

Leçon 37 - Suites numériques

Leçon 37 - Suites numériques

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - . Problemes
- _____
- Extraction
- 4. Limite
- 4.1. Suite convergente
- valeur d'adherence d'une suite
- 4.3. Suites divergent
- 4.4. Opérations sur les suites/les limites et relation d'ordre

- ⇒ Convergence...
- ⇒ Algèbre des limites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
- 4. Limite d'une suite réelle
 - 4.1. Suite convergente
 - 4.2. Valeur d'adhérence d'une suite
 - 4.3. Suites divergentes
 - 4.4. Opérations sur les suites/les limites et relation d'ordre

- ⇒ Convergence...
- ⇒ Algèbre des limites
- . Problèmes
- .. Exciripios
- . Extraotio
- r. Littile
- 4.1. Suite convergente
- uite
- Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

- ⇒ Convergence...
- ⇒ Algèbre des limites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
- 4. Limite d'une suite réelle
 - 4.1. Suite convergente
 - 4.2. Valeur d'adhérence d'une suite
 - 4.3. Suites divergentes
 - 4.4. Opérations sur les suites/les limites et relation d'ordre

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - . Problèmes
- . . .
- o. Exactor.
-
- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'ui
 - 3. Suites divergentes
- Opérations sur les suites/les limites et relation d'ordre

Soit $\epsilon>0$. On peut dire que a est - ϵ -proche de B si $|a-B|\leqslant \epsilon$. On peut dire que (la suite) (u_n) vérifie la propriété $\mathscr P$ à partir d'un certain rang, si il existe $N\in \mathbb N$ tel que pour tout $n\geqslant N$, (le nombre) u_n vérifie $\mathscr P$.

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - . Problèmes
- -----
- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'
 - . Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Soit $\epsilon>0$. On peut dire que a est - ϵ -proche de B si $|a-B| \leq \epsilon$. On peut dire que (la suite) (u_n) vérifie la propriété $\mathscr P$ à partir d'un certain rang, si il existe $N\in \mathbb N$ tel que pour tout $n\geqslant N$, (le nombre) u_n vérifie $\mathscr P$.

Remarque La suite $(\frac{1}{n})$.

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'une
 - I. Suites divergente
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Soit $\epsilon>0$. On peut dire que a est - ϵ -proche de B si $|a-B|\leqslant \epsilon$. On peut dire que (la suite) (u_n) vérifie la propriété $\mathscr P$ à partir d'un certain rang, si il existe $N\in \mathbb N$ tel que pour tout $n\geqslant N$, (le nombre) u_n vérifie $\mathscr P$.

Remarque La suite $(\frac{1}{n})$.

Définition - Limite (réelle)

Soit (u_n) une suite réelle et $\ell \in \mathbb{R}$. On dit que la suite (u_n) converge vers ℓ lorsque

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \mid \forall n \geq N, |u_n - \ell| \leq \epsilon$$

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes

 - J. EXII GOLIOTI
- 4.1. Suite convergente
- 4.2 Valour d'adhérence
 - te .
- .4. Opérations sur les

Remarque La suite $(\frac{1}{n})$.

Définition - Limite (réelle)

Soit (u_n) une suite réelle et $\ell \in \mathbb{R}$. On dit que la suite (u_n) converge vers ℓ lorsque

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \mid \forall n \ge N, |u_n - \ell| \le \epsilon$$

Remarque Suite convergente vers 0

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- _____
- . Extraction
- 4.1. Suite convergente
 - Valeur d'adhérence d
 - Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Soit $\epsilon>0$. On peut dire que a est - ϵ -proche de B si $|a-B|\leqslant \epsilon$. On peut dire que (la suite) (u_n) vérifie la propriété $\mathscr P$ à partir d'un certain rang, si il existe $N\in \mathbb N$ tel que pour tout $n\geqslant N$, (le nombre) u_n vérifie $\mathscr P$.

Remarque La suite $(\frac{1}{n})$.

Définition - Limite (réelle)

Soit (u_n) une suite réelle et $\ell \in \mathbb{R}$. On dit que la suite (u_n) converge vers ℓ lorsque

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \mid \forall n \ge N, |u_n - \ell| \le \epsilon$$

Remarque Suite convergente vers 0 **Remarque** Strict ou non

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes

 - . Extraotion
- 4.1. Suite convergente
 - 2 Valour d'adhérance
 - Suites diversentes
- 4.4. Opérations sur les suites/les limites et relation

Soit $\alpha > 0$. Montrer à l'aide de la définition que la suite $\left(\frac{1}{n^{\alpha}}\right)$ converge vers 0.

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes

 - . Extraction
 - r. Littile
- 4.1. Suite convergente
 - iite
- 4.4. Opérations sur les suites/les limites et relation

Attention - Dépendance de N à ϵ

On remarquera bien sur cet exercice le fait important et fréquent : N dépend de la valeur de ϵ choisie a priori.

On pourrait noter à la physicienne : $N(\epsilon)$

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'une
- 3 Suites diversentes
- Opérations sur les suites/les limites et relation d'ordre

Exercice

Soit $\alpha > 0$. Montrer à l'aide de la définition que la suite $\left(\frac{1}{n^{\alpha}}\right)$ converge vers 0.

Attention - Dépendance de N à ϵ

On remarquera bien sur cet exercice le fait important et fréquent : N dépend de la valeur de ϵ choisie a priori.

On pourrait noter à la physicienne : $N(\epsilon)$

Proposition - Unicité de la limite

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$. Si (u_n) converge vers ℓ et vers ℓ' alors $\ell = \ell'$. On note alors $(u_n) \underset{n \to +\infty}{\longrightarrow} \ell$ ou $\lim_{n \to +\infty} u_n = \ell$.

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- 4 Limite
- 4.1. Suite convergente
- Valeur d'adhérence d'une suite
- Suites divergentes
- Opérations sur les suites/les limites et relation d'ordre

Attention - Dépendance de N à ϵ

On remarquera bien sur cet exercice le fait important et fréquent : N dépend de la valeur de ϵ choisie a priori.

On pourrait noter à la physicienne : $N(\epsilon)$

Proposition - Unicité de la limite

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$. Si (u_n) converge vers ℓ et vers ℓ' alors $\ell = \ell'$. On note alors $(u_n) \underset{n \to +\infty}{\longrightarrow} \ell$ ou $\lim_{n \to +\infty} u_n = \ell$.

Démonstration

 \Rightarrow Convergence...

⇒ Algèbre des limites

Problèmes

Exemples

4.1. Suite convergente

 Valeur d'adhérence d'une suite

I. Suites divergente

4.4. Opérations sur les suites/les limites et relation d'ordre

Définition - Suites convergente

Soit (u_n) une suite réelle.

S'il existe un réel ℓ tel que la suite converge vers ℓ , on dit que (u_n) est convergente.

 ℓ (unique d'après ce qui précède) est appelé la limite de la suite.

- Problèmes
- 2 Evennles
- Evtraction
- l. Limite
- 4.1. Suite convergente
- suite
- .3. Suites divergente
- Opérations sur les suites/les limites et relation d'ordre

Problèmes

4. Limite

4.1. Suite convergente

suite

.s. Suites divergente

4.4. Opérations sur les suites/les limites et relation d'ordre

Définition - Suites convergente

Soit (u_n) une suite réelle.

S'il existe un réel ℓ tel que la suite converge vers ℓ , on dit que (u_n) est convergente.

 ℓ (unique d'après ce qui précède) est appelé la limite de la suite.

Proposition - Suite convergente donc bornée

Toute suite convergente est bornée.

Problèmes

.. Exemples

4. Limite

4.1. Suite convergente

suite

Suites divergentes

 4.4. Opérations sur les suites/les limites et relation d'ordre

Définition - Suites convergente

Soit (u_n) une suite réelle.

S'il existe un réel ℓ tel que la suite converge vers ℓ , on dit que (u_n) est convergente.

 ℓ (unique d'après ce qui précède) est appelé la limite de la suite.

Proposition - Suite convergente donc bornée

Toute suite convergente est bornée.

Démonstration

- ⇒ Convergence...
- ⇒ Algèbre des limites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
- 4. Limite d'une suite réelle
 - 4.1. Suite convergente
 - 4.2. Valeur d'adhérence d'une suite
 - 4.3. Suites divergentes
 - 4.4. Opérations sur les suites/les limites et relation d'ordre

- ⇒ Convergence...
- ⇒ Algèbre des limites
- . Problemes

- 4. Limite
- 4.1. Suite convergente
 - Valeur d'adhérence d'une suite
 - I. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Définition et usage

Définition - Valeur d'adhérence (d'une suite)

Si a est limite d'une suite extraite de (u_n) on dit que a est une valeur d'adhérence de la suite (u_n) .

Leçon 37 - Suites numériques

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- Extraction
- 4. Littile
- 4.2. Valeur d'adhérence d'une
- .3. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Définition et usage

Définition - Valeur d'adhérence (d'une suite)

Si a est limite d'une suite extraite de (u_n) on dit que a est une valeur d'adhérence de la suite (u_n) .

Leçon 37 - Suites numériques

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- Extraction
- 4. Littile
- 4.2. Valeur d'adhérence d'une
- .3. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Si a est limite d'une suite extraite de (u_n) on dit que a est une valeur d'adhérence de la suite (u_n) .

Exemple $((-1)^n)$ admet deux valeurs d'adhérence.

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- . .
- 3. Extraction
- 4. Littillo
- 4.1. Suite convergente
 4.2. Valeur d'adhérence d'une
 - Suites divergentes
- I.4. Opérations sur les suites/les limites et relation

Si a est limite d'une suite extraite de (u_n) on dit que a est une valeur d'adhérence de la suite (u_n) .

Exemple $((-1)^n)$ admet deux valeurs d'adhérence.

Théorème - Limite d'une suite extraite

Toute suite extraite d'une suite tendant vers $\ell \in \overline{R}$ est une suite tendant vers $\ell \in \overline{R}$.

Autrement écrit : si $(u_n) \rightarrow \ell$, alors (u_n) n'admet qu'une seule valeur d'adhérence : ℓ .

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes

 - LAtiaction
 -
 - 4.2. Valeur d'adhérence d'une
 - 1.3. Suites divergent
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Si a est limite d'une suite extraite de (u_n) on dit que a est une valeur d'adhérence de la suite (u_n) .

Exemple $((-1)^n)$ admet deux valeurs d'adhérence.

Théorème - Limite d'une suite extraite

Toute suite extraite d'une suite tendant vers $\ell \in \overline{R}$ est une suite tendant vers $\ell \in \overline{R}$.

Autrement écrit : si $(u_n) \rightarrow \ell$, alors (u_n) n'admet qu'une seule valeur d'adhérence : ℓ .

Démonstration

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes

 - LAtiaction
 -
- 4.2. Valeur d'adhérence d'une suite
- I.3. Suites divergen
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Définition - Valeur d'adhérence (d'une suite)

Si a est limite d'une suite extraite de (u_n) on dit que a est une valeur d'adhérence de la suite (u_n) .

Exemple $((-1)^n)$ admet deux valeurs d'adhérence.

Théorème - Limite d'une suite extraite

Toute suite extraite d'une suite tendant vers $\ell \in \overline{R}$ est une suite tendant vers $\ell \in R$.

Autrement écrit : si $(u_n) \rightarrow \ell$, alors (u_n) n'admet qu'une seule valeur d'adhérence : ℓ .

Démonstration

Attention. La réciproque est fausse

La suite (u_n) telle que $u_n = 1[n \equiv 0[2]] + n[n \equiv 1[2]]$ n'admet qu'une seule valeur d'adhérence : 1 (et ne converge pas).

- ⇒ Convergence...
- ⇒ Algèbre des limites

 - 4.2. Valeur d'adhérence d'une

⇒ Algèbre des limites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
- 4. Limite d'une suite réelle
 - 4.1. Suite convergente
 - 4.2. Valeur d'adhérence d'une suite
 - 4.3. Suites divergentes
 - 4.4. Opérations sur les suites/les limites et relation d'ordre

⇒ Convergence...

⇒ Algèbre des limites

. Problemes

4 Limito

4.1. Suite convergente

I.2. Valeur d'adhérence d'u

4.3. Suites divergentes

 Opérations sur les suites/les limites et relation d'ordre

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
 - . Problèmes
- - 3. Extractio
 - 4. Limite
 - 4.1. Suite convergente
 - 4.2. Valeur d'adhérence d'uni
 - 4.3. Suites divergentes
 - 4.4. Opérations sur les suites/les limites et relation

- Il y a deux types de non convergence (=divergence) :
 - les suites tendant vers ∞ .
 - les suites ne tendant vers rien (oscillante).

- ⇒ Convergence...
- ⇒ Algèbre des limites

Problèmes

4. Limite

4.1. Suite convergente

 Valeur d'adhérence d'une suite

4.3. Suites divergentes

4.4. Opérations sur les suites/les limites et relation d'ordre

Il y a deux types de non convergence (=divergence) :

- les suites tendant vers ∞ .
- les suites ne tendant vers rien (oscillante).

Définition - suite divergente

Si la suite n'est pas convergente on dit qu'elle est divergente.

la définition suivante.

On peut étendre la notion de limite d'une suite à $\overline{\mathbb{R}}$ ce qui donne

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- . .
- . Extraction
- Limite
- 4.1. Suite convergente
- Valeur d'adhérence d'une
- 4.3. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Définition - Limite infinie

On dit que la suite réelle (u_n) tend vers $+\infty$ et on note $u_n \underset{n \to +\infty}{\longrightarrow} +\infty$ si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N} \mid \forall n \geq N, u_n \geq A.$$

On dit que la suite réelle (u_n) tend vers $-\infty$ et on note $u_n \underset{n \to +\infty}{\longrightarrow} -\infty$ si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N} \mid \forall n \geq N, u_n \leq A.$$

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- . Exciripios
- Extraction
- 4. Limite
- 4.1. Suite convergente
- 4.3. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation

Définition - Limite infinie

On dit que la suite réelle (u_n) tend vers $+\infty$ et on note $u_n \underset{n \to +\infty}{\longrightarrow} +\infty$ si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N} \mid \forall n \geq N, u_n \geq A.$$

On dit que la suite réelle (u_n) tend vers $-\infty$ et on note $u_n \underset{n \to +\infty}{\longrightarrow} -\infty$ si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N} \mid \forall n \geq N, u_n \leq A.$$

Remarque Limite infinie et suite divergente

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes
 - .
- Extraction
- 4. Littille
- . i. Suite convergente
- 4.3. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Exercices

Exercice

Soit $\alpha > 0$. Montrer à l'aide de la définition que la suite (n^{α}) diverge vers $+\infty$.

Leçon 37 - Suites numériques

- $\Rightarrow {\sf Convergence.} \ . \ .$
- ⇒ Algèbre des limites
 - Problèmes
- - . Extraction
- 4. Limite
- L2 Valour d'adhérence d'u
- 4.3. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Soit $\alpha > 0$. Montrer à l'aide de la définition que la suite (n^{α}) diverge vers $+\infty$.

Attention - Dépendance de N à A

On remarquera bien sur cet exercice le fait important et fréquent : N dépend de la valeur de A choisie a priori.

On pourrait noter à la physicienne : N(A)

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- ____
- 4. Limite
- 1.1. Suite convergente
- 4.2. Valeur d'adhérence d'une
- 4.3. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Soit $\alpha > 0$. Montrer à l'aide de la définition que la suite (n^{α}) diverge vers $+\infty$.

Attention - Dépendance de N à A

On remarquera bien sur cet exercice le fait important et fréquent : N dépend de la valeur de A choisie a priori. On pourrait noter à la physicienne : N(A)

Attention - Cas pathologiques

Il existe

- des suites divergentes qui ne tendent pas vers $+\infty$ (ni vers $-\infty$);
- ▶ des suites non bornées qui ne divergent pas vers $+(-)\infty$.
- des suites convergentes non monotones.

\Rightarrow Convergence...

⇒ Algèbre des limites

Problèmes

L. Excimples

. . . .

4.2. Valeur d'adhérence d'ur

uite

4.3. Suites divergentes

4.4. Opérations sur les suites/les limites et relation d'ordre

4. Limite

4.1. Suite convergente

 Valeur d'adhérence d'une suite

4.3. Suites divergentes

 4.4. Opérations sur les suites/les limites et relation d'ordre

Savoir-faire. Montrer la divergence (deuxième type) d'une suite, par suites extraites

Soit (u_n) une suite réelle.

On suppose qu'il existe deux suites extraites $(u_{\varphi(n)})$ et $(u_{\psi(n)})$ convergentes respectivement vers ℓ et ℓ' avec $\ell = \ell'$.

Alors la suite (u_n) est divergente.

4. Limite

4.1. Suite convergente

4.2. Valeur d'adherence d'une suite

4.3. Suites divergentes

 4.4. Opérations sur les suites/les limites et relation d'ordre

Savoir-faire. Montrer la divergence (deuxième type) d'une suite, par suites extraites

Soit (u_n) une suite réelle.

On suppose qu'il existe deux suites extraites $(u_{\varphi(n)})$ et $(u_{\psi(n)})$ convergentes respectivement vers ℓ et ℓ' avec $\ell = \ell'$.

Alors la suite (u_n) est divergente.

Exercice

Donner des exemples de telles suites.

4.3. Suites divergentes

Savoir-faire. Montrer la divergence (deuxième type) d'une suite, par suites extraites

Soit (u_n) une suite réelle.

On suppose qu'il existe deux suites extraites $(u_{\varphi(n)})$ et $(u_{\psi(n)})$ convergentes respectivement vers ℓ et ℓ' avec $\ell = \ell'$. Alors la suite (u_n) est divergente.

Exercice

Donner des exemples de telles suites.

Exercice

Rappeler et démontrer les résultats sur la convergence des suites arithmétiques ou géométriques en fonction de leur raison.

- ⇒ Convergence...
- ⇒ Algèbre des limites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
- 4. Limite d'une suite réelle
 - 4.1. Suite convergente
 - 4.2. Valeur d'adhérence d'une suite
 - 4.3. Suites divergentes
 - 4.4. Opérations sur les suites/les limites et relation d'ordre

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
- . Problèmes
- ·
- b. Extraction
- 4. Limite
- 4.1. Suite convergente
 - Valeur d'adhérence d'
 - 3. Suites divergentes
- 4.4. Opérations sur les
- suites/les limites et relation d'ordre

Problèmes

4. Limite

Valour d'adhérance

Suites divergentes

 4.4. Opérations sur les suites/les limites et relation d'ordre

Proposition - Convergence et signe de la suite

Soit (u_n) une suite réelle qui tend vers $\ell \in \overline{\mathbb{R}}$. On suppose $\ell > 0$ (resp. $\ell < 0$). Alors la suite est strictement positive (resp. strictement négative) à partir d'un certain rang.

0. E. due ette

i. Limite

I.1. Suite convergente

te

. Suites divergentes

4.4. Opérations sur les suites/les limites et relation d'ordre

Proposition - Convergence et signe de la suite

Soit (u_n) une suite réelle qui tend vers $\ell \in \overline{\mathbb{R}}$. On suppose $\ell > 0$ (resp. $\ell < 0$). Alors la suite est strictement positive (resp. strictement négative) à partir d'un certain rang.

Démonstration

. Littile

i. 1. Suite convergente L2 Valour d'adhérance d

3. Suites divergentes

 4.4. Opérations sur les suites/les limites et relation d'ordre

Proposition - Convergence et signe de la suite

Soit (u_n) une suite réelle qui tend vers $\ell \in \overline{\mathbb{R}}$. On suppose $\ell > 0$ (resp. $\ell < 0$). Alors la suite est strictement positive (resp. strictement négative) à partir d'un certain rang.

Démonstration

Et réciproquement si $\forall n \in \mathbb{N}, u_n > 0$, a-t-on $\lim(u_n) > 0$?

Littile

.1. Suite convergente

Valeur d'adhérence d'unite

. Suites divergentes

4.4. Opérations sur les suites/les limites et relation d'ordre

Proposition - Convergence et signe de la suite

Soit (u_n) une suite réelle qui tend vers $\ell \in \overline{\mathbb{R}}$. On suppose $\ell > 0$ (resp. $\ell < 0$). Alors la suite est strictement positive (resp. strictement négative) à partir d'un certain rang.

Démonstration

Et réciproquement si $\forall n \in \mathbb{N}, u_n > 0$, a-t-on $\lim(u_n) > 0$?

Attention - Les inégalités sont élargies !

Les inégalités strictes ne passent pas à la limite, elles se transforment en inégalités larges.

Par exemple $u_n = \frac{1}{n} > 0 = v_n$ et pourtant $\lim(u_n) = \lim(v_n) = 0$

2. Exemples

B. Extraction

i. Limite

4.1. Suite convergente

 Valeur d'adhérence d'une suite

Suites divergent

4.4. Opérations sur les suites/les limites et relation d'ordre

Théorème - Passage à la limite dans les inégalités

Soient (u_n) et (v_n) deux suites réelles qui convergent respectivement vers les réels ℓ et ℓ' . On suppose qu'à partir d'un certain rang on a $u_n \leqslant v_n$. Alors $\ell \leqslant \ell'$.

Z. Exemples

D. EXII GOLIO

T. LITTICO

4.2 Valour d'adhérence d

suite

.3. Suites divergente

 4.4. Opérations sur les suites/les limites et relation d'ordre

Théorème - Passage à la limite dans les inégalités

Soient (u_n) et (v_n) deux suites réelles qui convergent respectivement vers les réels ℓ et ℓ' . On suppose qu'à partir d'un certain rang on a $u_n \leqslant v_n$. Alors $\ell \leqslant \ell'$.

Remarque Dans $\overline{\mathbb{R}}$

- ⇒ Convergence...
- ⇒ Algèbre des limites

- 4.4. Opérations sur les
- cuitos/los limitos at relation d'ordre

Théorème - Passage à la limite dans les inégalités

Soient (u_n) et (v_n) deux suites réelles qui convergent respectivement vers les réels ℓ et ℓ' . On suppose qu'à partir d'un certain rang on a $u_n \leq v_n$. Alors $\ell \leq \ell'$.

Remarque Dans $\overline{\mathbb{R}}$ Démonstration

4. Limite

4.1. Suite convergente

suite

4.3. Suites divergent

 4.4. Opérations sur les suites/les limites et relation d'ordre

Heuristique. Petit bilan. . . et mieux!

D'une certaine façon, on peut résumer ce qu'on a vu en : Contexte : des suites convegentes dans $\overline{\mathbb{R}}$

- Le passage à la limite conserve l'ordre large.
- Páciproquement (strict) : si $\lim u_n < \lim v_n$, alors $u_n < v_n$ à partir d'une certain rang.

4.1 Quito commorporate

4.1. Suite convergente

4.2. valeur d'adherence d'un suite

Suites divergente

 4.4. Opérations sur les suites/les limites et relation d'ordre

Heuristique. Petit bilan. . . et mieux!

D'une certaine façon, on peut résumer ce qu'on a vu en : Contexte : des suites convegentes dans $\overline{\mathbb{R}}$

- Le passage à la limite conserve l'ordre large.
- Páciproquement (strict) : si $\lim u_n < \lim v_n$, alors $u_n < v_n$ à partir d'une certain rang.

Le théorème d'encadrement est un peu plus fort : il assure aussi la convergence.

Soient $(u_n),(v_n),(w_n)$ trois suites réelles et $\ell \in \mathbb{R}$. On suppose que

$$\forall n \geqslant n_0, u_n \leqslant v_n \leqslant w_n, \text{ et que } \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell$$

alors la suite (v_n) converge vers ℓ .

- ⇒ Convergence...
- ⇒ Algèbre des limites
- 1. Problèmes
- Extraction
- . Limite
- .1. Suite convergente
- Valeur d'adhèrence d'une suite
- .3. Suites divergente
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Soient $(u_n),(v_n),(w_n)$ trois suites réelles et $\ell \in \mathbb{R}$. On suppose que

$$\forall n \geqslant n_0, u_n \leqslant v_n \leqslant w_n, \text{ et que } \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell$$

alors la suite (v_n) converge vers ℓ .

Avec
$$(u_n) = (-w_n)$$
:

Corollaire - Encadrement en valeur absolue

Soit (u_n) une suite réelle. On suppose que l'on a (α_n) une suite de réels positifs qui converge vers 0 et un réel ℓ tels qu'à partir d'un certain rang $|u_n - \ell| \le \alpha_n$. Alors (u_n) converge vers ℓ .

- ⇒ Convergence...
- ⇒ Algèbre des limites
- 1. Problèmes
- EXITACTION
- _____
- i.1. Suite convergente
- iite
- Suites divergentes
- Opérations sur les suites/les limites et relation d'ordre

Théorème - Théorème de limite par encadrement, dit "des gendarmes"

Soient $(u_n), (v_n), (w_n)$ trois suites réelles et $\ell \in \mathbb{R}$. On suppose que

$$\forall n\geqslant n_0, u_n\leqslant v_n\leqslant w_n, \text{ et que } \lim_{n\to+\infty}u_n=\lim_{n\to+\infty}w_n=\ell$$

alors la suite (v_n) converge vers ℓ .

Avec
$$(u_n) = (-w_n)$$
:

Corollaire - Encadrement en valeur absolue

Soit (u_n) une suite réelle. On suppose que l'on a (α_n) une suite de réels positifs qui converge vers 0 et un réel ℓ tels qu'à partir d'un certain rang $|u_n - \ell| \le \alpha_n$. Alors (u_n) converge vers ℓ .

Démonstration

Lecon 37 - Suites numériques

- ⇒ Convergence...
- ⇒ Algèbre des limites

- 4.4. Opérations sur les d'ordre

. Problèmes

4. Limite

4.1. Suite convergente

 Valeur d'adhérence d'une suite

Suites divergent

 4.4. Opérations sur les suites/les limites et relation d'ordre

Savoir-faire. A partir de deux certains rangs

Si on a, à partir d'un certain premier rang une propriété vraie : $\exists \ n_1 \in \mathbb{N} \ \text{tel que} \ \forall \ n \geqslant n_1, \mathscr{P}_n,$ et à partir d'un certain second rang une autre propriété vraie : $\exists \ n_2 \in \mathbb{N} \ \text{tel que} \ \forall \ n \geqslant n_2, \mathscr{P}'_n,$

Alors, à partir d'un certain rang $n_3 = \max(n_1, n_2)$, \mathscr{P}_n et \mathscr{P}'_n sont vraies.

4. Limite

4.1. Suite convergente

 Valeur d'adhérence d'une suite

.3. Suites divergente

4.4. Opérations sur les suites/les limites et relation d'ordre

Savoir-faire. A partir de deux certains rangs

Si on a, à partir d'un certain premier rang une propriété vraie : $\exists \ n_1 \in \mathbb{N} \ \text{tel que} \ \forall \ n \geqslant n_1, \mathscr{P}_n,$

et à partir d'un certain second rang une autre propriété vraie :

 $\exists n_2 \in \mathbb{N} \text{ tel que } \forall n \geq n_2, \mathscr{P}'_n,$

Alors, à partir d'un certain rang $n_3 = \max(n_1, n_2)$, \mathscr{P}_n et \mathscr{P}'_n sont vraies.

Exercice

Montrer que la suite $\left(\frac{2^n}{n!}\right)$ converge vers 0.

Divergence (infinie) par encardrement

On a un résultat analogue au théorème précédent pour les limites infinies.

Leçon 37 - Suites numériques

- $\Rightarrow \text{Convergence.} \ldots$
- ⇒ Algèbre des limites
 - Problèmes
- _. Lxcmpic
- . Extraction
- . Limite
- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'une
- Suites divergente
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Théorème - Théorème de divergence (vers $\pm \infty$) par encadrement

Soient (u_n) et (v_n) deux suites réelles telles qu'à partir d'un certain rang $u_n \leqslant v_n$. Alors

$$(u_n) \underset{n \to +\infty}{\longrightarrow} +\infty \Rightarrow (v_n) \underset{n \to +\infty}{\longrightarrow} +\infty$$

$$(v_n) \underset{n \to +\infty}{\longrightarrow} -\infty \Rightarrow (u_n) \underset{n \to +\infty}{\longrightarrow} -\infty$$

Leçon 37 - Suites numériques

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- s. Extraction
- i. Limite
- 1.1. Suite convergente
- uite
- Suites divergent
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Théorème - Théorème de divergence (vers $\pm \infty$) par encadrement

Soient (u_n) et (v_n) deux suites réelles telles qu'à partir d'un certain rang $u_n \leq v_n$. Alors

$$(u_n) \underset{n \to +\infty}{\longrightarrow} +\infty \Rightarrow (v_n) \underset{n \to +\infty}{\longrightarrow} +\infty$$

$$(v_n) \underset{n \to +\infty}{\longrightarrow} -\infty \Rightarrow (u_n) \underset{n \to +\infty}{\longrightarrow} -\infty$$

Exercice

Soit (S_n) la suite définie par $S_n = \sum_{k=0}^n \frac{1}{k}$.

- 1. Pour $k \in \mathbb{N}^*$, comparez $\frac{1}{k}$ avec $\int_{t_0}^{k+1} \frac{dt}{t}$ et $\int_{t_0}^{k} \frac{dt}{t}$. En déduire que (S_n) diverge.
- 2. Prouver que $\left(\frac{S_n}{\ln n}\right)$ converge et donner sa limite.

- ⇒ Convergence...
- ⇒ Algèbre des limites
- 4.4. Opérations sur les d'ordra

L. Exompleo

- 4.1 Suite convergente
- 4.2. Valeur d'adhérence
 - 1.3. Suites divergentes
- 4.4. Opérations sur les
- 4.4. Opérations sur les suites/les limites et relation d'ordre

Savoir-faire. Convergence par encadrement/Divergence par minoration (majoration)

L'encadrement est souvent à la base de toute démonstration d'analyse. Pour démontrer que

- $u_n \to \ell$, on démontre qu'à partir d'un certain rang, $v_n \leqslant u_n \leqslant w_n$ avec $\lim(v_n) = \lim(w_n) = \ell$, ou $|u_n \alpha| \leqslant \alpha_n$ avec $\alpha_n \to 0$.
- $u_n \to +\infty$, on démontre qu'à partir d'un certain rang, $v_n \le u_n$ avec $\lim(v_n) = +\infty$.
- $u_n \to -\infty$, on démontre qu'à partir d'un certain rang, $u_n \le w_n$ avec $\lim(w_n) = -\infty$.

. Problèmes

. . . .

44.00

4.2 Valeur d'adhérence d'u

uite

4.4. Opérations sur les

suites/les limites et relation d'ordre

Définition - $\mathbb{R}^{\mathbb{N}}$ comme une algèbre

On définit les opérations suivantes sur l'ensemble des suites réelles :

- Addition : $(u_n) + (v_n) = (u_n + v_n)$
- Multiplication par un réel : $\lambda(u_n) = (\lambda u_n)$
- Multiplication de deux suites : $(u_n) \times (v_n) = (u_n \times v_n)$

Addition et multiplication de deux suites sont des "lois internes" sur $\mathbb{R}^{\mathbb{N}}$, la multiplication est une "loi externe".

- Problèmes
- -----
- . Limite
- 4.1. Suite convergente
- Valeur d'adhérence d'une suite
- I.3. Suites divergente
- 4.4. Opérations sur les suites/les limites et relation d'ordre

On commence par deux lemmes qui simplifieront les démonstrations

Lemme - $\mathbb{R}^{\mathbb{N}}$ comme une algèbre

Soient (u_n) et (v_n) deux suites numériques.

- ► Si $(u_n) \rightarrow 0$ et (v_n) est bornée, alors $(u_n \times v_n) \rightarrow 0$.
- ▶ Si $(u_n) \to +\infty$ et (v_n) est minorée, alors $(u_n + v_n) \to +\infty$.

4.1. Suite convergente

 Valeur d'adhérence d'une suite

Suites divergentes

4.4. Opérations sur les suites/les limites et relation d'ordre

On commence par deux lemmes qui simplifieront les démonstrations

Lemme - $\mathbb{R}^{\mathbb{N}}$ comme une algèbre

Soient (u_n) et (v_n) deux suites numériques.

- ► Si $(u_n) \rightarrow 0$ et (v_n) est bornée, alors $(u_n \times v_n) \rightarrow 0$.
- Si $(u_n) \to +\infty$ et (v_n) est minorée, alors $(u_n + v_n) \to +\infty$.

Démonstration

- $\Rightarrow \text{Convergence.} \ldots$
- ⇒ Algèbre des limites
 - Problèmes
- z. zxompioc
- Extraction
- 4. Limite
- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'un
 - 3. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation

Objectifs

- \Rightarrow Convergence...
- ⇒ Algèbre des limites

- ⇒ Convergence...
 - ▶ Définition de $(u_n) \to \ell$: $\forall \ \epsilon > 0$, $\exists \ N_\epsilon \in \mathbb{N}$ tel que $\forall \ n \ge N$, $|u_n \ell| \le \epsilon$.

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- 1 Limite
- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'une
 - Suites divergente
- 4.4. Opérations sur les suites/les limites et relation d'ordre

- $\begin{array}{l} \blacktriangleright \ \ \ \mbox{D\'efinition de } (u_n) \to \ell : \forall \ \epsilon > 0, \ \exists \ N_\epsilon \in \mathbb{N} \ \mbox{tel que} \ \forall \ n \geqslant N, \\ |u_n \ell| \leqslant \epsilon. \end{array}$
- Suites convergentes. Suites divergentes.

- $\Rightarrow {\sf Convergence.} \ . \ .$
- ⇒ Algèbre des limites
 - Problèmes

- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'ur
- 3. Suites divergente
- Opérations sur les suites/les limites et relation d'ordre

- $\begin{array}{c} \blacktriangleright \ \ \, \text{D\'efinition de} \; (u_n) \to \ell : \forall \; \epsilon > 0, \; \exists \; N_\epsilon \in \mathbb{N} \; \text{tel que} \; \forall \; n \geqslant N, \\ |u_n \ell| \leqslant \epsilon. \end{array}$
- Suites convergentes. Suites divergentes.
- Conservation de la relation d'ordre par passage à la limite et réciproquement (presque)

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
 - . Problemes
- 0 Francisco di ca
- 4 Limito
- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'une
- I.3. Suites divergen
- Opérations sur les suites/les limites et relation d'ordre

- $\begin{array}{l} \blacktriangleright \ \, \text{ D\'efinition de } (u_n) \to \ell : \forall \ \epsilon > 0, \exists \ N_\epsilon \in \mathbb{N} \ \text{tel que } \forall \ n \geqslant N, \\ |u_n \ell| \leqslant \epsilon. \end{array}$
- Suites convergentes. Suites divergentes.
- Conservation de la relation d'ordre par passage à la limite et réciproquement (presque)
- Théorème de convergence par encadrement et divergence par min/maj-oration.

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
 - Problèmes
- 0 Francisco di ca
- o. Extraction
- 4. Limite
- 4.1. Suite convergente
- Valeur d'adhérence d'une suite
- .3. Suites divergente
- 4.4. Opérations sur les suites/les limites et relation d'ordre

- $\Rightarrow {\sf Convergence.} \ . \ .$
- ⇒ Algèbre des limites
 - Problèmes
- z. zxompioc
- Extraction
- 4. Limite
- 4.1. Suite convergente
- 4.2. Valeur d'adhérence d'une
 - 3. Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation

Objectifs

- \Rightarrow Convergence...
- ⇒ Algèbre des limites

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
 - Les calculs sont comparables avec ceux dans $\overline{\mathbb{R}}$ par passage à la limite

- $\Rightarrow \text{Convergence.} \ldots$
- ⇒ Algèbre des limites
 - Problèmes
- 3. Extraction
- 4. Limite
- 4.1. Suite convergente
- .z. valeur d'adrierence d'une uite
- I. Suites divergente
- 4.4. Opérations sur les suites/les limites et relation d'ordre

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Les calculs sont comparables avec ceux dans $\overline{\mathbb{R}}$ par passage à la limite
 - Application : Césaro...

- \Rightarrow Convergence...
- ⇒ Algèbre des limites
- . Problemes
- 3. EXITACTION
- 4. LITTILE
- 4.1. Suite convergente

 - I. Suites divergentes
- Opérations sur les
 suites/les limites et relation
 d'ordre

- ⇒ Convergence...
- ⇒ Algèbre des limites
 - Les calculs sont comparables avec ceux dans $\overline{\mathbb{R}}$ par passage à la limite
 - Application : Césaro...
 - Extension au suites à valeurs complexes :

Tout va bien (sauf l'ordre)!

On peut se concentrer aux suites $\mathbf{Re}(u_n)$ et $\mathbf{Im}(u_n)$

- ⇒ Convergence...
- ⇒ Algèbre des limites
- . Problème
- o. Extraotio
- 4. Limite
- 4.1. Suite convergente
- suite
- Suites divergentes
- 4.4. Opérations sur les suites/les limites et relation d'ordre

2 Evtractio

4. Limite

4.1. Suite convergente

uite

Suites divergentes

4.4. Opérations sur les suites/les limites et relation d'ordre

Objectifs

- \Rightarrow Convergence...
- ⇒ Algèbre des limites

Pour la prochaine fois

- Lecture du cours : chapitre 18- Suites numériques Fin de 4.
- Exercices N°365 & 366