

Leçon 36 - Suites numériques

Leçon 36 - Suites numériques

- ⇒ Exploitation de suites extraites
- Problèmes
- 2. Exemples fondamentary
- Suites extraites
- 3.1. Rappels
- 3.2. Affinement : cas $(A_m)_m$
- 3.3. Application 2 : Lemme des pics

⇒ Exploitation de suites extraites

⇒ Exploitation de suites extraites

1. Problèmes

Exemples

3 Suitos ovtraitos

3.1. Rappels

3.2. Affinement : cas $(A_m)_m$

3.3. Application 2 : Lemme de pics

1. Problèmes

- 2. Exemples fondamentaux
- 3. Suites extraites
 - 3.1. Rappels
 - 3.2. Affinement : cas $(A_m)_m$
 - 3.3. Application 2: Lemme des pics

- ⇒ Exploitation de suites extraites
 - . Problemes
 - 2. Exemples
- O. Outhern autorities
- 3.1. Rappels
- 3.2. Affinement : cas $(A_m)_m$
- 3.3. Application 2 : Lemme de pics

- 2. Exemples fondamentaux
- 3. Suites extraites

Problèmes

- 3.1. Rappels
- 3.2. Affinement : cas $(A_m)_m$
- 3.3. Application 2: Lemme des pics

Définition et exemples

Analyse Contraire de : « A partir d'un certain rang ».

Leçon 36 - Suites numériques

⇒ Exploitation de suites extraites

Problèmes

fondamentau

3. Suites extraites

3.1. Rappels

3.2. Affinement : cas $(A_m)_n$

3.3. Application 2 : Lemme des pics **Analyse** Contraire de : « A partir d'un certain rang ». La définition a déjà été donnée, il s'agit de considérer seulement certains éléments (mais en nombre inifini) de (u_n) , une suite donnée.

Leçon 36 - Suites numériques

⇒ Exploitation de suites extraites

I. Problemes

2. Exemples

3. Suites extraites

3.1. Rappels

2. Affinement : cas $(A_m)_m$

3.3. Application 2 : Lemme des pics La définition a déjà été donnée, il s'agit de considérer seulement certains éléments (mais en nombre inifini) de (u_n) , une suite donnée.

Définition - Suite extraite

On dit que (v_n) est une suite extraite de (u_n) (ou une sous-suite), si

 $\exists \ \varphi: \mathbb{N} \to \mathbb{N}, \ \text{strictement croissante telle que} \ \forall \ n \in \mathbb{N}, \\ v_n = u_{\varphi(n)}.$

Leçon 36 - Suites numériques

⇒ Exploitation de suites extraites

i. Problemes

ondamentaux

Suites extraites

3.1. Rappels

3.3. Application 2 : Lemme des pics

Analyse Contraire de : « A partir d'un certain rang ».

La définition a déjà été donnée, il s'agit de considérer seulement certains éléments (mais en nombre inifini) de (u_n) , une suite donnée.

Définition - Suite extraite

On dit que (v_n) est une suite extraite de (u_n) (ou une sous-suite), si

 $\exists \ \varphi: \mathbb{N} \to \mathbb{N}, \ \text{strictement croissante telle que} \ \forall \ n \in \mathbb{N}, \\ v_n = u_{\varphi(n)}.$

Exemple Extraction paire

⇒ Exploitation de suites extraites

Problémes

. -

3.1. Rappels

.2. Affinement : cas $(A_m)_m$

3.3. Application 2 : Lemme des pics

⇒ Exploitation de

Définition et exemples

Analyse Contraire de : « A partir d'un certain rang ».

La définition a déjà été donnée, il s'agit de considérer seulement certains éléments (mais en nombre inifini) de (u_n) , une suite donnée.

Définition - Suite extraite

On dit que (v_n) est une suite extraite de (u_n) (ou une sous-suite), si

 $\exists \varphi : \mathbb{N} \to \mathbb{N}$, strictement croissante telle que $\forall n \in \mathbb{N}$, $v_n = u_{\varphi(n)}$.

Exemple Extraction paire

Attention - Double extraction

Si (w_n) est une extraction de (v_n) , elle-même une extraction de u_n

 $\exists \ \psi_1, \psi_2 \ \text{tel que} \ \forall \ n \in \mathbb{N}, \ w_n = v_{\varphi_2(n)} \ \text{et} \ v_n = u_{\varphi_1(n)},$ et donc $\forall n \in \mathbb{N}$, $w_n = v_{\varphi_2(n)} = u_{\varphi_1(\varphi_2(n))}$, l'extractrice est donc $\varphi_1 \circ \varphi_2$.

suites extraites

3.1. Rappels

Proposition - Sous-ensemble infini et suite extraite

Soit $A \subset \mathbb{R}$, on a les équivalences :

- i. $\{n \in \mathbb{N} \mid u_n \in A\}$ est infini
- ii. $\{n \in \mathbb{N} \mid u_n \in A\}$ n'est pas majoré
- iii. $\exists (v_n)$ extraite de (u_n) telle que $\forall n \in \mathbb{N}, v_n \in A$
- iv. $\exists \ \varphi : \mathbb{N} \to \mathbb{N} / /$ telle que pour tout $n \in \mathbb{N}$, $u_{\varphi(n)} \in A$

On dit (en probabilité, en particulier) que $u_n \in A$ infiniment souvent, écris : $(u_n) \in Ai.s.$ (ou $(u_n) \in Ai.o.$ (infinitely often)).

⇒ Exploitation de suites extraites

- 1. Problèmes
- fondamentaux
- 3. Suites extraites
- 3.1. Rappels
- 3.3. Application 2 : Lemme des pics

On a vu également (élargi ici) :

Proposition - Sous-ensemble infini et suite extraite

Soit $A \subset \mathbb{R}$, on a les équivalences :

- i. $\{n \in \mathbb{N} \mid u_n \in A\}$ est infini
- ii. $\{n \in \mathbb{N} \mid u_n \in A\}$ n'est pas majoré
- iii. $\exists (v_n)$ extraite de (u_n) telle que $\forall n \in \mathbb{N}, v_n \in A$
- iv. $\exists \varphi : \mathbb{N} \to \mathbb{N} / /$ telle que pour tout $n \in \mathbb{N}$, $u_{\varphi(n)} \in A$

On dit (en probabilité, en particulier) que $u_n \in A$ infiniment souvent, écris : $(u_n) \in Ai.s.$ (ou $(u_n) \in Ai.o.$ (infinitely often)).

Démonstration

Proposition - Sous-ensemble infini et suite extraite

Soit $A \subset \mathbb{R}$, on a les équivalences :

- i. $\{n \in \mathbb{N} \mid u_n \in A\}$ est infini
- ii. $\{n \in \mathbb{N} \mid u_n \in A\}$ n'est pas majoré
- iii. $\exists (v_n)$ extraite de (u_n) telle que $\forall n \in \mathbb{N}, v_n \in A$
- iv. $\exists \varphi: \mathbb{N} \to \mathbb{N} / /$ telle que pour tout $n \in \mathbb{N}$, $u_{\varphi(n)} \in A$

On dit (en probabilité, en particulier) que $u_n \in A$ infiniment souvent, écris : $(u_n) \in Ai.s.$ (ou $(u_n) \in Ai.o.$ (infinitely often)).

Démonstration

Remarque Dans la démonstration...

⇒ Exploitation de suites extraites

- Problémes
- fondamentaux
- 3. Suites extraites
- 3.1. Rappels
- 3.3. Application 2 : Lemme des pics

Savoir-faire. Construire une extraction explicitement (cas 1)

Supposons que l'on ait : $\exists A \subset \mathbb{R} \mid \forall N \in \mathbb{N}, \exists n \geqslant N \text{ tel que } u_n \in A$ (\star) Se pose la question de la construction de φ . Essayons d'être optimaux! En fait (\star) indique que : $\forall N \in \mathbb{N}$, $\{n \in \mathbb{N} \mid n \geqslant N \text{ et } u_n \in A\} \neq \emptyset$. Pour tout $N \in \mathbb{N}$, il existe $n_{N,A} = \min\{n \in \mathbb{N} \mid n \geqslant N \text{ et } u_n \in A\}$.

Notons $\theta_A:N\mapsto n_{N+1,A}.$ (On prend N+1, pour avoir n>N). θ_A est bien définie dans $\mathbb{N}.$

On a donc pour tout $N \in \mathbb{N}$, $u_{\theta_A(N)} \in A$ et $\theta_A(N) > N$.

Mais θ_A n'est pas la fonction φ recherchée, il n'y a aucune raison qu'elle soit strictement croissante. Mais on peut exploiter θ_A pour créer φ !

On cherche en effet : $\varphi(n)$ tel que $\varphi(n) > \varphi(n+1)$ et $u_{\varphi(n)} \in A$. Il suffit de prendre $\varphi(n) = \theta_A(\varphi(n-1)) = \cdots \underbrace{\theta_A \circ \cdots \circ \theta_A}_{n \text{ fois}}(0)$

⇒ Exploitation de suites extraites

i. Problemes

ondamentaux

3. Suites extraites

3.1. Rappels

3.3. Application 2 : Lemme des pics

Théorème - Suite extraite

Soit (u_n) une suite numérique et $B \subset \mathbb{R}$.

Si on n'a pas : $\exists N \in \mathbb{N}$ tel que pour tout $n \ge N$, $u_n \in B$,

i.e. on a : $\forall N \in \mathbb{N}, \exists n \ge N \text{ tel que } u_n \notin B$.

Alors, il existe une sous-suite (v_n) de (u_n) telle que pour tout $n \in \mathbb{N}, v_n \notin B$

3.2. Affinement : cas

3.3. Application 2 : Lemme de pics

Théorème - Suite extraite

Soit (u_n) une suite numérique et $B \subset \mathbb{R}$.

Si on n'a pas : $\exists N \in \mathbb{N}$ tel que pour tout $n \ge N$, $u_n \in B$,

i.e. on a : $\forall N \in \mathbb{N}, \exists n \ge N \text{ tel que } u_n \notin B.$

Alors, il existe une sous-suite (v_n) de (u_n) telle que pour tout $n \in \mathbb{N}, v_n \notin B$

Démonstration

3.2 Affinement

3.3. Application 2 : Lemme de

Théorème - Suite extraite

Soit (u_n) une suite numérique et $B \subset \mathbb{R}$.

Si on n'a pas : $\exists N \in \mathbb{N}$ tel que pour tout $n \ge N$, $u_n \in B$,

i.e. on a : $\forall N \in \mathbb{N}, \exists n \ge N \text{ tel que } u_n \notin B.$

Alors, il existe une sous-suite (v_n) de (u_n) telle que pour tout $n \in \mathbb{N}, v_n \notin B$

Démonstration

Exemple Non suite nulle à partir d'un certain rang

⇒ Exploitation de suites extraites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
 - 3.1. Rappels
 - 3.2. Affinement : cas $(A_m)_m$
 - 3.3. Application 2: Lemme des pics

⇒ Exploitation de suites extraites

- Problèmes
- 2. Exemples
- 3.1. Rappels
- 3.2. Affinement : cas $(A_m)_m$
- 3.3. Application 2 : Lemme des

- ⇒ Exploitation de suites extraites
 - . Problèmes
- Exemples fondamentau:
- 3. Suites extraites
- Rappels
 Affinement : cas (A_m)_m
- 3.3. Application 2 : Lemme de pics

Analyse. Suite (u_n) non majorée $\Leftrightarrow \exists \nearrow \nearrow$ telle que $u_{\varphi(n)} \to +\infty$.

⇒ Exploitation de suites extraites

1. Problèmes

2. Exemples fondamentaux

. Suites extraites

3.2. Affinement : cas $(A_m)_m$

3.3. Application 2 : Lemme de pics

Extraction - 2

On exploite aussi des suites extraites pour étudier des suites non majorées :

Analyse. Suite (u_n) non majorée $\Leftrightarrow \exists \nearrow \nearrow$ telle que $u_{\varphi(n)} \to +\infty$.

Savoir-faire. Construire une extraction explicitement (cas 2)

Supposons que l'on ait :

$$\forall \ m \in \mathbb{N}, (A_m \subset \mathbb{R}) \mid \forall \ N \in \mathbb{N}, \exists \ n \geqslant N \text{ tel que } u_n \in A_m \quad (\star \star).$$

On suit la même idée, mais il n'y a plus une unique fonction θ , mais une famille de fonction (θ_m) .

En effet $(\star\star)$, indique que :

$$\forall m \in \mathbb{N}, \forall N \in \mathbb{N}, \{n \in \mathbb{N} \mid n \geq N \text{ et } u_n \in A_m\} \neq \emptyset.$$

Puisque ce dernier ensemble est inclus dans N et non vide, il existe $n_{N,m} = \min\{n \in \mathbb{N} \mid n \ge N \text{ et } u_n \in A_m\}.$

Notons $\theta_m: N \mapsto n_{N+1,A_m}$. (On prend toujours N+1, pour avoir n > N

 $\forall m \in \mathbb{N}, \theta_m$ est bien définie dans \mathbb{N} .

⇒ Exploitation de suites extraites

3.2. Affinement : cas $(A_m)_m$

 (u_n) est une suite numérique non majorée ssi il existe une suite extraite de (u_n) tendant vers l'infini. i.e. $\exists \ \varphi \ / \$ tel que $(u_{\varphi(n)}) \to +\infty$

- ⇒ Exploitation de suites extraites
- 1. Problèmes
- fondamentau:
- 3. Suites extraites
- 3.1. Rappels
- 3.2. Affinement : $\cos{(A_m)_m}$ 3.3. Application 2 : Lemme des pics

 (u_n) est une suite numérique non majorée ssi il existe une suite extraite de (u_n) tendant vers l'infini. i.e. $\exists \ \varphi \ / \$ tel que $(u_{\varphi(n)}) \to +\infty$

Démonstration

⇒ Exploitation de suites extraites

1. Problèmes

2. Exemples fondamentau

3. Suites extraites

3.1. Happels

3.2. Affinement : cas $(A_m)_m$

pics

 (u_n) est une suite numérique non majorée ssi il existe une suite extraite de (u_n) tendant vers l'infini. i.e. $\exists \ \varphi \ / \$ tel que $(u_{\varphi(n)}) \to +\infty$

Démonstration

⇒ Exploitation de suites extraites

1. Problèmes

2. Exemples fondamentau

3. Suites extraites

3.1. Happels

3.2. Affinement : cas $(A_m)_m$

pics

Théorème - Suite non majorée

 (u_n) est une suite numérique non majorée ssi il existe une suite extraite de (u_n) tendant vers l'infini. i.e. $\exists \varphi / /$ tel que $(u_{\varphi(n)}) \rightarrow +\infty$

Démonstration

Exercice

Soit (u_n) une suite à valeurs dans [a,b]. Soient $\epsilon>0$ et $n=\left\lfloor\frac{b-a}{n}\right\rfloor$.

- 1. Montrer que [a,b] peut s'écrire comme une réunion de n intervalles de taille inférieur à $\epsilon>0$
- 2. Montrer qu'il existe un ensemble $A \subset [a,b]$ de taille inférieur à ϵ et une suite extraite de (u_n) tel que pour tout $n \in \mathbb{N}$, $u_{\omega(n)} \in A$.

⇒ Exploitation de suites extraites

I. Problemes

ondamentaux

. Suites extraites

3.2. Affinement : $cas(A_m)_m$ 3.3. Application 2 : Lemme de

3.3. Application 2 : Lemme des pics

suites extraites

3.1. Rappels

3.2. Affinement : cas $(A_m)_m$

Exercice

Soit (u_n) une suite bornée. On note pour tout $k \in \mathbb{N}$, $a_k = \sup\{u_n, n \ge k\}$.

- 1. Montrer que (a_k) est décroissante et minorée. On admet que (a_k) est donc convergente. On note $\ell = \lim(a_n)$.
- Montrer qu'il existe φ / / tel que pour tout n ∈ N, |u_{φ(n)} - ℓ| ≤ 1/n.
 Cela nous permet de dire que ℓ est une valeur d'adhérence de (u_n) (cf. partie suivante).

⇒ Exploitation de suites extraites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
 - 3.1. Rappels
 - 3.2. Affinement : cas $(A_m)_m$
 - 3.3. Application 2: Lemme des pics

⇒ Exploitation de suites extraites

I. Problemes

z. Exemples fondamentaux

ondamonada

3.1. Rappels

3.2. Affinement : o

3.2. Affinement : cas $(A_m)_m$

3.3. Application 2 : Lemme des

fondamentaux

5. Suites extraites

2.2 Affinoment : one (A.)

3.3. Application 2 : Lemme des

Proposition - Lemme des pics

Soit E, un ensemble totalement ordonné.

Toute suite de ${\cal E}$ admet une sous-suite croissante ou une sous-suite décroissante.

3.2. Affinement : cas $(A_m)_m$

3.3. Application 2 : Lemme des pics

Proposition - Lemme des pics

Soit E, un ensemble totalement ordonné.

Toute suite de E admet une sous-suite croissante ou une sous-suite décroissante.

C'est encore plus fin ici, car l'ensemble A n'est pas fixe, d'une certaine façon...On travaille donc sur N directement et on doit adapter la démonstration.

3.2. Affinement : cas $(A_m)_m$

3.3. Application 2 : Lemme des pics

Proposition - Lemme des pics

Soit E, un ensemble totalement ordonné.

Toute suite de E admet une sous-suite croissante ou une sous-suite décroissante.

C'est encore plus fin ici, car l'ensemble A n'est pas fixe, d'une certaine façon...On travaille donc sur N directement et on doit adapter la démonstration.

Démonstration

On note $N = \{n \in \mathbb{N} \mid \forall m > n, u_n \leq u_m\} \dots$

3.2. Affinement : cas $(A_m)_m$

3.3. Application 2 : Lemme des

Proposition - Lemme des pics

Soit E, un ensemble totalement ordonné.

Toute suite de E admet une sous-suite croissante ou une sous-suite décroissante.

C'est encore plus fin ici, car l'ensemble A n'est pas fixe, d'une certaine façon...On travaille donc sur N directement et on doit adapter la démonstration.

Démonstration

On note $N = \{n \in \mathbb{N} \mid \forall m > n, u_n \leq u_m\} \dots$

Remarque Le lemme de ERDÖS-SZEKERES

- ⇒ Exploitation de suites extraites
- Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
 - 3.1 Rannels
- 3.2. Affinement : $cas(A_m)_m$
- 3.3. Application 2 : Lemme des pics

Objectifs

- ⇒ Quelques suites classiques
- \Rightarrow Exploitation de suites extraites

2.2 Affinamor

3.3. Application 2 : Lemme de

Objectifs

- ⇒ Quelques suites classiques
 - Suites arithmétiques, géométriques.

- ⇒ Quelques suites classiques
 - Suites arithmétiques, géométriques.
 - Suites arithmético-géométriques : $u_{n+1} = qu_n + r$.

- ⇒ Exploitation de suites extraites
- 1. Problèmes
- 2. Exemples
- 8.1. Rappels
- 3.2. Affinement : cas (
- 3.3. Application 2 : Lemme des pics

Objectifs

- ⇒ Quelques suites classiques
 - Suites arithmétiques, géométriques.
 - Suites arithmético-géométriques : $u_{n+1} = qu_n + r$. On considère ℓ tel que $\ell = q\ell + r$ et on étudie $(u_n - \ell)$

⇒ Exploitation de suites extraites

Problèmes

2. Exemples fondamentary

3. Suites extraite

3.1. Rappels

3.3. Application 2 : Lemme des

⇒ Quelques suites classiques

- Suites arithmétiques, géométriques.
- Suites arithmético-géométriques : $u_{n+1} = qu_n + r$. On considère ℓ tel que $\ell = q\ell + r$ et on étudie $(u_n - \ell)$
- Suites récurrentes linéaires d'ordre $2: au_{n+2} + bu_{n+1} + cu_n = 0$

⇒ Exploitation de suites extraites

1. Problèmes

fondamentaux

3. Suites extraites

3.1. Happels

3.3. Application 2 : Lemme des

⇒ Quelques suites classiques

- Suites arithmétiques, géométriques.
- Suites arithmético-géométriques : $u_{n+1} = qu_n + r$. On considère ℓ tel que $\ell = q\ell + r$ et on étudie $(u_n - \ell)$
- Suites récurrentes linéaires d'ordre $2: au_{n+2} + bu_{n+1} + cu_n = 0$ On considère les racines r_1, r_2 de $ar^2 + br + c$. (u_n) est une c.l. des suites (r_1^n) et (r_2^n) .

⇒ Exploitation de suites extraites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
- 3.1. Rappels
- 3.3. Application 2 : Lemme des

- ⇒ Exploitation de suites extraites
- Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
 - 3.1 Rannels
- 3.2. Affinement : cas $(A_m)_m$
- 3.3. Application 2 : Lemme de pics

Objectifs

- ⇒ Quelques suites classiques
- \Rightarrow Exploitation de suites extraites

Objectifs

- ⇒ Quelques suites classiques
- ⇒ Exploitation de suites extraites
 - Si $\{n \in \mathbb{N} \mid u_n \in A\}$ est infini (\Leftrightarrow n'est pas majoré), alors il existe une sous-suite $(u_{\varphi(n)})$ d'éléments de A

- ⇒ Exploitation de suites extraites

Conclusion

Objectifs

- ⇒ Quelques suites classiques
- ⇒ Exploitation de suites extraites
 - Si $\{n \in \mathbb{N} \mid u_n \in A\}$ est infini (\Leftrightarrow n'est pas majoré), alors il existe une sous-suite $(u_{\varphi(n)})$ d'éléments de A
 - Valeurs d'adhérence d'une suite.

⇒ Exploitation de

1. Problèmes

2. Exemples ondamentaux

3. Suites extraites

3.1. Rappels

3.2. Affinement : $cas(A_m)_m$

Objectifs

- ⇒ Quelques suites classiques
- ⇒ Exploitation de suites extraites
 - Si $\{n \in \mathbb{N} \mid u_n \in A\}$ est infini (\Leftrightarrow n'est pas majoré), alors il existe une sous-suite $(u_{\varphi(n)})$ d'éléments de A
 - Valeurs d'adhérence d'une suite.
 - Si $\forall N \in \mathbb{N}, \exists n \geqslant N$ tel que $u_n \notin A$.

 Alors il existe une suite (v_n) de (u_n) tel que pour tout $n \in \mathbb{N}$, $v_n \notin A$.

⇒ Exploitation de suites extraites

1. Problèmes

2. Exemples ondamentaux

3. Suites extraites

3.1. Rappels

3.2. Affinement : cas $(A_m)_m$

3.3. Application 2 : Lemme des

- ⇒ Exploitation de suites extraites
- Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
 - 3.1 Rannels
- 3.2. Affinement : $cas(A_m)_m$
- 3.3. Application 2 : Lemme des pics

Objectifs

- ⇒ Quelques suites classiques
- \Rightarrow Exploitation de suites extraites

3. Suites extraites

3.1. Rappels

3.2. Affinement : cas (A

3.3. Application 2 : Lemme de pics

Objectifs

- ⇒ Quelques suites classiques
- ⇒ Exploitation de suites extraites

Pour la prochaine fois

- Lecture du cours : chapitre 18- Suites numériques 4.Limite d'une suite
- Exercices N° 362 & 363