

Leçon 39 - Suites numériques

Leçon 39 - Suites numériques

- . I Toblemes
- 2. Exemple:
- 3. Extraction
 - . Limites
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 5.3. Suites domine

⇒ Comparaison (asymptotique) entre les suites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
- 4. Limite d'une suite réelle
- 5. Analyse asymptotique
 - 5.1. Hiérarchie de suites
 - 5.2. Suites équivalentes
 - 5.3. Suites dominées

- Problèmes
- Exemples
- . Extractic
- Limites
- 5. Analyse
- 5.1. Hiérarchie de suites
 - 2. Suites équivalentes
 - 2 Suitas damináas

⇒ Comparaison (asymptotique) entre les suites

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
- 4. Limite d'une suite réelle
- 5. Analyse asymptotique
 - 5.1. Hiérarchie de suites
 - J. I. I lierarcine de suites
 - 5.2. Suites equivalentes
 - 5.3. Suites dominées

- Problèmes
- 2. Exemples
- s. Extractio
- . Limites
- . Analyse symptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 3.3. Suites dominées

Définition et critère d'application

Remarque Autant en emporte....

Leçon 39 - Suites numériques

- Problèmes
- 2. Exemples
- -----
- . Limites
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalente
- .3. Suites dominées

5.1. Hiérarchie de suites

Remarque Autant en emporte....

Définition - Suites négligeables

Soient (u_n) et (v_n) deux suites numériques (réelles ou complexes).

On dit que (u_n) est négligeable devant (v_n) si

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall n \geq N, |u_n| \leq \epsilon |v_n|.$

On note alors $u_n = o(v_n)$ (lu u_n est un petit o de v_n) ou parfois $(u_n) \ll (v_n)$.

Définition - Suites négligeables

Soient (u_n) et (v_n) deux suites numériques (réelles ou complexes).

On dit que (u_n) est négligeable devant (v_n) si

$$\forall \ \epsilon > 0, \ \exists \ N \in \mathbb{N} \ \text{tel que} \ \forall \ n \geqslant N, \ |u_n| \leqslant \epsilon |v_n|.$$

On note alors $u_n = o(v_n)$ (lu u_n est un petit o de v_n) ou parfois $(u_n) \ll (v_n)$.

Proposition - Comparaison à une constante

Soit (u_n) une suite numérique.

$$\forall \lambda \in \mathbb{K}, u_n = o(\lambda) \operatorname{ssi}(u_n) \to 0$$

- Problèmes
- 2. Exemples
- . Analyse
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 5.3. Suites dominées

Définition - Suites négligeables

Soient (u_n) et (v_n) deux suites numériques (réelles ou complexes).

On dit que (u_n) est négligeable devant (v_n) si

$$\forall \ \epsilon > 0, \, \exists \ N \in \mathbb{N} \ \text{tel que} \ \forall \ n \geqslant N, \, |u_n| \leqslant \epsilon |v_n|.$$

On note alors $u_n = o(v_n)$ (lu u_n est un petit o de v_n) ou parfois $(u_n) \ll (v_n)$.

Proposition - Comparaison à une constante

Soit (u_n) une suite numérique.

$$\forall \lambda \in \mathbb{K}, u_n = o(\lambda) \operatorname{ssi}(u_n) \to 0$$

Démonstration

- Problèmes
- . Exemples
- Analyse
- 5.1. Hiérarchie de suites
- .2. Suites équivalentes
- 3. Suites dominées

Soit (u_n) une suite numérique. On note $\mathcal{Z}_u = \{n \in \mathbb{N} \mid u_n = 0\} = u^{-1}(\{0\}).$

- ⇒ Comparaison (asymptotique) entre les suites
 - Problèmes
- 2. Exemples
-
- Limites
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 5.3. Suites dominées

Définition - Suites infiniment souvent nulles

Soit (u_n) une suite numérique. On note $\mathcal{Z}_u = \{n \in \mathbb{N} \mid u_n = 0\} = u^{-1}(\{0\}).$

Attention. Cas d'étude

• Si \mathcal{Z}_u est fini, alors (u_n) n'est jamais nulle à partir d'un certain rang. C'est pratique.

Il existe $n_0 \in \mathbb{Z}$ tel que $\mathcal{Z}_u \cap [n_0, +\infty[=\emptyset]$.

• Si (u_n) est nulle à partir d'un certain rang. Cela n'est pas intéressant.

Il existe $n_0 \in \mathbb{Z}$ tel que $\llbracket n_0, +\infty \rrbracket \subset \mathcal{Z}_u$.

Cela correspond à la situation où le complémentaire de \mathcal{Z}_u est fini.

• Le cas pénible : \mathcal{Z}_u est infini mais pas de la forme contenant $[\![n_0,+\infty]\![$.

 \mathcal{Z}_u et son complémentaire sont infinis

- Problèmes
- 2. Exemples
- Analyse
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 5.3. Suites dominées

Soient (u_n) et (v_n) deux suites numériques. Alors

$$u_n = o(v_n) \Longleftrightarrow \lim_{n \notin \mathcal{I}_v} \frac{u_n}{v_n} = 0, \text{ et } \exists N \in \mathbb{N} \mid \mathcal{I}_v \cap [N, +\infty[\subset \mathcal{I}_u]]$$

- Problèmes
- 2. Exemples
-
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 5.3. Suites dominées

Soient (u_n) et (v_n) deux suites numériques. Alors

$$u_n = o(v_n) \Longleftrightarrow \lim_{n \notin \mathcal{I}_v} \frac{u_n}{v_n} = 0, \text{ et } \exists \; N \in \mathbb{N} \; | \; \mathcal{Z}_v \cap [N, +\infty[\subset \mathcal{I}_u$$

Démonstration

- ⇒ Comparaison (asymptotique) entre les suites
 - Problèmes
- 2. Exemples
- Limitee
- . Analyse
- 5.1. Hiérarchie de suites
- .2. Suites équivalentes
- 5.3. Suites dominées

Proposition - Négligeabilité avec la limite

Soient (u_n) et (v_n) deux suites numériques. Alors

$$u_n = o(v_n) \Longleftrightarrow \lim_{n \notin \mathcal{I}_v} \frac{u_n}{v_n} = 0, \text{ et } \exists N \in \mathbb{N} \mid \mathcal{Z}_v \cap [N, +\infty[\subset \mathcal{Z}_u]]$$

Démonstration

On a un critère (savoir-faire) assez simple lorsque (v_n) est non nulle à partir d'un certain rang.

Savoir-faire. $u_n = o(v_n)$ avec la notation des limites

Si v_n est non nulle à partir d'un certain rang, alors on utilise l'une des deux implications suivantes :

$$u_n = o(v_n) \Longleftrightarrow \left(\frac{u_n}{v_n}\right) \longrightarrow 0$$

- Problèmes
- 2. Exemples
- Analyse
- 5.1. Hiérarchie de suites
- i.2. Suites équivalentes
- 5.3. Suites dominées

Problèmes

2. Exemples

. Analyse

5.1. Hiérarchie de suites

2. Suitae ánuivalantes

2. Suites équivalentes

Proposition - Relation d'ordre strict

o() ou \ll est une relation d'ordre strict sur l'ensemble des suites non (totalement) nulles à partir d'un certain rang : elle est transitive et antiréflexive (pour tout x, on n'a jamais $x \mathcal{R} x$).

- Problèmes
- 2. Exemples
- Analyse
- 5.1. Hiérarchie de suites
- . I. I lietarchie de suites
- 5.2. Suites équivalentes
- 3. Suites dominées

Proposition - Relation d'ordre strict

o() ou \ll est une relation d'ordre strict sur l'ensemble des suites non (totalement) nulles à partir d'un certain rang : elle est transitive et antiréflexive (pour tout x, on n'a jamais $x \mathcal{R} x$).

Démonstration

- 5.1. Hiérarchie de suites

Proposition - Relation d'ordre strict

o() ou \ll est une relation d'ordre strict sur l'ensemble des suites non (totalement) nulles à partir d'un certain rang : elle est transitive et antiréflexive (pour tout x, on n'a jamais $x\Re x$).

Démonstration **Remarque** Notations

Problèmes

2. Exemples

Analyse

symptotique

5.1. Hiérarchie de suites

5.2. Suites équivalentes

5.3. Suites domin

4 D > 4 A > 4 B > 4 B > B 9 Q A

Il s'agit simplement d'écrire avec la nouvelle notation des résultats déjà connus sur les fonctions de référence.

 $((\ln n)\beta) \ll (n^{\alpha}), (n^{p}) \ll (n^{q}), (n^{\alpha}) \ll (\alpha^{n}), (\alpha^{n}) \ll (n!)$

Proposition - Croissance comparée

Pour
$$\alpha > 0$$
, $\beta > 0$, $0 , $\alpha > 1$, on a$

$$u = 0, p > 0, 0 1, on u$$

- 1. Problèmes
- 2. Exemples fondamentaux
- 3. Suites extraites
- 4. Limite d'une suite réelle
- 5. Analyse asymptotique
 - 5.1. Hiérarchie de suites
 - 5.2. Suites équivalentes
 - 5.3. Suites dominées

- Problèmes
- 2. Exemples
- . Extraction
- . Limites
- . Analyse
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 3. Suites dominées

On cherche à définir ce que pourrait être deux suites égales à l'infini.

- ⇒ Comparaison (asymptotique) entre les suites
 - Problèmes
 - 2. Exemples
- . Limites
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
 - . Suites dominées

Définition - Suites équivalentes

Soient (u_n) et (v_n) deux suites numériques (réelles ou complexes).

On dit que (u_n) est équivalente à (v_n) si $u_n - v_n = o(v_n)$

On note alors $(u_n) \sim (v_n)$ (lu u_n est équivalente à v_n).

- Problèmes
- 2. Exemples
- Analyse
- symptotique
- o. i. mierarchie de suites
- 5.2. Suites équivalentes
- 3. Suites dominées

On cherche à définir ce que pourrait être deux suites égales à l'infini.

Définition - Suites équivalentes

Soient (u_n) et (v_n) deux suites numériques (réelles ou complexes).

On dit que (u_n) est équivalente à (v_n) si $u_n - v_n = o(v_n)$ On note alors $(u_n) \sim (v_n)$ (lu u_n est équivalente à v_n).

Proposition - Equivalence avec la limite

Soient (u_n) et (v_n) deux suites numériques. Alors

$$(u_n) \sim (v_n) \iff \lim_{n \notin \mathcal{I}_v} \frac{u_n}{v_n} = 1, \text{ et } \exists N \in \mathbb{N} \mid \mathcal{I}_v \cap [N, +\infty[\subset \mathcal{I}_u]]$$

- Problèmes
- z. Exemples
- . Analyse
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 3. Suites dominées

On cherche à définir ce que pourrait être deux suites égales à l'infini.

Définition - Suites équivalentes

Soient (u_n) et (v_n) deux suites numériques (réelles ou complexes).

On dit que (u_n) est équivalente à (v_n) si $u_n - v_n = o(v_n)$ On note alors $(u_n) \sim (v_n)$ (lu u_n est équivalente à v_n).

Proposition - Equivalence avec la limite

Soient (u_n) et (v_n) deux suites numériques. Alors

$$(u_n) \sim (v_n) \iff \lim_{n \notin \mathcal{I}_v} \frac{u_n}{v_n} = 1, \text{ et } \exists N \in \mathbb{N} \mid \mathcal{I}_v \cap [N, +\infty[\subset \mathcal{I}_u]]$$

Démonstration

- Problèmes
- 2. Exemples
- Analyse
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- ... Conco equivalentes
- 5.3. Suites dominées

Proposition - Comparaison à une constante

Soit (u_n) une suite numérique.

$$\forall \ \lambda \in \mathbb{K}^* \ (\text{non nul}!), \ u_n \sim \lambda \ \text{ssi} \ (u_n) \rightarrow \lambda$$

- Problèmes
- 2. Exemples
- 5. Analyse
- Hiérarchie de suites
- 5.2. Suites équivalentes
- 3. Suites dominées

Proposition - Comparaison à une constante

Soit (u_n) une suite numérique.

$$\forall \ \lambda \in \mathbb{K}^* \ (\text{non nul}!), \ u_n \sim \lambda \ \text{ssi} \ (u_n) \rightarrow \lambda$$

Démonstration

- Problèmes
- 2. Exemples
- . Analyse
- .1. Hiérarchie de suite
- 5.2. Suites équivalentes
- 3. Suites dominées

Si v_n est constante (différente de 0) et donc jamais nulle

Proposition - Comparaison à une constante

Soit (u_n) une suite numérique.

$$\forall \lambda \in \mathbb{K}^* \text{ (non nul !)}, u_n \sim \lambda \text{ ssi } (u_n) \rightarrow \lambda$$

Démonstration

On a un critère (savoir-faire) assez simple lorsque (v_n) est non nulle à partir d'un certain rang.

Savoir-faire. $(u_n) \sim (v_n)$ avec la notation des limites

Si v_n est non nulle à partir d'un certain rang, alors on utilise l'une des deux implications suivantes :

$$(u_n) \sim (v_n) \Longleftrightarrow \left(\frac{u_n}{v_n}\right) \longmapsto 1$$

- Problèmes
- 2. Exemples
- . Analyse
- 5. I. Merarchie de suites
- 5.2. Suites équivalentes
- .3. Suites dominées

Proposition - Relation d'équivalence

 \sim est une relation d'équivalence sur l'ensemble des suites numériques.

- Problèmes
- Exemples
- 8. Extractio
- Limites
- 5. Analyse asymptotique
 - Hiérarchie de suites
- 5.2. Suites équivalentes
 - Suites dominées

Proposition - Relation d'équivalence

 \sim est une relation d'équivalence sur l'ensemble des suites numériques.

Démonstration

- Problèmes
- Exemples
- . Extraotio
- Limites
- 5. Analyse asymptotique
 - Hiérarchie de suites
- 5.2. Suites équivalentes
 - I. Suites dominées

Problèmes

2. Exemples

Analyse

asymptotique

5.2. Suites équivalentes

Suites équivalentes

3. Suites dominées

Proposition - Relation d'équivalence

 \sim est une relation d'équivalence sur l'ensemble des suites numériques.

Démonstration

Exercice

Refaire la démonstration en exploitant le savoir-faire précédent dans le cas où les suites sont non nulles à partir d'un certain rang.

Suites équivalentes

Analyse Equivalence en action

Leçon 39 - Suites numériques

- Problèmes
- Exemples
- 4. Limites
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
 - 3. Suites dominées

Suites équivalentes

Analyse Equivalence en action

Heuristique. Objectif premier

Dans de nombreuses situations, trouver un équivalent signifie trouver une expression fermée, analytique notée v_n (dépendant de n) et permettant de remplacer (car très proche) u_n et avantageusement (car plus simple à calculer).

Leçon 39 - Suites numériques

- . Problèmes
- 2. Exemple:
-
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
 - 3. Suites dominées

Suites équivalentes

Analyse Equivalence en action

Heuristique. Objectif premier

Dans de nombreuses situations, trouver un équivalent signifie trouver une expression fermée, analytique notée v_n (dépendant de n) et permettant de remplacer (car très proche) u_n et avantageusement (car plus simple à calculer).

Proposition - Equivalences classiques

On a les comparaisons classiques suivantes :

$$n^2=o(n^3)$$
 et plus généralement $n^p=o(n^q)$ pour $0
$$\sum_{k=1}^n \frac{1}{k} \sim \ln n$$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \text{ formule de Stirling}$$$

- 5.2. Suites équivalentes

Heuristique. Objectif premier

Dans de nombreuses situations, trouver un équivalent signifie trouver une expression fermée, analytique notée v_n (dépendant de n) et permettant de remplacer (car très proche) u_n et avantageusement (car plus simple à calculer).

Proposition - Equivalences classiques

On a les comparaisons classiques suivantes :

$$n^2 = o(n^3)$$
 et plus généralement $n^p = o(n^q)$ pour $0
$$\sum_{k=1}^n \frac{1}{k} \sim \ln n$$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \text{ formule de Stirling}$$$

⇒ Comparaison (asymptotique) entre les suites

- Problèmes
- z. Exemples
- 4. Limiton
- . Analyse
- i.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 2 Suitos domináns

Démonstration

Exercice

 $\ln(n!) = \sum_{k=1}^n \ln(k)$. Nous allons essayer de trouver un équivalent de série, pour avoir des idées pour trouver un équivalent de n!.

1.

- 1.1 Montrer que $1 \le \sum_{k=1}^n \ln(k) n \ln n n \le n \ln(1 + \frac{1}{n}) + \ln(n+1)$
- 1.2 En déduire $\ln(n!) \sim n \ln n n$.

On peut supposer que $n! = K_n \times n^n \times e^{-n}$, avec $\ln(K_n) = o(n \ln n)$.

- 1.3 Montrer que la fonction logarithme est concave. Calculer l'équation de la tangente à $y = \ln(x)$ en x = k.
- 1.4 En déduire que pour tout $x \in [k-\frac{1}{2},k+\frac{1}{2}], \ln(x) \le \frac{1}{k}(x-k) + \ln k$ (on pourra faire un dessin).
- 1.5 Montrer alors que $\ln k \le \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \ln t \mathrm{d}t$ (point milieu).

Puis que $\ln(n!) \ge \ln(n^n \sqrt{n}e^{-n} \sqrt{2})$

1.6 On note $u_n = \frac{n!}{n^n e^{-n} \sqrt{n}}$.

Montrer que (u_n) est décroissante, puis convergente, on note K la limite de (u_n) .

1.7 Donner un équivalent de n! exploitant K.

- Problèmes
- .. ⊨xemples
-
- . Analyse symptotique
- Hierarchie de suites
- 5.2. Suites équivalentes
- 5.3. Suites dominées

Exercice

Exercice

 $\ln(n!) = \sum_{k=1}^{n} \ln(k)$. Nous allons essayer de trouver un équivalent de série, pour avoir des idées pour trouver un équivalent de n!.

1.

2. Intégrale de Wallis.

On définie les intégrales de Wallis $W_n=\int_0^{\pi/2}\cos^n(t)dt$ pour compléter le résultat précédent (i.e. trouver la valeur de la constante).

- 2.1 Calculer W_0 et W_1 .
- 2.2 Donner relation de récurrence entre W_{n+2} et W_n .
- 2.3 En déduire une expression de W_{2n} et de W_{2n+1} en utilisant les factorielles.
- 2.4 Par ailleurs, montrer que W_n et W_{n+1} sont équivalentes.
- 2.5 En déduire la formule de Stirling (i.e. la valeur de K), en supposant que $n! \sim K n^n e^{-n} \sqrt{n}$

- Problèmes
- 2. Exemples
- 5. Analyse
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 5.3. Suites dominées

Si la suite (u_n) est équivalente à (v_n) , alors à partir d'un certain rang, les deux suites sont de même signe (strict).

Leçon 39 - Suites numériques

⇒ Comparaison (asymptotique) entre les suites

Problèmes

Exemples

. Extraorie

.

symptotique

5.2. Suites équivalentes

3 Suites dominées

Si la suite (u_n) est équivalente à (v_n) , alors à partir d'un certain rang, les deux suites sont de même signe (strict).

Démonstration

Leçon 39 - Suites numériques

- Problemes
- 2. Exemples
-
- Limites
- i. Analyse Isymptotique
- 1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 3. Suites dominées

Théorème - Signe d'une suite

Si la suite (u_n) est équivalente à (v_n) , alors à partir d'un certain rang, les deux suites sont de même signe (strict).

Démonstration

Attention. Evidemment si (u_n) tend vers 0...

 \dots et que le signe de (u_n) n'est jamais stabilisé; on ne peut rien dire

- ⇒ Comparaison (asymptotique) entre les suites
 - Problèmes
- 2. Exemples
- . Limites
- symptotique
- . I. merarchie de suites
- 5.2. Suites équivalentes
- 3. Suites dominées

Si la suite (u_n) est équivalente à (v_n) , alors à partir d'un certain rang, les deux suites sont de même signe (strict).

Démonstration

- Attention. Evidemment si (u_n) tend vers 0...
- ...et que le signe de (u_n) n'est jamais stabilisé; on ne peut rien dire

Théorème - Equivalents et limite

Soient (u_n) et (v_n) deux suites réelles.

- Si $u_n \sim v_n$ et $v_n \underset{n \to +\infty}{\longrightarrow} \ell \in \overline{\mathbb{R}}$ alors $u_n \underset{n \to +\infty}{\longrightarrow} \ell$;
- Si $u_n \xrightarrow[n \to +\infty]{} \ell$, $\ell \in \mathbb{R}$, $\ell \neq 0$, alors $u_n \sim \ell$.

- 5.2. Suites équivalentes

Démonstration

- Attention. Evidemment si (u_n) tend vers 0...
- \ldots et que le signe de (u_n) n'est jamais stabilisé ; on ne peut rien dire

Théorème - Equivalents et limite

Soient (u_n) et (v_n) deux suites réelles.

- $\blacktriangleright \ \, \text{Si} \,\, u_n \sim v_n \,\, \text{et} \,\, v_n \underset{n \to +\infty}{\longrightarrow} \ell \in \overline{\mathbb{R}} \,\, \text{alors} \,\, u_n \underset{n \to +\infty}{\longrightarrow} \ell \,\, ;$
- Si $u_n \xrightarrow[n \to +\infty]{} \ell$, $\ell \in \mathbb{R}$, $\ell \neq 0$, alors $u_n \sim \ell$.

- Problèmes
- . Exemples
- Limites
- Analyse symptotique
- 1. Hiérarchie de suites
- 5.2. Suites équivalentes
- .3. Suites dominées

Démonstration

Ne pas écrire $u_n \sim 0$, cela n'a pas de sens avec la première définition et avec celle qui suit cela signifie que (u_n) est nulle à partir d'un certain rang (ce qui est bien rare...), usuellement ce genre d'écriture provient d'une somme (ou d'une soustraction) d'équivalents, ce qui n'est pas autorisé. Ne pas confondre $u_n \sim v_n$ et $u_n - v_n \xrightarrow[n \to +\infty]{} 0$.

(asymptotique) entre les suites

. Problèmes

⇒ Comparaison

- ∠. Exemples
- 5. Analyse asymptotique
- i.1. Hiérarchie de suite
- 5.2. Suites équivalentes
 - t. Suites dominées

Attention. Equivalence à 0

Ne pas écrire $u_n \sim 0$, cela n'a pas de sens avec la première définition et avec celle qui suit cela signifie que (u_n) est nulle à partir d'un certain rang (ce qui est bien rare...), usuellement ce genre d'écriture provient d'une somme (ou d'une soustraction) d'équivalents, ce qui n'est pas autorisé.

Ne pas confondre $u_n \sim v_n$ et $u_n - v_n \xrightarrow[n \to +\infty]{} 0$.

Théorème - Opérations sur les équivalents

Soient $(u_n),(v_n),(x_n),(y_n)$ telles que $u_n \sim x_n$ et $v_n \sim y_n$. Alors

- $\vdash u_n v_n \sim x_n y_n$;
- si (v_n) est non nulle à partir d'un certain rang, $\frac{u_n}{v_n} \sim \frac{x_n}{y_n}$;
- si les suites sont à valeurs strictement positives et $\alpha \in \mathbb{R}$ alors $u_n^{\alpha} \sim x_n^{\alpha}$.

- Problèmes
- z. Exemples
- . Analyse
- asymptotique 5.1. Hiérarchie de suite
- 5.2. Suites équivalentes
- 3 Suites dominées

Ne pas écrire $u_n \sim 0$, cela n'a pas de sens avec la première définition et avec celle qui suit cela signifie que (u_n) est nulle à partir d'un certain rang (ce qui est bien rare...), usuellement ce genre d'écriture provient d'une somme (ou d'une soustraction) d'équivalents, ce qui n'est pas autorisé.

Ne pas confondre $u_n \sim v_n$ et $u_n - v_n \xrightarrow[n \to +\infty]{} 0$.

Théorème - Opérations sur les équivalents

Soient $(u_n),(v_n),(x_n),(y_n)$ telles que $u_n \sim x_n$ et $v_n \sim y_n$. Alors

- $\vdash u_n v_n \sim x_n y_n$;
- si (v_n) est non nulle à partir d'un certain rang, $\frac{u_n}{v_n} \sim \frac{x_n}{y_n}$;
- si les suites sont à valeurs strictement positives et $\alpha \in \mathbb{R}$ alors $u_n^{\alpha} \sim x_n^{\alpha}$.

- Problèmes
- z. Exemples
- 4. Limiton
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- .3. Suites dominées

5.2. Suites équivalentes

Heuristique. Recherche des équivalents

Déterminer un équivalent d'une suite consiste à chercher un équivalent écrit comme produit ou quotient de suites de références (n^{α} , a^{n} , $(\ln(n))^{\beta}$, n!...) a priori sans somme (dans une somme, l'un des termes est négligeable devant l'autre et s'enlève de l'équivalent) en laissant les constantes multiplicatives (si on les supprime, la limite du quotient ne sera plus 1). Par exemple:

$$2(n^3+n) \sim ; \frac{\pi}{2n+1} \sim ; e^{n^3+n+1/n} \sim ; \ln(3n^5+n+2) \sim .$$

les suites

5.2. Suites équivalentes

Heuristique. Recherche des équivalents

Déterminer un équivalent d'une suite consiste à chercher un équivalent écrit comme produit ou quotient de suites de références (n^{α} , a^{n} , $(\ln(n))^{\beta}$, n!...) a priori sans somme (dans une somme, l'un des termes est négligeable devant l'autre et s'enlève de l'équivalent) en laissant les constantes multiplicatives (si on les supprime, la limite du quotient ne sera plus 1). Par exemple:

$$2(n^3+n) \sim ; \frac{\pi}{2n+1} \sim ; e^{n^3+n+1/n} \sim ; \ln(3n^5+n+2) \sim .$$

D'une manière générale, les équivalents ne passent ni aux sommes, ni aux exponentielles, ni aux logarithmes.

- ⇒ Comparaison (asymptotique) entre les suites
 - . Problèmes
- 2. Exemples
- 5. Analyse
- symptotique
- 5.2. Suites équivalentes
 - I. Suites dominées

2. Exemple:

I Limiton

asymptotique

5.1. Hierarchie de suites 5.2. Suites équivalentes

2. Suites equivalentes

Suites dominée

Attention. Ce qui ne marche pas

D'une manière générale, les équivalents ne passent ni aux sommes, ni aux exponentielles, ni aux logarithmes.

Savoir-faire. Comment faire si on veut additionner des équivalents?

Dans ces cas-là, et dans toute opération un peu compliquée, on remplace $u_n \sim v_n$ par $u_n = v_n + o(v_n) = v_n(1+\epsilon_n)$ avec $\epsilon_n \to 0$,

comme il s'agit d'égalités (LA VRAIE!), on peut alors faire des opérations.

L'enjeu : que les parties principales de disparaissent pas comparativement à la suite de domination.

- ⇒ Comparaison (asymptotique) entre les suites

- 5.3 Suites dominées

5. Analyse asymptotique

Suites extraites

1. Problèmes

- 5.3. Suites dominées

2. Exemples fondamentaux

4. Limite d'une suite réelle

Mais pour le calcul asymptotique, le notation vraiment pratique

est la suivante. C'est avec elle que l'on fera les calculs.

- Problèmes
- 2. Exemples
- . Limites
- asymptotique
- 5.1. Hiérarchie de suites
- 2. Suites équivalentes
- 5.3. Suites dominées

Mais pour le calcul asymptotique, le notation vraiment pratique est la suivante. C'est avec elle que l'on fera les calculs.

Définition - Suite dominée

Soient (u_n) et (v_n) deux suites numériques (réelles ou complexes).

On dit que (u_n) est dominée par (v_n) si

 $\exists \; C>0, \exists \; N \in \mathbb{N} \; \text{tel que} \; \forall \; n \geqslant N, \, |u_n| \leqslant C|v_n|.$

On note $(u_n) = O((v_n))$ qui se lit « u_n est un grand O de v_n ». On dit aussi parfois que (v_n) est prépondérante à (ou domine) (u_n) .

les suites

5.1. Hiérarchie de suites

2. Suites équivalentes

↓□▶ √□▶ √□▶ √□▶ □ りへ

Mais pour le calcul asymptotique, le notation vraiment pratique est la suivante. C'est avec elle que l'on fera les calculs.

Définition - Suite dominée

Soient (u_n) et (v_n) deux suites numériques (réelles ou complexes).

On dit que (u_n) est dominée par (v_n) si

 $\exists \ C > 0, \exists \ N \in \mathbb{N} \ \text{tel que} \ \forall \ n \geqslant N, \ |u_n| \leqslant C|v_n|.$

On note $(u_n) = O((v_n))$ qui se lit « u_n est un grand O de v_n ». On dit aussi parfois que (v_n) est prépondérante à (ou domine) (u_n) .

Exemple Relations avec les notations précédentes

Soient (u_n) et (v_n) deux suites numériques. Alors

$$(u_n) = O(v_n) \Longleftrightarrow \left(\frac{u_n}{v_n}\right)_{n \in \mathcal{I}}$$
 bornée, et $\exists N \in \mathbb{N} \mid \mathcal{Z}_v \cap [N, +\infty[\subset \mathcal{Z}_u^{1, \text{Problèmes}}]$

⇒ Comparaison (asymptotique) entre les suites

5.3. Suites dominées

Soient (u_n) et (v_n) deux suites numériques. Alors

$$(u_n) = O(v_n) \Longleftrightarrow \left(\frac{u_n}{v_n}\right)_{n \in \mathcal{I}}$$
 bornée, et $\exists N \in \mathbb{N} \mid \mathcal{Z}_v \cap [N, +\infty[\subset \mathcal{Z}_u^{1, \text{Problèmes}}]$

Exercice

Faire la démonstration

⇒ Comparaison (asymptotique) entre les suites

5.3. Suites dominées

Proposition - Domination avec la limite

Soient (u_n) et (v_n) deux suites numériques. Alors

$$(u_n) = O(v_n) \Longleftrightarrow \left(\frac{u_n}{v_n}\right)_{n \in \mathcal{I}}$$
 bornée, et $\exists N \in \mathbb{N} \mid \mathcal{Z}_v \cap [N, +\infty[\subset \mathcal{Z}_u^1]]$ Problèmes

Exercice

Faire la démonstration

Savoir-faire. $u_n = O(v_n)$ avec la notation des limites

Si v_n est non nulle à partir d'un certain rang, alors on utilise l'une des deux implications suivantes (\Rightarrow ou \Leftarrow):

$$(u_n) = O(v_n) \Longleftrightarrow \left(\frac{u_n}{v_n}\right)$$
 est bornée

⇒ Comparaison (asymptotique) entre les suites

5.3 Suites dominées

⇒ Comparaison

Proposition - Domination avec la limite

Soient (u_n) et (v_n) deux suites numériques. Alors

$$(u_n) = O(v_n) \Longleftrightarrow \left(\frac{u_n}{v_n}\right)_{n \in \mathcal{I}}$$
 bornée, et $\exists N \in \mathbb{N} \mid \mathcal{Z}_v \cap [N, +\infty[\subset \mathcal{Z}_u^{1, \text{Problèmes}}]$

Exercice

Faire la démonstration

Savoir-faire. $u_n = O(v_n)$ avec la notation des limites

Si v_n est non nulle à partir d'un certain rang, alors on utilise l'une des deux implications suivantes (\Rightarrow ou \Leftarrow):

$$(u_n) = O(v_n) \Longleftrightarrow \left(\frac{u_n}{v_n}\right)$$
 est bornée

Propotion Implication sur les limites

(asymptotique) entre les suites

5.3 Suites dominées

- Problèmes
- z. Exemples
- Lillings
- asymptotique
- Hierarchie de suites
- 2. Suites équivalentes
- 5.3. Suites dominées

Proposition - Relation de préordre

O est une relation de préordre (réflexive et transitive) sur l'ensemble des suites numériques.

- Problèmes
- 2. Exemples
- LIIIIII
- asymptotique
 - Hierarchie de suites
 - 2. Suites équivalentes
- 5.3. Suites dominées

Proposition - Relation de préordre

O est une relation de préordre (réflexive et transitive) sur l'ensemble des suites numériques.

Exercice

Faire la démonstration

⇒ Comparaison (asymptotique) entre les suites

- 5.3 Suites dominées

Proposition - Relation de préordre

O est une relation de préordre (réflexive et transitive) sur l'ensemble des suites numériques.

Exercice

Faire la démonstration

Remarque La relation d'équivalence naturelle à associer à $O(\cdot)$

Heuristique. Une première formule commentée

On note pour tout $n \in \mathbb{N}$, $H_n = \sum_{k=1}^n \frac{1}{k}$.

On a alors $H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$.

Cela signifie que le n-ieme nombre harmonique est égal à $\ln n$ additionné de la constante $\gamma \approx 0,577\,215\,664\,9$ d'Euler et d'un terme d'une autre suite, inconnue, mais dont on sait que divisé par $\frac{1}{n}$ (c'est-à-dire multiplié par n) elle reste bornée ou encore une suite que ne dépasse pas un nombre constant de fois $\frac{1}{n}$.

- Problèmes
- 2. Exemples
 - Limitoe
- . Analyse symptotique
- 5.1. Hierarchie de suites
- 5.2. Suites équivalentes
- 5.3. Suites dominées

Heuristique. Une première formule commentée

On note pour tout $n \in \mathbb{N}$, $H_n = \sum_{k=1}^n \frac{1}{k}$.

On a alors $H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$.

Cela signifie que le n-ieme nombre harmonique est égal à $\ln n$ additionné de la constante $\gamma \approx 0,577\,215\,664\,9$ d'Euler et d'un terme d'une autre suite, inconnue, mais dont on sait que divisé par $\frac{1}{n}$ (c'est-à-dire multiplié par n) elle reste bornée ou encore une suite que ne dépasse pas un nombre constant de fois $\frac{1}{n}$.

Remarque Addition, multiplication

- Problèmes
- 2. Exemples
- . Analyse
- Symptotique
- 5.2. Suites équivalentes
- 5.3. Suites dominées

Heuristique. Une première formule commentée

On note pour tout $n \in \mathbb{N}$, $H_n = \sum_{k=1}^n \frac{1}{k}$.

On a alors $H_n = \ln n + \gamma + O\left(\frac{1}{n}\right)$.

Cela signifie que le n-ieme nombre harmonique est égal à $\ln n$ additionné de la constante $\gamma \approx 0,577\,215\,664\,9$ d'Euler et d'un terme d'une autre suite, inconnue, mais dont on sait que divisé par $\frac{1}{n}$ (c'est-à-dire multiplié par n) elle reste bornée ou encore une suite que ne dépasse pas un nombre constant de fois $\frac{1}{n}$.

Remarque Addition, multiplication **Analyse** Que signifie $O(\frac{1}{n}) + O(\frac{1}{n^2})$?

- Problèmes
- 2. Exemples
- Analyse
- E 1 Hiérambie de cuitos
- 5.2. Suites équivalentes
- 5.3. Suites dominées

Deux petites remarques au passage

Avant de passer aux théorèmes et démonstrations, deux petites remarques complémentaires :

Leçon 39 - Suites numériques

- Problèmes
- 2. Exemples
- Analyse
- 5.1 Hiérarchie de suite
- 5.2 Suites équivalentes
- 5.3. Suites dominées

Truc & Astuce pour le calcul - Pour manipuler une opération avec $O(a_n)$

Lorsque vous rencontrer $O(a_n)$ (avec (a_n) non nulle à partir d'un certain rang), vous pouvez le remplacer par $(u_n) = (a_n \times \epsilon_n)$ avec ϵ_n bornée.

Leçon 39 - Suites numériques

- Problèmes
- 2. Exemples
- Limites
- symptotique
 - . Hiérarchie de suites
 - Suites équivalentes
- 5.3. Suites dominées

Avant de passer aux théorèmes et démonstrations, deux petites remarques complémentaires :

Truc & Astuce pour le calcul - Pour manipuler une opération avec $O(a_n)$

Lorsque vous rencontrer $O(a_n)$ (avec (a_n) non nulle à partir d'un certain rang), vous pouvez le remplacer par $(u_n) = (a_n \times \epsilon_n)$ avec ϵ_n bornée.

Attention. Rappel: il ne s'agit pas d'une relation d'équivalence

Rappelons que même s'il y a une égalité : il n'y a pas de symétrie. On a $O(\frac{1}{n^2}) = O(\frac{1}{n})$, mais on n'a pas $O(\frac{1}{n}) = O(\frac{1}{n^2})$.

Toute suite dominée par $(\frac{1}{n^2})$ est dominée par $\frac{1}{n}$ mais la réciproque est fausse.

Ce symbole = O() est plutôt à voir comme une relation d'ordre, voir une inclusion d'ensemble. L'ensemble des suites dominées par $(\frac{1}{n^2})$ est inclus dans l'ensemble des suites dominées par $(\frac{1}{n})$. (asymptotique) entre

⇒ Comparaison

les suites

5.3. Suites dominées

Opérations

Proposition - Opérations entre les relations

Soient $(u_n), (v_n), (w_n), (x_n)$ quatre suites réelles.

- ightharpoonup Si $u_n = o(v_n)$ alors $u_n = O(v_n)$
- ightharpoonup Si $u_n \sim v_n$ alors $u_n = O(v_n)$ et $v_n = O(u_n)$.
- \triangleright Si $u_n \sim v_n$ alors $w_n = O(u_n) \Leftrightarrow w_n = O(v_n)$.
- Si $u_n = O(w_n)$ et $v_n = O(w_n)$ alors $u_n + v_n = O(w_n)$. Autrement écrit : $O(w_n) + O(w_n) = O(w_n)$
- ightharpoonup Si $u_n = O(v_n)$, $\lambda \in \mathbb{R}$ alors $\lambda u_n = O(v_n)$ Autrement écrit : $\lambda \times O(v_n) = O(v_n)$
- Si u_n et v_n ne s'annulent pas et $u_n = O(v_n)$ alors $\frac{1}{v_n} = O(\frac{1}{v_n})$.
- Si $u_n = O(v_n)$ et alors $u_n \times x_n = O(v_n \times x_n)$.
- ightharpoonup Si $u_n = O(v_n)$ et $w_n = O(x_n)$ alors $u_n \times w_n = O(v_n \times x_n)$.
- Si les termes u_n et v_n sont > 0 avec $u_n = O(v_n)$, alors pour $\alpha > 0$ on a $u_n^{\alpha} = O(v_n^{\alpha})$.

- 5.3. Suites dominées

Opérations

Proposition - Opérations entre les relations

Soient $(u_n), (v_n), (w_n), (x_n)$ quatre suites réelles.

- ightharpoonup Si $u_n = o(v_n)$ alors $u_n = O(v_n)$
- ightharpoonup Si $u_n \sim v_n$ alors $u_n = O(v_n)$ et $v_n = O(u_n)$.
- \triangleright Si $u_n \sim v_n$ alors $w_n = O(u_n) \Leftrightarrow w_n = O(v_n)$.
- Si $u_n = O(w_n)$ et $v_n = O(w_n)$ alors $u_n + v_n = O(w_n)$. Autrement écrit : $O(w_n) + O(w_n) = O(w_n)$
- ightharpoonup Si $u_n = O(v_n)$, $\lambda \in \mathbb{R}$ alors $\lambda u_n = O(v_n)$ Autrement écrit : $\lambda \times O(v_n) = O(v_n)$
- Si u_n et v_n ne s'annulent pas et $u_n = O(v_n)$ alors $\frac{1}{v_n} = O(\frac{1}{v_n})$.
- Si $u_n = O(v_n)$ et alors $u_n \times x_n = O(v_n \times x_n)$.
- ightharpoonup Si $u_n = O(v_n)$ et $w_n = O(x_n)$ alors $u_n \times w_n = O(v_n \times x_n)$.
- Si les termes u_n et v_n sont > 0 avec $u_n = O(v_n)$, alors pour $\alpha > 0$ on a $u_n^{\alpha} = O(v_n^{\alpha})$.

- 5.3. Suites dominées

Soient (u_n) et (v_n) sont deux suites à termes strictement positifs telles qu'à partir d'un certain rang on ait $\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$. Alors $u_n = O(v_n)$.

- Problèmes
- 2. Exemples
- 5. Analyse
- Hiérarchie de suites.
- 2. Suites équivalentes
- 5.3. Suites dominées

Proposition - Comparaison logarithmique

Soient (u_n) et (v_n) sont deux suites à termes strictement positifs telles qu'à partir d'un certain rang on ait $\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$.

Alors $u_n = O(v_n)$.

Corollaire - Demi-critère de D'Alembert

Soit (u_n) est une suite à termes positifs, alors

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} \ell < 1 \Longrightarrow u_n \underset{n \to +\infty}{\longrightarrow} 0$$

$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell > 1 \Longrightarrow u_n \xrightarrow[n \to +\infty]{} +\infty$$

- Problèmes
- 2. Exemples
- 1 Limites
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- Suites équivalentes
- 5.3. Suites dominées

Proposition - Comparaison logarithmique

Soient (u_n) et (v_n) sont deux suites à termes strictement positifs telles qu'à partir d'un certain rang on ait $\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$.

Alors $u_n = O(v_n)$.

Corollaire - Demi-critère de D'Alembert

Soit (u_n) est une suite à termes positifs, alors

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} \ell < 1 \Longrightarrow u_n \underset{n \to +\infty}{\longrightarrow} 0$$

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} \ell > 1 \Longrightarrow u_n \underset{n \to +\infty}{\longrightarrow} +\infty$$

Démonstration

- Problèmes
- 2. Exemples
- . Analyse
- 5.1. Hiérarchie de suites
- 2. Suites équivalentes
- . Suites equivalentes

⇒ Comparaison (asymptotique) entre les suites

Problèmes

- 2. Exemples
- 3. Extractio
- Limites
- asymptotique
- 5.1. Hiérarchie de suites
- .2. Suites équivalentes
- 3. Suites dominées

Conclusion

Objectifs

- ⇒ Comparaison (asymptotique) entre les suites
 - ▶ Définitions : $u_n = o(v_n)$, $u_n \sim v_n$ et $u_n = O(v_n)$.

- ⇒ Comparaison (asymptotique) entre les suites
 - Problèmes
- 2. Exemples
- J. EAUGOU
- Limites
- asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 5.3. Suites dominées

- \Rightarrow Comparaison (asymptotique) entre les suites
 - ▶ Définitions : $u_n = o(v_n)$, $u_n \sim v_n$ et $u_n = O(v_n)$.
 - Critères pratiques lorsque (v_n) (et (u_n)) n'est pas infiniment souvent nulle.

- . Problèmes
- 2. Exemples
- 5. Analyse asymptotique
- 5.1. Hiérarchie de suites
- 5.2. Suites équivalentes
- 3. Suites dominées

- \Rightarrow Comparaison (asymptotique) entre les suites
 - ▶ Définitions : $u_n = o(v_n)$, $u_n \sim v_n$ et $u_n = O(v_n)$.
 - ightharpoonup Critères pratiques lorsque (v_n) (et (u_n)) n'est pas infiniment souvent nulle.
 - Opérations algébriques et relation asymptotique.

- ⇒ Comparaison (asymptotique) entre les suites
 - Problèmes
- z. Exemples
- Analyse
- asymptotique
 - Hierarchie de suites
 - 2. Suites équivalentes
- 3. Suites dominée

- ⇒ Comparaison (asymptotique) entre les suites
 - ▶ Définitions : $u_n = o(v_n)$, $u_n \sim v_n$ et $u_n = O(v_n)$.
 - Critères pratiques lorsque (v_n) (et (u_n)) n'est pas infiniment souvent nulle.
 - Opérations algébriques et relation asymptotique.
 - Des équivalents spectaculaires : série harmonique et formule de Stirling

- Problèmes
- z. Exemples
- i. Analyse
- symptotique
- 2. Suites équivalentes
- 3. Suites dominées

◆□▶◆骨▶◆団▶◆団▶ ■ 釣@@

Objectifs

⇒ Comparaison (asymptotique) entre les suites

Pour la prochaine fois

- Lecture du cours : chapitre 12 Groupes
- Exercices N°376 & 377
- Pour mardi 2 décembre : Activités - Suites classiques