \{H < G \mid A \subset H\}$). Insistons : on a $A \subset A > A$

(d'une certaine façon : $\langle A \rangle = \sup A$).

- Problèmes
- 2. Lois de composition internes
- Structure d groupe
- .1. Def & Prop
- I.2. Groupes produits
- 4. Sous-groupe
 - 1. Définition et
 - 2. Intersection
- 4.3. S-G engendré
- . Morphismes
- I. Def & Prop
- 6. Démontage d'un
- 6.1 Thánràma da Lagranga
- 5.1. Théorème de Lagrange
- 6.3. Premier théorème

Trouver un candidat!

Analyse Plus petit groupe contenant une partie A de G

Définition - Groupe engendré

Soit (G, \top) un groupe. Soit A une partie de G.

On appelle groupe engendré par A, le plus petit sous-groupe de G, parmi les sous-groupes de G contenant A.

On le note < A >. On a donc < A >= $\bigcap_{H \in \mathscr{A}} H = \min \mathscr{A}$

(où $\mathscr{A} = \{H < G \mid A \subset H\}$). Insistons : on a $A \subset A > A$

(d'une certaine façon : $\langle A \rangle = \sup A$).

Il faut démontrer que $\bigcap_{H \in \mathscr{A}} H$ est bien le plus petit sous-groupe de

G contenant A.

Démonstration

- Problèmes
- Lois de composition internes
- 3. Structure d groupe
 - . Def & Prop
 - 2. Groupes produits
- . Sous-groupe
- 1 Définition et
- aractérisations 2 Intersection
- 4.3. S-G engendré
- 5. Morphisme
- 1. Def & Prop 2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
- .2. Sous-groupe distingué
- 6.3. Premier théorème

Croissance

Proposition - Croissance de l'engendrement

Si $A \subset B$ sont deux parties d'un groupe G.

Alors $< A > \subset < B >$ (en fait : < A > < < B >

- Problèmes
- Lois de composition internes
- . Structure de
- 3.1. Der & Prop
- 2.2 Everneles
- 4 Sous-groupe
- 4. Sous-group
 - racterisations

 2. Intersection
- 4.3. S-G engendré
- A A constitution of
- Morphismes
- Def & Prop
- 5.2. Im et Ker
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 2. Sous-groupe distingué
- 6.3. Premier théorème d'isomorphisme

Croissance

Proposition - Croissance de l'engendrement

Si $A \subset B$ sont deux parties d'un groupe G.

Alors $< A > \subset < B >$ (en fait : < A > < < B >

Démonstration

- Problèmes
- 2. Lois de composition internes
- . Structure de roupe
- 3.1. Der & Prop
- 2.2 Evamples
- 4 Sous-groupe
 - 1 Définition et
 - 2. Intersection
- 4.3. S-G engendré
 - Morphismes
 - Def & Prop
 - Def & Prop
- 5.2. Im et Ker
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 2. Sous-groupe distingu
 - 6.3. Premier théorème d'isomorphisme

Applications

Application Réflexes

- . Problèmes
- Lois de composition internes
- 3. Structure de
- .1. Def & Prop
- 3.2. Groupes produ
- 3.3. Exemples
- 4. Sous-groups
 - 1 Définition et
 - ractérisations
 - .2. Intersection
- 4.3. S-G engendré
- D (0 D
- 1. Det & Prop
- 5.2. Im et Ke
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
- .2. Sous-groupe distin
- 6.3. Premier théorèn d'isomorphisme

Applications

Application Réflexes

Savoir-faire. Comment trouver le sous-groupe engendré par une partie A ?

II faut

- Pré-sentir la bonne description (efficace) de ce sous-groupe.
 On donne alors un nom à cet ensemble : K.
- 2. Montrer que K est bien un groupe et qu'il contient A
- 3. Montrer que K est nécessairement entièrement inclus dans < A > ou dans tous sous-groupe de \mathscr{A} .

Comme < A > est le plus petit sous-groupe contenant A, propriété vérifiée par K, alors < A >= K.

- . Problèmes
- 2. Lois de composition internes
- Structure de roupe
- .1. Def & Prop
- 3.2. Groupes produits
- . Sous-groupe
- .1. Définition et
- acterisations . Intersection
- 4.3. S-G engendré
- . Morphismes
- I. Def & Prop
- i.2. Im et Ker
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 2. Sous-groupe distingu
- 6.3. Premier théorème

Attention. Nom contradictoire?

Ce nom semble contradictoire. Par groupe engendré, on entend plutôt quelque chose qui s'agrandit (pour l'inclusion) à partir de A, alors que visiblement il s'agit de quelque chose quo diminue à partir de G.

A-t-on la même chose?

- 1. Problèmes
- Lois de composition internes
- Structure of groupe
- 3.1. Det & Prop
- 3.2. Groupes produits
- . Sous-groupe
 - . Définition et
 - . Intersection
- 4.3. S-G engendré
 - 1. Def & Prop
- 5.1. Del a Piop
- 6. Démontage d'un
- 6.1. Théorème de Lagrange
- .2. Sous-groupe distingu
- 6.3. Premier théorème d'isomorphisme

Attention. Nom contradictoire?

Ce nom semble contradictoire. Par groupe engendré, on entend plutôt quelque chose qui s'agrandit (pour l'inclusion) à partir de A, alors que visiblement il s'agit de quelque chose quo diminue à partir de G.

A-t-on la même chose?

Analyse Engendrement

⇒ Decomposer les groupes

- 1. Problèmes
- 2. Lois de composition internes
- S. Structure de proupe
- 3.1. Def & Prop
- 3.2. Groupes produits
- 4 Sous-groupe
 - Définition et
 - 2. Intersection

4.3. S-G engendré

- Morphismes
- 5.1. Def & Prop
- 5.2. Im et F

6. Démontage d'un groupe

- 6.1 Théorème de Lagrange
 - 2. Sous-groupe distingu
- 6.3. Premier théorème

Attention, Nom contradictoire?

Ce nom semble contradictoire. Par groupe engendré, on entend plutôt quelque chose qui s'agrandit (pour l'inclusion) à partir de A, alors que visiblement il s'agit de quelque chose quo diminue à partir de G.

A-t-on la même chose?

Analyse Engendrement

Groupe engendré (second point de vue)

Soit A une partie de (G, \times) un groupe.

Alors $x \in A > \text{si et seulement si}$

 $\exists k \in \mathbb{N}, a_1, a_2, \dots a_k \in A \cup A^{-1}$ tel que $x = a_1 \times a_2 \times \dots a_k$

⇒ Decomposer les groupes

4.3. S-G engendré

Attention. Nom contradictoire?

Ce nom semble contradictoire. Par groupe engendré, on entend plutôt quelque chose qui s'agrandit (pour l'inclusion) à partir de A, alors que visiblement il s'agit de quelque chose quo diminue à partir de G.

A-t-on la même chose?

Analyse Engendrement

Groupe engendré (second point de vue)

Soit A une partie de (G, \times) un groupe.

Alors $x \in A > \text{si et seulement si}$

 $\exists k \in \mathbb{N}, a_1, a_2, \dots a_k \in A \cup A^{-1} \text{ tel que } x = a_1 \times a_2 \times \dots a_k$

Exemple Groupes engendré par p dans \mathbb{Z} .

⇒ Decomposer les groupes

1. Problèmes

2. Lois de

omposition interne

groupe

.2. Groupes produits

3.3. Exemples

. Sous-groupe

. Définition et

2. Intersection

4.3. S-G engendré

Morphisme

1. Def & Prop

Démontage d'un

groupe

6.1. Théorème de Lagrange

2. Sous-groupe disting

6.3. Premier théorème

Attention, Nom contradictoire?

Ce nom semble contradictoire. Par groupe engendré, on entend plutôt quelque chose qui s'agrandit (pour l'inclusion) à partir de A, alors que visiblement il s'agit de quelque chose quo diminue à partir de G.

A-t-on la même chose?

Analyse Engendrement

Groupe engendré (second point de vue)

Soit A une partie de (G, \times) un groupe.

Alors $x \in A > \text{si et seulement si}$

 $\exists k \in \mathbb{N}, a_1, a_2, \dots a_k \in A \cup A^{-1}$ tel que $x = a_1 \times a_2 \times \dots a_k$

Exemple Groupes engendré par p dans \mathbb{Z} .

Exercice

Quel est le sous-groupe engendré par $\{p,q\}$ dans $(\mathbb{Z},+)$?

4日ト4周ト4日ト4日ト ヨ めのぐ

⇒ Decomposer les groupes

4.3. S-G engendré

Groupe monogène

Définition - Groupe monogène

On dit que G est un groupe monogène, s'il existe $x \in G$ tel que $G = \langle x \rangle$.

Dans ce cas $G = \{x^k, x \in \mathbb{Z}\}.$

- 4.3. S-G engendré

Groupe monogène

Définition - Groupe monogène

On dit que G est un groupe monogène, s'il existe $x \in G$ tel que $G = \langle x \rangle$.

Dans ce cas $G = \{x^k, x \in \mathbb{Z}\}.$

Savoir-faire. Etudier des groupes monogènes

Si G est un groupe que l'on sait monogène, alors il existe $x \in G$ (référence que l'on fixe) tel que $G = \langle x \rangle$.

L'application $\varphi: \mathbb{Z} \to G$, $x \mapsto x^k$ est bien définie, et surjective. Elle peut être injective ou non (cas fini).

On transfère ensuite par φ (ou φ^{-1}) l'étude de G, à partir de propriétés de \mathbb{Z} .

- Problèmes
- 2. Lois de composition internes
 - . Structure de roupe
 - 3.1. Def & Prop
- 3.3. Exemples
- . Sous-groupe
- Définition et
- 2. Intersection
- 4.3. S-G engendré
- . Morphismes
- 1. Def & Prop
- 2. Im et Ker
- groupe
 - 1. Théorème de Lagrange
 - . Sous-groupe disting
- 6.3. Premier théorème

Groupe monogène

Définition - Groupe monogène

On dit que G est un groupe monogène, s'il existe $x \in G$ tel que $G = \langle x \rangle$.

Dans ce cas $G = \{x^k, x \in \mathbb{Z}\}.$

Savoir-faire. Etudier des groupes monogènes

Si G est un groupe que l'on sait monogène, alors il existe $x \in G$ (référence que l'on fixe) tel que $G = \langle x \rangle$.

L'application $\varphi: \mathbb{Z} \to G$, $x \mapsto x^k$ est bien définie, et surjective. Elle peut être injective ou non (cas fini).

On transfère ensuite par φ (ou φ^{-1}) l'étude de G, à partir de propriétés de \mathbb{Z} .

Exercice

Montrer qu'un groupe monogène est nécessairement abélien

- . Problémes
- Lois de composition internes
- Structure proupe
- .1. Def & Prop
- 2. Groupes produits
 3. Evemnlee
- Sour-groupe
- Définition et
- ractérisations Intersection
- 4.3. S-G engendré
- . Morphismes
- I. Def & Prop
- 2. Im et Ker
- groupe
- i.1. Théorème de Lagrange
- Sous-groupe distingui
- 6.3. Premier théorème d'isomorphisme

Exemples à partir de U

L'exercice suivant nous aide à faire le point.

Exercice

On considère le groupe (\mathbb{U}, \times) .

- 1. Soit $z_k = e^{\frac{2i\pi}{k}}$. Que vaut le groupe $< z_k >$?
- 2. Avec les mêmes notations, que vaut le groupe $\langle z_r, z_s \rangle$?
- 3. A-t-on pour tout $n \in \mathbb{N}$, pour tout $z \in \mathbb{U}_n$, $\mathbb{U}_n = \langle z \rangle$? Sinon, à quelle condition sur z, a-t-on : $\mathbb{U}_n = \langle z \rangle$?
- 4. Quel est le groupe $\mathbb{U}_n \cap \mathbb{U}_m$?
- 5. U est-il monogène?

- Problèmes
- 2. Lois de composition internes
- . Structure de roupe
 - Def & Prop
- 3.2. Groupes produits
- 3.3. Exemples
- 4. Sous-groupe
 - Définition et actérisations
- 4.3. S-G engendré
- Manahiana
- 5.1. Def & Prop
- 5.1. Det & Prop
 5.2 Im et Ker
- 6. Démontage d'un
- 6 1 Théorème de Lagrange
 - . Sous-groupe disting
- 6.3. Premier théorème

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples
- 4. Sous-groupe
 - 4.1. Définition et caractérisations
 - 4.2. Intersection
 - 4.3. Sous-groupe engendré
- 5. Morphismes de groupes
 - 5.1. Définition et propriété immédiate
 - 5.2. Image et noyau d'un morphisme
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 6.2. Sous-groupe distingué
 - 6.3. Premier théorème d'isomorphisme

- . Problèmes
- . Lois de omposition internes
- Structure de
 - Def & Prop
- 2. Groupes produits
- 3.3. Exemples
- I. Sous-groupe
- . Sous-groupe
 - . Définition et actérisations
- I.2. Intersection
- .3. S-G engendré
- Morphismes
- 5.1. Def & Prop
 - 2. Im et Ker
- 5.2. Im et Ker
- groupe
- 6.1. Théorème de Lagrang
- Sous-groupe disting:
- d'isomorphisme

Morphisme

Soient (G, \star) et (G', \top) deux groupes.

Définition - Morphisme de groupes

Une application f de G dans G' vérifiant :

$$\forall (x, y) \in G^2, f(x \star y) = f(x) \top f(y).$$

est appelé morphisme (de groupes) de (G, \star) sur (G', \top) .

⇒ Decomposer les groupes

5.1. Def & Prop

Morphisme

Soient (G, \star) et (G', \top) deux groupes.

Définition - Morphisme de groupes

Une application f de G dans G' vérifiant :

$$\forall (x,y) \in G^2, f(x \star y) = f(x) \top f(y).$$

est appelé morphisme (de groupes) de (G, \star) sur (G', \top) .

Proposition - Conservation du noyau

Soit $f: G \to G'$ un morphisme de groupes. Alors $f(e_G) = e_{G'}$.

- Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
- 3.1. Def & Prop
- 3.2. Groupes produits
- 4. Sous-groupe
- 4.1 Définition et
- I.2. Intersection
- 4.3. S-G engendre
 - Morphismes
- 5.1. Def & Prop
 - Im et Ker
 - Démontage d'un
 - oupe
 - Théorème de Lagrange
 - Sous-groupe distingué
- 6.3. Premier théorème d'isomorphisme

Morphisme

Soient (G, \star) et (G', \top) deux groupes.

Définition - Morphisme de groupes

Une application f de G dans G' vérifiant :

$$\forall (x,y) \in G^2, f(x \star y) = f(x) \top f(y).$$

est appelé morphisme (de groupes) de (G, \star) sur (G', \top) .

Proposition - Conservation du noyau

Soit $f: G \to G'$ un morphisme de groupes. Alors $f(e_G) = e_{G'}$.

Démonstration

- Problèmes
- 2. Lois de composition internes
- Structure de roupe
- 3.1. Det & Prop

 3.2. Groupes produits
- 3.3. Exemples
- 4. Sous-groupe
 - Définition et
- .2. Intersection
- 4.3. S-G engendr
 - Morphismes
- 5.1. Def & Prop
 - Im et Ker
 - Démontage d'un
 - oupe
 - . Théorème de Lagrange
 - Sous-groupe distingu
- 6.3. Premier théorème d'isomorphisme

Cas de l'inverse

Proposition - Image de l'inverse

Soit $f: G \to G'$ un morphisme de groupes.

Alors pour tout $x \in G$, $f(x^{-1}) = (f(x))^{-1}$

- 5.1. Def & Prop

Cas de l'inverse

Proposition - Image de l'inverse

Soit $f: G \to G'$ un morphisme de groupes.

Alors pour tout $x \in G$, $f(x^{-1}) = (f(x))^{-1}$

Démonstration

⇒ Decomposer les groupes

5.1. Def & Prop

Cas de l'inverse

Proposition - Image de l'inverse

Soit $f: G \to G'$ un morphisme de groupes.

Alors pour tout $x \in G$, $f(x^{-1}) = (f(x))^{-1}$

Démonstration **Exemple** exp

- 5.1. Def & Prop

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
- 4. Sous-groupe
 - 4.1. Définition et caractérisations
 - 4.2. Intersection
 - 4.3. Sous-groupe engendré
- 5. Morphismes de groupes

 - 5.2. Image et noyau d'un morphisme
- 6. Démontage d'un groupe

- 52 Im et Ker

Proposition - Sous-groupe

Soit $f: G \to G'$ un morphisme de groupes.

Soit A un sous-groupe de G, alors f(A) est un sous-groupe de G^{\prime} .

Soit B un sous-groupe de G', alors $f^{-1}(B)$ est un sous-groupe de G.

En particulier:

- ► Im $f = f(G) = \{f(x), x \in G\}$ est un sous-groupe de G', appelé image de G
- ► Ker $f = f^{-1}(e_{G'}) = \{x \in G \mid f(x) = e_{G'}\}$ est un sous-groupe de G, appelé noyau de f.

- Problèmes
- 2. Lois de composition internes
- 3. Structure of groupe
- .1. Def & Prop
- Groupes produits
 Exemples
- 1. Sous-groupe
- .1. Définition et
- 4.2. Intersection
- 4.3. S-G engendr
 - . IVIOrphisme 5.1. Def & Prop
- 5.2. Im et Ker
 - 2. Im et Ker
- . Démontage d'un roupe
- .1. Théorème de Lagrange
- i.2. Sous-groupe distingué
- d'isomorphisme

Proposition - Sous-groupe

Soit $f: G \rightarrow G'$ un morphisme de groupes.

Soit A un sous-groupe de G, alors f(A) est un sous-groupe de G'.

Soit B un sous-groupe de G', alors $f^{-1}(B)$ est un sous-groupe de G.

En particulier:

- ► Im $f = f(G) = \{f(x), x \in G\}$ est un sous-groupe de G', appelé image de G
- ► Ker $f = f^{-1}(e_{G'}) = \{x \in G \mid f(x) = e_{G'}\}$ est un sous-groupe de G, appelé noyau de f.

Exemple $\mathbb{Z} \to \mathbb{U}_n$

- . Problèmes
- 2. Lois de composition internes
- 3. Structure (groupe
- 3.1. Def & Prop
- 2. Groupes produits
- 1 Sous-groupe
- Définition et
- aractérisations
- 4.3. S-G engendré
- 5.1. Def & Prop
- 5.2. Im et Ker
- Démontage d'un
- roupe
- Théorème de Lagrange
- .2. Sous-groupe distingué
- 6.3. Premier théorème d'isomorphisme

Proposition - Sous-groupe

Soit $f: G \to G'$ un morphisme de groupes.

Soit A un sous-groupe de G, alors f(A) est un sous-groupe de G^{\prime} .

Soit B un sous-groupe de G', alors $f^{-1}(B)$ est un sous-groupe de G.

En particulier:

- ► Im $f = f(G) = \{f(x), x \in G\}$ est un sous-groupe de G', appelé image de G
- ► Ker $f = f^{-1}(e_{G'}) = \{x \in G \mid f(x) = e_{G'}\}$ est un sous-groupe de G, appelé noyau de f.

Exemple $\mathbb{Z} \to \mathbb{U}_n$ Démonstration

- I. Problèmes
- composition internes
 - Structure de roupe
 - 3.1. Def & Prop
 - 2. Groupes produits
 - Sous-groupe
 - . Sous-groupe
 - Définition et ractérisations
- 4.3. S-G engendre
- 4.3. S-G engendre
 - 1. Def & Prop
- 5.2. Im et Ker
- Démontage d'un
- 6.1. Théorème de Lagrange
- Théorème de Lagrange
- 6.3. Premier théorème

Noyau distingué

Exercice

Montrer que $f: G \rightarrow G'$ morphisme de groupes est :

- ightharpoonup surjective ssi Im f = G'
- ▶ injective ssi Ker $f = \{e_G\}$

- 52 Im et Ker

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples
- 4. Sous-groupe
 - 4.1. Définition et caractérisations
 - 4.2. Intersection
 - 4.3. Sous-groupe engendré
- 5. Morphismes de groupes
 - 5.1. Définition et propriété immédiate
 - 5.2. Image et noyau d'un morphisme
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 6.2. Sous-groupe distingué
 - 6.3. Premier théorème d'isomorphisme

- . Problèmes
- . Lois de omposition internes
- Structure de
- upe
- 2. Groupes produits
- 3 Exemples
- . Sous-groupe
 - Définition et
 - actérisations
- .3. S-G engendré
- _
- Morphismes
- 5.1. Del & Prop
- 5.2. Im 6
- groupe
- 6.1. Théorème de Lagrange
 - Sous-groupe disting
- 6.3. Premier theoreme d'isomorphisme

Théorème de Lagrange

Proposition - Relation d'équivalence modulo un sous-groupe

Soit (G,*) un groupe et H < G, un sous-groupe de G. On note \mathcal{R}_H , la relation définie sur G par :

$$a\mathcal{R}_H a' \longleftrightarrow a^{-1} * a' \in H$$

Alors \mathcal{R}_H est une relation d'équivalence.

- Problèmes
- 2. Lois de composition internes
- . Structure de roupe
- 8.1. Det & Prop
- 3.3. Exemples
- 1. Sous-groupe
 - Définition et
- 4.2. Intersection
- 4.3. S-G engendr
- - . Def & Prop
 - Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
 - Sous-groupe distingué
- 6.3. Premier théorème

Théorème de Lagrange

Proposition - Relation d'équivalence modulo un sous-groupe

Soit (G, *) un groupe et H < G, un sous-groupe de G. On note \mathcal{R}_H , la relation définie sur G par :

$$a\mathcal{R}_H a' \longleftrightarrow a^{-1} * a' \in H$$

Alors \mathcal{R}_H est une relation d'équivalence.

Démonstration

- Problèmes
- 2. Lois de composition internes
- . Structure or roupe
- 8.1. Def & Prop
- .3. Exemples
- 1. Sous-groupe
 - Définition et ractérisations
- 4.2. Intersection
- 4.3. S-G engendre
- . Morphisme
- . Def & Prop
- Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
 - Sous-groupe distingu
- 6.3. Premier théorème d'isomorphisme

Théorème de Lagrange

Proposition - Relation d'équivalence modulo un sous-groupe

Soit (G, *) un groupe et H < G, un sous-groupe de G. On note \mathcal{R}_H , la relation définie sur G par :

$$a\mathcal{R}_H a' \longleftrightarrow a^{-1} * a' \in H$$

Alors \mathcal{R}_H est une relation d'équivalence.

Démonstration

Remarque Lien: relation d'équivalence et sous-groupe

- Problèmes
- Lois de composition internes
- 3. Structure (groupe
- 8.1. Det & Prop
- 3 Exemples
- 1. Sous-groupe
 - . Définition et
- 4.2. Intersection
- 4.3. S-G engendr
- Mornhisma
- 1. Def & Prop
- Im et Ker
- 6. Démontage d'un
- 6.1. Théorème de Lagrange
 - . Theorems do Eugrang
- 6.3. Premier théorème

Quand on a une relation d'équivalence, on a naturellement une décomposition en réunion disjointe

- - 6.1. Théorème de Lagrange

Quand on a une relation d'équivalence, on a naturellement une décomposition en réunion disjointe

Proposition - Décomposition de ${\it G}$

Soit H un sous-groupe de G.

On note $S:=S_{\frac{G}{\mathscr{R}_H}}$ un système de représentant des classes d'équivalences de \mathscr{R}_H .

Alors $G=\uplus_{a\in S}\overline{a}$, la réunion disjointes des classes de a.

 \overline{a} n'est pas un groupe, mais il est en bijection avec H.

Par la suite, on notera aH, cet ensemble. On a donc

 $aH = a'H \Leftrightarrow a\mathcal{R}_H a' \Leftrightarrow a^{-1}a' \in H$

Le produit cartésien $H \times S$ et le groupe G sont en bijection (c'est la décomposition).

- . Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 2. Groupes produits
 - uroupes produits
 Exemples
- . Sous-groupe
- Définition et
- ractérisations 2. Intersection
- 4.3. S-G engendr
- 5. Morphismes
- 5.1. Def & Prop
- 6. Démontage d'un
- groupe
- 6.1. Théorème de Lagrange
 - . Sous-groupe disting
- 6.3. Premier théorème d'isomorphisme

Quand on a une relation d'équivalence, on a naturellement une décomposition en réunion disjointe

Proposition - Décomposition de ${\it G}$

Soit H un sous-groupe de G.

On note $S:=S_{\frac{G}{\mathscr{R}_H}}$ un système de représentant des classes d'équivalences de \mathscr{R}_H .

Alors $G = \biguplus_{a \in S} \overline{a}$, la réunion disjointes des classes de a. \overline{a} n'est pas un groupe, mais il est en bijection avec H.

Par la suite, on notera aH, cet ensemble. On a donc

 $aH = a'H \Leftrightarrow a\mathcal{R}_H a' \Leftrightarrow a^{-1}a' \in H$

Le produit cartésien $H \times S$ et le groupe G sont en bijection (c'est la décomposition).

Démonstration

- . Problèmes
- 2. Lois de composition internes
- Structure d groupe
 - Def & Prop
 Groupes produits
 - 2. Groupes produits
 3. Evennles
- . Sous-groupe
- Définition et
- actérisations
- 4.3. S-G engendr
- 4.3. 5-G engend
- 6. Morphisme
- 5.1. Def & Prop 5.2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
 - . Sous-groupe disting
- 6.3. Premier théorème

Quand on a une relation d'équivalence, on a naturellement une décomposition en réunion disjointe

Proposition - Décomposition de G

Soit H un sous-groupe de G.

On note $S:=S_{\frac{G}{\mathscr{R}_{D}}}$ un système de représentant des classes d'équivalences de \mathcal{R}_H .

Alors $G = \bigoplus_{\alpha \in S} \overline{\alpha}$, la réunion disjointes des classes de α . \overline{a} n'est pas un groupe, mais il est en bijection avec H.

Par la suite, on notera aH, cet ensemble. On a donc

 $aH = a'H \Leftrightarrow a\mathcal{R}_H a' \Leftrightarrow a^{-1}a' \in H$

Le produit cartésien $H \times S$ et le groupe G sont en bijection (c'est la décomposition).

Démonstration

En fait, les \overline{a} sont comme des sous-groupes affines de G...

⇒ Decomposer les groupes

6.1. Théorème de Lagrange

Théorème de Lagrange

Proposition - Théorème de LAGRANGE

Si H un sous-groupe de G, groupe de cardinal fini, alors ${\rm card} H | {\rm card} G$.

- . Problèmes
- 2. Lois de composition internes
- . Structure de
- 3.1. Det & Prop
- 3.2. Groupes produits
- 4. Sous-groupe
 - Définition et
- 4.2. Intersection
- 4.3. S-G engendr
 - Morphismes
 - Def & Prop
 - .2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
 - 2. Sous-groupe distingu
- 6.2. Sous-groupe disting

Théorème de Lagrange

Proposition - Théorème de LAGRANGE

Si H un sous-groupe de G, groupe de cardinal fini, alors cardH | cardG.

Démonstration

- 6.1. Théorème de Lagrange

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples
- 4. Sous-groupe
 - 4.1. Définition et caractérisations
 - 4.2. Intersection
 - 4.3. Sous-groupe engendré
- 5. Morphismes de groupes
 - 5.1. Définition et propriété immédiate
 - 5.2. Image et noyau d'un morphisme
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - 6.2. Sous-groupe distingué
 - 6.3. Premier théorème d'isomorphisme

- . Problèmes
- Lois de omposition internes
- Structure de roupe
- . Def & Prop
- .2. Groupes produits
- I. Sous-groupe
 - Définition et
- 2. Intersection
- .3. S-G engendré
- 1 Def & Prop
- .2. Im et Ker
- 5.2. Im et Ker
- groupe
 - 6.1. Théorème de Lagrange
- 6.2. Sous-groupe distingué
- 6.3. Premier théorème d'isomorphisme

Analyse S comme un groupe?

- Problèmes
- 2. Lois de
- 8. Structure de
- .1. Def & Prop
- 3.2. Groupes produ
- 3.3. Exemples
- 4. Sous-groups
 - Définition et
 - ractérisations
- 4.2. Intersection
- 4.3. S-G engendr
- Morphisme
- 1. Def & Prop
- 2. Im et Ker
- 5.2. Im et Ker
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
- 6.2. Sous-groupe distingué
- 6.3. Premier théorème

Analyse *S* comme un groupe?

Définition - Sous-groupe distingué

On dit que H < G est un sous-groupe distingué (ou normal) de Gsi

$$\forall a \in G, \forall x \in H, a^{-1}xa \in H$$

On peut retenir que pour tout $a \in G$, aH = Ha.

On note alors $H \triangleleft G$

- 6.2. Sous-groupe distingué

Analyse *S* comme un groupe?

Définition - Sous-groupe distingué

On dit que H < G est un sous-groupe distingué (ou normal) de Gsi

$$\forall a \in G, \forall x \in H, a^{-1}xa \in H$$

On peut retenir que pour tout $a \in G$, aH = Ha.

On note alors $H \triangleleft G$

Démonstration

- 6.2. Sous-groupe distingué

Analyse S comme un groupe?

Définition - Sous-groupe distingué

On dit que H < G est un sous-groupe distingué (ou normal) de G si

$$\forall a \in G, \forall x \in H, a^{-1}xa \in H$$

On peut retenir que pour tout $a \in G$, aH = Ha.

On note alors $H \triangleleft G$

Démonstration

Exemple Ker f est un sous-groupe distingué

- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de
- 1. Def & Prop
- Groupes produits
 Evamples
- Sous-groupe
- . Sous-groupe
- .1. Definition et aractérisations
- 4.2. Intersection
- 4.3. S-G engendré
- Morphisme
- 1. Def & Prop 2. Im et Ker
- 6. Démontage d'un
 - i.1. Théorème de Lagrange
- 6.2. Sous-groupe distingué
- 6.3. Premier théorème

Proposition - Groupe quotient

Soit (G, *) un groupe.

Si $H \triangleleft G$ est un sous-groupe distingué de G, alors $S = \frac{G}{\mathscr{R}_H}$,

souvent noté $\frac{G}{H}$ est un groupe pour la loi $\overline{*}$ définie par $aH\overline{*}bH=(a*b)H$.

- Problèmes
- 2. Lois de composition internes
- . Structure de roupe
- 3.1. Def & Prop

 3.2 Groupes produits
- 3.3. Exemples
- 4. Sous-groupe
- 4. Sous-groupe
 - racterisations

 2. Intersection
- 4.3. S-G engend
 - Morphisme
 - Def & Prop
 - Dámontago d'u
- roupe
- Théorème de Lagrange
- 6.2. Sous-groupe distingué
- 6.3. Premier théorème

Groupe quotient

Proposition - Groupe quotient

Soit (G, *) un groupe.

Si $H \triangleleft G$ est un sous-groupe distingué de G, alors $S = \frac{G}{\mathscr{R}_H}$,

souvent noté $\frac{G}{H}$ est un groupe pour la loi $\overline{*}$ définie par $aH\overline{*}bH=(a*b)H$.

Exercice

A démontrer! (Attention, ce n'est pas un sous-groupe. Il faut donc tout redémontrer à commencer par la bonne définition de la loi...)

- . Problèmes
- 2. Lois de composition internes
- Structure d groupe
- 3.1. Def & Prop
- 3.3. Exemples
- 4. Sous-aroupe
 - . Définition et
- 1.2. Intersection
- 4.3. S-G engend
 - Morphisme
 - 1. Def & Prop
 - 2. Im et Ker
- 6. Démontage d'un groupe
 - Théorème de Lagrange
- 6.2. Sous-groupe distingué
- 6.3. Premier théorème

Groupe quotient

Proposition - Groupe quotient

Soit (G, *) un groupe.

Si $H \triangleleft G$ est un sous-groupe distingué de G, alors $S = \frac{G}{\mathscr{R}_H}$,

souvent noté $\frac{G}{H}$ est un groupe pour la loi $\overline{*}$ définie par aH + bH = (a * b)H.

Exercice

A démontrer! (Attention, ce n'est pas un sous-groupe. Il faut donc tout redémontrer à commencer par la bonne définition de la loi...)

Exemple Groupe trivial

- 6.2. Sous-groupe distingué

Groupe quotient

Proposition - Groupe quotient

Soit (G, *) un groupe.

Si $H \triangleleft G$ est un sous-groupe distingué de G, alors $S = \frac{G}{\mathscr{R}_H}$,

souvent noté $\frac{G}{H}$ est un groupe pour la loi $\overline{*}$ définie par aH + bH = (a * b)H.

Exercice

A démontrer! (Attention, ce n'est pas un sous-groupe. Il faut donc tout redémontrer à commencer par la bonne définition de la loi...)

Exemple Groupe trivial

Exemple G abélien

- 6.2. Sous-groupe distingué

Groupe simple

Définition - Groupe simple

On dit qu'un groupe est simple lorsqu'il ne possède pas de sous-groupe distingué autre que $\{e\}$ et lui-même

Cela ne vous rappelle pas une autre définition?

- 6.2. Sous-groupe distingué

Groupe simple

Définition - Groupe simple

On dit qu'un groupe est simple lorsqu'il ne possède pas de sous-groupe distingué autre que $\{e\}$ et lui-même

Cela ne vous rappelle pas une autre définition?

Exercice

Soit G un groupe de cardinal p, premier.

Montrer que G est simple

⇒ Decomposer les groupes

- Problèmes
- 2. Lois de composition internes

. Structure de

- 3.1. Def & Prop
- 3.3 Exemples

4 Sous-groups

- .1. Définition et
- caractérisations
- 4.3. S-G engendn

4.5. G-Ci engenui

- 1. Def & Prop
- 5.1. Del & Prop 5.2 Im at Kar
- 5.2. Im et K

6. Démontage d'un groupe

1. Théorème de Lagrang

6.2. Sous-groupe distingué

6.3. Premier théorème

- ⇒ Decomposer les groupes
- 1. Problèmes
- 2. Lois de composition internes
- 3. Structure de groupe
 - 3.1. Définition et propriétés
 - 3.2. Groupes produits
 - 3.3. Exemples

4. Sous-groupe

- 4.1. Définition et caractérisations
- 4.2. Intersection
- 4.3. Sous-groupe engendré

5. Morphismes de groupes

- 5.1. Définition et propriété immédiate
- 5.2. Image et noyau d'un morphisme

6. Démontage d'un groupe

- 6.1. Théorème de Lagrange
- 6.2. Sous-groupe distingué
- 6.3. Premier théorème d'isomorphisme

- . Problèmes
- Lois de omposition internes
- Structure de roupe
- . Def & Prop
- .2. Groupes produits
- 3.3. Exemples
- I. Sous-groupe
 - Définition et
 - actérisations
- 2 C G annandrá
- .a. a-di erigeriure
- . Morphismes
- 1. Def & Prop
- 5.2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
- 3.2. Sous-groupe disting
- 6.3. Premier théorème d'isomorphisme

Si $\operatorname{Ker} f$ est distingué...

Théorème - Premier théorème

Soient G et G' deux groupes et $f:G\to G'$, un morphisme de groupes.

Alors f induit un isomorphisme de groupes : \hat{f} : $\frac{G}{\operatorname{Ker} f} \to \operatorname{Im} f$ (bijectif).

- I. Problèmes
- 2. Lois de composition internes
- . Structure de roupe
- 3.1. Def & Prop
- 3.3. Exemples
- 4. Sous-groupe
 - . Sous-groupe
 - aractérisations
- 4.3. S-G engeno
 - Morphismes
 - Def & Prop
- 6. Démontage d'un
 - 6.1 Thánràma da Lagranga
 - o o
- 6.3. Premier théorème d'isomorphisme

Si $\operatorname{Ker} f$ est distingué...

Théorème - Premier théorème

Soient G et G' deux groupes et $f:G\to G'$, un morphisme de groupes.

Alors f induit un isomorphisme de groupes : \hat{f} : $\frac{G}{\operatorname{Ker} f} \to \operatorname{Im} f$ (bijectif).

Démonstration

- . Problèmes
- 2. Lois de composition internes
- . Structure de roupe
- 3.1. Def & Prop
- 3.3. Exemples
- 4. Sous-groupe
 - . Sous-groupe
- 4.2. Intersection
- 4.3. S-G engendi
 - Morphismes
 - . Def & Prop
- 5.1. Det & Prop 5.2. Im et Ker
- 6. Démontage d'un
- 6.1. Théorème de Lagrange
- o o
- 6.3. Premier théorème

Si $\operatorname{Ker} f$ est distingué...

Théorème - Premier théorème

Soient G et G' deux groupes et $f:G\to G'$, un morphisme de groupes.

Alors f induit un isomorphisme de groupes : \hat{f} : $\frac{G}{\operatorname{Ker} f} \to \operatorname{Im} f$ (bijectif).

Démonstration

Remarque Notation symbolique ou formelle

- . Problèmes
- Lois de composition internes
- Structure de proupe
- 3.1. Def & Prop
- 3.3. Exemples
- 4. Sous-groupe
 - 1 Définition et
 - 4.2. Intersection
- 4.3. S-G engendi
- Morphism
- 1 Def & Prop
- 1. Def & Prop
- 6. Démontage d'un
- 6.1 Thánràma da Lagranga
- -
- 6.3. Premier théorèm

Objectifs

⇒ Decomposer les groupes

Objectifs

- ⇒ Decomposer les groupes
 - Qu'est-ce qu'un sous-groupe ? Un groupe engendré ?

- I. Problèmes
- Lois de composition internes
- . Structure de roupe
- 1. Def & Prop
- 3.2. Groupes produit
- Sous-groupe
 - Définition et
 - 2. Intersection
- 4.3. S-G engendr
- Morphisme
- . Def & Prop
- Im et Ker
- 6. Démontag
- groupe
- 6.1. Théorème de Lagrange
 - . Sous-groupe disting
- 6.3. Premier theorems d'isomorphisme

Objectifs

- ⇒ Decomposer les groupes
 - Qu'est-ce qu'un sous-groupe ? Un groupe engendré ?
 - Décomposition (démontage) d'un groupe avec des groupes distingués.

$\Rightarrow {\sf Decomposer} \; {\sf les} \\ {\sf groupes}$

- . Problèmes
- Lois de composition internes
 - Structure de oupe
 - .1. Def & Prop
- 3.2. Groupes produits
- Sous-groupe
- .1. Définition el
- 4.2. Intersection
- 4.3. S-G engendre
- . Morphisme:
- 1. Def & Prop
- . Im et Ker
- 5.2. Im et Ker
- 6. Démontage d'un groupe
- 6.1. Théorème de Lagrange
 - 2. Sous-groupe disting
- 6.3. Premier théorème d'isomorphisme

Objectifs

- ⇒ Decomposer les groupes
 - Qu'est-ce qu'un sous-groupe? Un groupe engendré?
 - Décomposition (démontage) d'un groupe avec des groupes distingués.
 - Morphisme de groupes et propriétés immédiates

$\Rightarrow {\sf Decomposer} \; {\sf les} \\ {\sf groupes}$

- . Problèmes
- 2. Lois de composition internes
 - Structure de oupe
 - 1. Def & Prop
- 3.2. Groupes produit
- 4. Sous-groupe
 - . Définition et
 - 1.2. Intersection
- 4.3. S-G engendr
- Morphisme
- Def & Prop
- 5.2. Im et Ker
- Dámantana d'i
- groupe
 - 6.1. Théorème de Lagrange
 - . Sous-groupe disting:
- 6.3. Premier théorème d'isomorphisme

Objectifs

⇒ Decomposer les groupes

Pour la prochaine fois

- Lecture du cours : chapitre 15 Divisibilité et congruence sur $\mathbb Z$
- Exercices N° 277, 280 & 282

$\Rightarrow {\sf Decomposer} \; {\sf les} \\ {\sf groupes}$

- Problèmes
- Lois de composition internes
 - Structure de
 - . Def & Prop
- 3.2. Groupes produits
- 4. Sous-groupe
- Définition et
- 1.2. Intersection
- 4.3. S-G engend
- 4.0. O G Grigorio
 - worpnismes
 - . Def & Prop
- 5.2. Im et Ker
- 6. Démontage d'un groupe
 - 6.1. Théorème de Lagrange
 - . Sous-groupe disting
- 6.3. Premier théorème d'isomorphisme

