

Leçon 34 - Construction d'ensembles numériques

Leçon 34 -Construction d'ensembles numériques

- \Rightarrow Construction de \mathbb{R}
- \Rightarrow Fonctions classiques associées à $\mathbb R$
- Problème
- . Nombres lgébriques
- 3. Construction de R
- 4 Parties de ℝ et
- 4.1. Bornes supérieure et
- 4.2. Densité de D ou Q dans R

 \Rightarrow Fonctions classiques associées à $\mathbb R$

- 1. Problèmes
- 2. Nombres algébriques
- 3. Construction de ℝ
- 4. Parties de \mathbb{R} et topologie
 - 4.1. Bornes supérieure et inférieure
 - 4.2. Densité de $\mathbb D$ ou $\mathbb Q$ dans $\mathbb R$

⇒ Construction de R

⇒ Fonctions classiques associées à ℝ

- 1. Problème
- 2. Nombres
- 3 Construction do D
- I. Parties de ℝ et
- 4.1. Bornes supérieure et
- inférieure
 - . Densité de D ou Q dans

⇒ Fonctions classiques associées à R

- ⇒ Construction de R
- ⇒ Fonctions classiques associées àℝ

- 4.1. Bornes supérieure et inférioure

- Problèmes
- 2. Nombres algébriques
- Construction de ℝ
- 4. Parties de \mathbb{R} et topologie
 - 4.1. Bornes supérieure et inférieure
 - 4.2. Densité de D ou Q dans R

Définition - Sous-ensemble majoré, minoré, borné

Soit A un sous-ensemble de \mathbb{R} . On dit que :

- A est *majoré* s'il existe un réel M tel que, pour tout x de A, on ait $x \le M$.
 - M est alors un majorant de A.
- A est *minoré* s'il existe un réel m tel que, pour tout x de A, on ait $m \le x$.
 - m est alors un minorant de A.
- ► Si *A* est majoré et minoré, on dit qu'il est <u>borné</u>.

- ⇒ Construction de R
- ⇒ Fonctions classiques associées à ℝ
- Problème
 - . Nombres laébriques
- Construction de ℝ
- 4. Parties de ℝ et copologie
- 4.1. Bornes supérieure et inférieure
- 1.2. Densité de D ou Q dans R

ici au cas réel :

⇒ Fonctions classiques associées àℝ

4.1. Bornes supérieure et

Remarque Ensemble N

Définition - Sous-ensemble majoré, minoré, borné

Soit A un sous-ensemble de \mathbb{R} . On dit que :

ightharpoonup A est *majoré* s'il existe un réel M tel que, pour tout x de A, on ait $x \leq M$.

On commence par quelques rappels de définitions, mais adaptés

M est alors un majorant de A.

ightharpoonup A est *minoré* s'il existe un réel m tel que, pour tout x de A, on ait $m \leq x$.

m est alors un minorant de A.

Si A est majoré et minoré, on dit qu'il est borné.

Définition - Borne inférieure, borne supérieure

Soit $A \subset \mathbb{R}$.

Si l'ensemble des majorants de A est non vide et si il admet un plus petit élément a, alors a est appelé borne supérieure de A, on note $a = \sup A$:

 $\sup A := \min \{ M \in \mathbb{R} \mid \forall \ a \in A, a \leq M \} \text{ (si non vide)}$

Si l'ensemble des minorants de A est non vide et si il admet un plus grand élément b, alors b est appelé borne inférieure de A, on note $b=\inf A$: $\inf A:=\max\{m\in\mathbb{R}\mid\forall\ a\in A,a\geqslant m\}\ (\text{si non vide})$

⇒ Construction de R

⇒ Fonctions classiques associées à ℝ

- 1. Probleme
 - 2. Nombres algébriques
- 3. Construction de ℝ
 - Parties de ℝ et topologie
 - 4.1. Bornes supérieure et inférieure
 - reneure

Soit $A \subset \mathbb{R}$.

Si l'ensemble des majorants de A est non vide et si il admet un plus petit élément a, alors a est appelé borne supérieure de A, on note $a = \sup A$:

 $\sup A := \min \{ M \in \mathbb{R} \mid \forall \ a \in A, a \leq M \} \text{ (si non vide)}$

DESTREE THE THE

Si l'ensemble des minorants de A est non vide et si il admet un plus grand élément b, alors b est appelé borne inférieure de A, on note $b=\inf A$: $\inf A:=\max\{m\in\mathbb{R}\mid\forall\ a\in A,a\geqslant m\}\ (\text{si non vide})$

Attention - Borne supérieure

Comme son nom ne l'indique pas, la borne supérieure est par définition le plus **petit** élément d'un certain ensemble (celui des majorants).

Leçon 34 -Construction d'ensembles numériques

- \Rightarrow Construction de $\mathbb R$
- ⇒ Fonctions classiques associées à ℝ
 - Problème
 - 2. Nombres algébriques
- 3. Construction de ℝ
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans R

- 1. Problèmes
 - lgébriques
- 3. Construction de ℝ
- 4. Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q o

L'exercice suivant donne des exemples à toujours bien garder dans un coin de sa tête...

Exercice

Déterminer, s'ils existent, le plus grand élément, le plus petit élément, la borne supérieure, la borne inférieure (sur $\mathbb R$) des parties suivantes :

$$A = [0, 1], \quad B = [0, 1[, \quad C = \left\{\frac{1}{n} \mid n \in \mathbb{N}^*\right\}]$$

Proposition - Condition d'existence de la borne supérieure

Soit $A \subset \mathbb{R}$ non vide. On suppose que A possède un plus grand élément a (resp. plus petit élément b).

Alors A possède une borne supérieure (resp. inférieure) et $\sup A = a$ (resp $\inf A = b$).

- \Rightarrow Construction de $\mathbb R$
- ⇒ Fonctions classiques associées à ℝ
- 1. Problème
 - Nombres
- 3. Construction de $\mathbb R$
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
 - 2. Densité de D ou O c

Soit $A \subset \mathbb{R}$ non vide. On suppose que A possède un plus grand élément a (resp. plus petit élément b).

Alors A possède une borne supérieure (resp. inférieure) et $\sup A = a$ (resp $\inf A = b$).

Savoir-faire. Etudier une borne supérieure

En règle générale, pour obtenir une égalité sur la borne supérieure, on exploite deux inégalité :

- $ightharpoonup \forall a \in A, a \leq \sup A \text{ (minoration de } \sup A)$
- ▶ $\forall M \in \mathbb{R}$ tel que $\forall a \in A, a \leq M$, alors $M \geqslant \sup A$ (majoration de $\sup A$)

- ⇒ Construction de R
- ⇒ Fonctions classiques associées à ℝ
- Problèmes
 - Nombres gébriques
- 3. Construction de ℝ
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans R

Soit $A \subset \mathbb{R}$ non vide. On suppose que A possède un plus grand élément a (resp. plus petit élément b).

Alors A possède une borne supérieure (resp. inférieure) et $\sup A = a$ (resp $\inf A = b$).

Savoir-faire. Etudier une borne supérieure

En règle générale, pour obtenir une égalité sur la borne supérieure, on exploite deux inégalité :

- $\forall a \in A, a \leq \sup A \text{ (minoration de } \sup A)$
- ▶ $\forall M \in \mathbb{R}$ tel que $\forall a \in A, a \leq M$, alors $M \geqslant \sup A$ (majoration de $\sup A$)

On a évidemment des relations symétriques pour la borne inférieure...

- ⇒ Construction de ℝ
- ⇒ Fonctions classiques associées à ℝ
 - Problèmes
 - Nombres jébriques
- Construction de ℝ
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- 4.2. Densité de D ou Q dans ℝ

- ⇒ Construction de R
- ⇒ Fonctions classiques associées àℝ

- 4.1. Bornes supérieure et

Exercice

Soient A et B deux parties de \mathbb{R} admettant des bornes supérieures. Montrer que

$$A \subset B \Rightarrow \sup A \leq \sup B$$
.

Donner un résultat similaires avec les bornes inférieures.

Les deux propositions suivantes donnent des caractérisations opératoires (avec lesquelles travailler dans les démonstrations) et donc un nouveau savoir-faire.

- ⇒ Construction de R
- ⇒ Fonctions classiques associées à ℝ
- Problème
 - Nombres
- 3. Construction de R
- opologie
- 4.1. Bornes supérieure et inférieure

Les deux propositions suivantes donnent des caractérisations opératoires (avec lesquelles travailler dans les démonstrations) et donc un nouveau savoir-faire.

Proposition - Caractérisation de la borne sup.

$$\begin{split} & \text{Soit } A \subset \mathbb{R} \text{ et } a \in \mathbb{R}. \text{ Alors} \\ & a = \sup A \text{ si et seulement si } \left\{ \begin{array}{l} \forall \ x \in A, x \leqslant a \\ \forall \ \varepsilon > 0, \exists \ x_{\epsilon} \in A \ | \ , a - \epsilon < x_{\epsilon} \end{array} \right. \end{split}$$

⇒ Construction de R

⇒ Fonctions classiques associées à ℝ

- Problème
- 2. Nombres algébriques
- 3. Construction de ℝ
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- nférieure

Proposition - Caractérisation de la borne sup.

$$\begin{split} & \text{Soit } A \subset \mathbb{R} \text{ et } \alpha \in \mathbb{R}. \text{ Alors} \\ & a = \sup A \text{ si et seulement si } \left\{ \begin{array}{l} \forall \ x \in A, x \leqslant \alpha \\ \forall \ \varepsilon > 0, \exists \ x_{\epsilon} \in A \ | \ , a - \epsilon < x_{\epsilon} \end{array} \right. \end{split}$$

Proposition - Caractérisation de la borne inf.

$$\begin{array}{l} \text{Soit } A \subset \mathbb{R} \text{ et } b \in \mathbb{R}. \text{ Alors} \\ b = \inf A \text{ si et seulement si } \left\{ \begin{array}{l} \forall x \in A, \, b \leqslant x \\ \forall \epsilon > 0, \, \exists x_\epsilon \in A \, | \, x_\epsilon < b + \epsilon \end{array} \right. \end{array}$$

⇒ Construction de R

⇒ Fonctions classiques associées à ℝ

- Problème
- 2. Nombres algébriques
- 3. Construction de ℝ
- 4. Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans R

Proposition - Caractérisation de la borne sup.

$$\begin{split} & \text{Soit } A \subset \mathbb{R} \text{ et } \alpha \in \mathbb{R}. \text{ Alors} \\ & a = \sup A \text{ si et seulement si } \left\{ \begin{array}{l} \forall \ x \in A, x \leqslant \alpha \\ \forall \ \varepsilon > 0, \exists \ x_{\epsilon} \in A \ | \ , a - \epsilon < x_{\epsilon} \end{array} \right. \end{split}$$

Proposition - Caractérisation de la borne inf.

$$\begin{array}{l} \text{Soit } A \subset \mathbb{R} \text{ et } b \in \mathbb{R}. \text{ Alors} \\ b = \inf A \text{ si et seulement si } \left\{ \begin{array}{l} \forall x \in A, \, b \leqslant x \\ \forall \epsilon > 0, \, \exists x_\epsilon \in A \, | \, x_\epsilon < b + \epsilon \end{array} \right. \end{array}$$

Démonstration

⇒ Construction de R

 \Rightarrow Fonctions classiques associées à $\mathbb R$

- Problème
- algébriques
- 3. Construction de $\mathbb R$
- topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q dans R

Conditition d'existence dans ℝ

Le théorème suivant est parfois pris comme caractérisation de \mathbb{R} .

Leçon 34 -Construction d'ensembles numériques

 \Rightarrow Construction de $\mathbb R$

 \Rightarrow Fonctions classiques associées à $\mathbb R$

- Problèmes
 - lgébriques
- 3. Construction de R
- opologie
- 4.1. Bornes supérieure et inférieure
- I.2. Densité de D ou Q dan

Conditition d'existence dans R

Le théorème suivant est parfois pris comme caractérisation de R.

Théorème - Existence de la borne supérieure

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure. Toute partie non vide minorée de $\mathbb R$ admet une borne inférieure.

Leçon 34 -Construction d'ensembles numériques

⇒ Construction de R

⇒ Fonctions classiques associées à ℝ

- 1. Problèmes
 - Nombres ébriques
- 3. Construction de $\mathbb R$
- 4. Parties de R et
- 4.1. Bornes supérieure et inférieure
- 2 Daneitá de Diou O dane P

Théorème - Existence de la borne supérieure

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure. Toute partie non vide minorée de $\mathbb R$ admet une borne inférieure.

Attention - Propriété non vérifiée par Q

Cette propriété différencie $\mathbb R$ et $\mathbb Q$:

des majorants rationnels).

- ▶ $\{x \in \mathbb{R} \mid x^2 < 2\}$ admet une borne supérieure (dans \mathbb{R}), que l'on notera : $\sqrt{2}$
- mais $\{x \in \mathbb{Q} \mid x^2 < 2\}$ n'admet pas de borne supérieure dans \mathbb{Q} (non existence d'un plus petit élément dans \mathbb{Q} de l'ensemble

⇒ Construction de R

 \Rightarrow Fonctions classiques associées à $\mathbb R$

- 1. Problèmes
 - Nombres
- 3. Construction de R
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- I.2. Densité de D ou Q dans R

Le théorème suivant est parfois pris comme caractérisation de \mathbb{R} .

Théorème - Existence de la borne supérieure

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure. Toute partie non vide minorée de $\mathbb R$ admet une borne inférieure.

- ⇒ Construction de ℝ
- ⇒ Fonctions classiques associées à ℝ
- 1. Problème:
 - Nombres
- 3. Construction de R
 - I. Parties de ℝ et
- 4.1. Bornes supérieure et inférieure
- .2. Densité de D ou O dan

Parties de ℝ et opologie

4.1. Bornes supérieure et

4.2. Densité de D ou Q dans F

Le théorème suivant est parfois pris comme caractérisation de \mathbb{R} .

Théorème - Existence de la borne supérieure

Toute partie non vide majorée de $\mathbb R$ admet une borne supérieure. Toute partie non vide minorée de $\mathbb R$ admet une borne inférieure.

Heuristique - Manipuler l'ensemble des majorants et non l'ensemble E lui-même

L'ensemble E peut être très compliqué, un ensemble à trous par exemple : $\bigcup_{n\in\mathbb{N}}\left[(1+\frac{1}{n})^n-\frac{1}{n^2};(1+\frac{1}{n})^n+\frac{1}{n^2}\right]$.

Il vaut mieux raisonner sur l'ensemble des majorants $\mathcal M$: celui-ci est nécessairement un intervalle. Mieux (mais on ne le sait pas encore), il s'agit de l'intervalle fermé $[\sup E, +\infty[$

- $\Rightarrow \text{Construction de } \mathbb{R}$
- ⇒ Fonctions classiques associées à ℝ
- Problème
 - lgébriques
 - 3. Construction de R
 - a. Parties de ℝ et opologie
 - 4.1. Bornes supérieure et inférieure
 - 2. Densité de D ou Q dans R

- Exercice
- Soit A une partie de \mathbb{R} . On note $\mathscr{M}(A)$ l'ensemble des majorants de A .
- A quoi ressemble $\mathcal{M}(A)$?

4.1. Bornes supérieure et inférieure

Exercice

Soit A une partie de \mathbb{R} . On note $\mathcal{M}(A)$ l'ensemble des majorants de A.

A quoi ressemble $\mathcal{M}(A)$?

Corollaire - Critère de nullité d'un nombre

Un réel α vérifiant $\forall \epsilon > 0$, $|\alpha| \le \epsilon$ est nul.

- ⇒ Construction de R
- ⇒ Fonctions classiques associées àℝ

- 4.1. Bornes supérieure et inférioure

Exercice

Soit A une partie de \mathbb{R} . On note $\mathcal{M}(A)$ l'ensemble des majorants de A.

A quoi ressemble $\mathcal{M}(A)$?

Corollaire - Critère de nullité d'un nombre

Un réel α vérifiant $\forall \epsilon > 0$, $|\alpha| \le \epsilon$ est nul.

Démonstration

- ⇒ Construction de ℝ
- ⇒ Fonctions classiques associées àℝ
- - 4.1. Bornes supérieure et inférioure

Exercice

Soit A une partie de \mathbb{R} . On note $\mathcal{M}(A)$ l'ensemble des majorants de A.

A quoi ressemble $\mathcal{M}(A)$?

Corollaire - Critère de nullité d'un nombre

Un réel α vérifiant $\forall \epsilon > 0$, $|\alpha| \le \epsilon$ est nul.

Démonstration

On avait déjà fait une démonstration ici par contraposée.

⇒ Fonctions classiques associées à R

- ⇒ Construction de R
- ⇒ Fonctions classiques associées àℝ

- 4.2. Densité de D ou O dans R

- Problèmes
- 2. Nombres algébriques
- 3. Construction de ℝ
- 4. Parties de \mathbb{R} et topologie
 - 4.1. Bornes supérieure et inférieure
 - 4.2. Densité de D ou Q dans R

- \Rightarrow Construction de $\mathbb R$
- \Rightarrow Fonctions classiques associées à $\mathbb R$
- Problèmes
 - lgébriques
- 3. Construction de R
 - a. Parties de ℝ et opologie
 - 4.1. Bornes supérieure et inférieure
 - 4.2. Densité de D ou Q dans ℝ

Définition - Ensemble des décimaux

Soit $x \in \mathbb{R}$.

On dit que x est un nombre décimal s'il existe $p \in \mathbb{Z}, n \in \mathbb{N}$ tels gue x = p

que $x = \frac{1}{10^n}$

On note \mathbb{D} l'ensemble des nombres décimaux. On a $\mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$.

- ⇒ Construction de R
- ⇒ Fonctions classiques associées àℝ

- - 4.2. Densité de D ou O dans R

Définition - Ensemble des décimaux

Soit $x \in \mathbb{R}$.

On dit que x est un nombre décimal s'il existe $p \in \mathbb{Z}, n \in \mathbb{N}$ tels que $x = \frac{p}{10^n}$.

On note \mathbb{D} l'ensemble des nombres décimaux. On a $\mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$.

Remarque Un nombre décimal...

Définition - Valeur décimale approchée

Si
$$p \in \mathbb{Z}$$
 est tel que $\frac{p}{10^n} \le x \le \frac{p+1}{10^n}$, on dit que $\frac{p}{10^n}$ (resp. $\frac{p+1}{10^n}$) est une valeur décimale approchée par défaut (resp. par excès) de x à la précision 10^{-n} .

⇒ Construction de R

⇒ Fonctions classiques associées à ℝ

- Problèmes
 - 2. Nombres alaébriques
- Construction de ℝ
 - 4. Parties de ℝ et copologie
 - 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou O dans ℝ

\Rightarrow Construction de \mathbb{R}

 \Rightarrow Fonctions classiques associées à $\mathbb R$

Problémes

aigebriques

3. Construction de R

4. Parties de ℝ et topologie

4.1. Bornes supérieure e

4.2. Densité de D ou O dans R

4 D > 4 A > 4 B > 4 B > 9 Q P

Définition - Valeur décimale approchée

Si $p \in \mathbb{Z}$ est tel que $\frac{p}{10^n} \le x \le \frac{p+1}{10^n}$, on dit que $\frac{p}{10^n}$ (resp. $\frac{p+1}{10^n}$) est une valeur décimale approchée par défaut (resp. par excès) de x à la précision 10^{-n} .

Proposition - Obtenir la valeur décimale approchée

Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, $\frac{\lfloor 10^n x \rfloor}{10^n}$ (resp. $\frac{\lfloor 10^n x \rfloor + 1}{10^n}$) est une valeur approchée de x par défaut (resp. par excès) à la précision 10^{-n} .

Définition - Valeur décimale approchée

\Rightarrow Construction de $\mathbb R$

 \Rightarrow Fonctions classiques associées à $\mathbb R$

Problèmes

algébriques

Construction de ℝ

4. Parties de ℝ et

4.1. Bornes supérieure e

4.2. Densité de D ou Q dans ℝ

Démonstration

Si $p \in \mathbb{Z}$ est tel que $\frac{p}{10^n} \le x \le \frac{p+1}{10^n}$, on dit que $\frac{p}{10^n}$ (resp. $\frac{p+1}{10^n}$) est une valeur décimale approchée par défaut (resp. par excès) de x à la précision 10^{-n} .

Proposition - Obtenir la valeur décimale approchée

Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, $\frac{\lfloor 10^n x \rfloor}{10^n}$ (resp. $\frac{\lfloor 10^n x \rfloor + 1}{10^n}$) est une valeur approchée de x par défaut (resp. par excès) à la précision 10^{-n} .

Une partie X est dense dans $\mathbb R$ si elle peut toucher (à $\epsilon>0$ près choisi par avance, aussi petit qu'on veut) tous les éléments de $\mathbb R$ avec ses propres éléments.

$$\forall x \in \mathbb{R}, \quad \forall \epsilon > 0, \exists r \in X, |x - r| < \epsilon$$

- \Rightarrow Construction de \mathbb{R}
- ⇒ Fonctions classiques associées à ℝ
- Problème
 - . Nombres
- 3. Construction de ℝ
 - opologie
 - 4.1. Bornes supérieure et inférieure
 - 4.2. Densité de D ou Q dans ℝ

Une partie X est dense dans $\mathbb R$ si elle peut toucher (à $\epsilon>0$ près choisi par avance, aussi petit qu'on veut) tous les éléments de $\mathbb R$ avec ses propres éléments.

$$\forall x \in \mathbb{R}, \quad \forall \epsilon > 0, \exists r \in X, |x - r| < \epsilon$$

Analyse Vers une définition équivalente

- \Rightarrow Construction de \mathbb{R}
- ⇒ Fonctions classiques associées à ℝ
- Problèmes
 - . Nombres laébriques
- 3. Construction de ℝ
- 4. Parties de ℝ et copologie
- 1.1. Bornes supérieure et nférieure
- 4.2. Densité de D ou Q dans ℝ

Une partie X est dense dans $\mathbb R$ si elle peut toucher (à $\epsilon>0$ près choisi par avance, aussi petit qu'on veut) tous les éléments de $\mathbb R$ avec ses propres éléments.

$$\forall x \in \mathbb{R}, \quad \forall \epsilon > 0, \exists r \in X, |x - r| < \epsilon$$

Analyse Vers une définition équivalente

Définition - Partie dense

Une partie non vide X de $\mathbb R$ est dite dense dans $\mathbb R$ si elle rencontre tout intervalle ouvert non vide, c'est-à-dire si pour deux réels a et b, a < b, il existe $x \in X \cap]a, b[$.

- ⇒ Construction de ℝ
- ⇒ Fonctions classiques associées à ℝ
- Problème
 - Nombres gébriques
- 3. Construction de ℝ
- topologie
- 1.1. Bornes supérieure et nférieure
- 4.2. Densité de D ou Q dans ℝ

Théorème - Parties denses dans R

 $\mathbb{D},\,\mathbb{Q}$ et $\mathbb{R}\setminus\mathbb{Q}$ sont denses dans $\mathbb{R}.$

- \Rightarrow Construction de \mathbb{R}
- ⇒ Fonctions classiques associées à ℝ
- 1. Problème
 - Nombres
- Construction de ℝ
- opologie
- 4.1. Bornes supérieure et
- 4.2. Densité de D ou O dans ℝ

Théorème - Parties denses dans R

 \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Par construction de \mathbb{R} , le résultat est évident concernant la densité de \mathbb{Q} dans \mathbb{R} .

Démontrons la densité de \mathbb{D} et celle de $\mathbb{R} \setminus \mathbb{Q}$.

- \Rightarrow Construction de $\mathbb R$
- ⇒ Fonctions classiques associées à ℝ
- 1. Problème
 - Nombres
- 3. Construction de R
 - pologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou O dans R

Théorème - Parties denses dans R

 \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Par construction de \mathbb{R} , le résultat est évident concernant la densité de \mathbb{Q} dans \mathbb{R} .

Démontrons la densité de \mathbb{D} et celle de $\mathbb{R} \setminus \mathbb{Q}$.

Démonstration

- \Rightarrow Construction de $\mathbb R$
- \Rightarrow Fonctions classiques associées à $\mathbb R$
- 1. Problème:
 - . Nombres
- 3. Construction de R
 - pologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou O dans R

Théorème - Parties denses dans R

 \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Par construction de \mathbb{R} , le résultat est évident concernant la densité de \mathbb{Q} dans \mathbb{R} .

Démontrons la densité de \mathbb{D} et celle de $\mathbb{R} \setminus \mathbb{Q}$.

Démonstration

Corollaire -

Tout intervalle de $\ensuremath{\mathbb{R}}$ contient donc au moins un rationnel et un irrationnel.

On en déduit qu'il y a un rationnel (ainsi qu'un irrationnel) « aussi proche que l'on veut » d'un réel x donné :

Soit

 $x \in \mathbb{R}$: $\forall \epsilon > 0, \exists r \in \mathbb{Q}, |x - r| < \epsilon, \exists \xi \in \mathbb{R} \setminus \mathbb{Q}, |x - \xi| < \epsilon$

- ⇒ Construction de R
- ⇒ Fonctions classiques associées à ℝ
- 1. Problème
 - Nombres debriques
- 3. Construction de ℝ
 - 4. Parties de R et topologie
 - 4.1. Bornes supérieure et inférieure
 - 4.2. Densité de D ou Q dans ℝ

⇒ Densités dans R

- $\Rightarrow \text{Construction de } \mathbb{R}$
- \Rightarrow Fonctions classiques associées à $\mathbb R$
- Problème
 - Nombres
- 3. Construction de R
- i. Parties de ℝ et opologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou

- ⇒ Propriétés de la borne supérieure (de ℝ)
 - lacktriangle Définition : $\sup A$ est des majorants, le plus petits.

- \Rightarrow Construction de $\mathbb R$
- \Rightarrow Fonctions classiques associées à $\mathbb R$
- 1. Problème
 - Nombres
- 3. Construction de F
- Parties de ℝ et topologie
- 4.1. Bornes supérieure et
- 4.2 Densité de D ou O d

Conclusion

Objectifs

- ⇒ Propriétés de la borne supérieure (de ℝ)
 - ▶ Définition : $\sup A$ est des majorants, le plus petits. $\forall x \in A, x \leq \sup A$ et $(\forall x \in A, x \leq M) \Rightarrow \sup A \leq M$

Leçon 34 -Construction d'ensembles numériques

 \Rightarrow Construction de $\mathbb R$

⇒ Fonctions classiques associées à ℝ

- Problèm
 - algébriques
- 3. Construction de R
- 4. Parties de ℝ et topologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q

- ⇒ Propriétés de la borne supérieure (de ℝ)
 - ▶ Définition : $\sup A$ est des majorants, le plus petits. $\forall \ x \in A, \ x \leq \sup A \text{ et } (\forall \ x \in A, x \leq M) \Rightarrow \sup A \leq M$ $\forall \ x \in A, \ x \leq \sup A \text{ et } (\forall \ \varepsilon > 0, \ \exists \ x \in A \text{ tel que } \sup A \leq x + \varepsilon$

- \Rightarrow Construction de \mathbb{R}
- ⇒ Fonctions classiques associées à ℝ
- Problèm
 - . Nombres Igébriques
- 3. Construction de R
- 4. Parties de ℝ et copologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou Q

- ▶ Définition : $\sup A$ est des majorants, le plus petits. $\forall \ x \in A, \ x \leq \sup A \text{ et } (\forall \ x \in A, x \leq M) \Rightarrow \sup A \leq M$ $\forall \ x \in A, \ x \leq \sup A \text{ et } (\forall \ \varepsilon > 0, \ \exists \ x \in A \text{ tel que } \sup A \leq x + \varepsilon$
- ► Toute partie non vide majorée de R admet une borne supérieure.

- \Rightarrow Construction de \mathbb{R}
- ⇒ Fonctions classiques associées à ℝ
 - . Problèmes
 - Nombres ébriques
- 3. Construction de R
- 4. Parties de ℝ et
- 4.1. Bornes supérieure et
- 4.2 Densité de D ou 0

- ▶ Définition : $\sup A$ est des majorants, le plus petits. $\forall \ x \in A, \ x \leq \sup A \ \text{et} \ (\forall \ x \in A, x \leq M) \Rightarrow \sup A \leq M$ $\forall \ x \in A, \ x \leq \sup A \ \text{et} \ (\forall \ \varepsilon > 0, \ \exists \ x \in A \ \text{tel que } \sup A \leq x + \varepsilon$
- ► Toute partie non vide majorée de R admet une borne supérieure.
- Version symétrique pour la borne inférieure.

- \Rightarrow Construction de \mathbb{R}
- \Rightarrow Fonctions classiques associées à $\mathbb R$
- Problème
 - Nombres gébriques
- 3. Construction de R
 - 4. Parties de R et
 - 4.1. Bornes supérieure et
 - 4.2 Densité de D ou C

⇒ Densités dans R

- $\Rightarrow \text{Construction de } \mathbb{R}$
- \Rightarrow Fonctions classiques associées à $\mathbb R$
- Problème
 - Nombres
- 3. Construction de R
- i. Parties de ℝ et opologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou

- ⇒ Propriétés de la borne supérieure (de ℝ)
- ⇒ Densités dans R
 - Valeur approchée à 10^{-k} , par excès et par défaut

- \Rightarrow Construction de $\mathbb R$
- ⇒ Fonctions classiques associées à ℝ
- 1. Problème
 - Nombres
- 3. Construction de R
- I. Parties de ℝ et opologie
- 4.1. Bornes supérieure et inférieure
- 4.2. Densité de D ou

- ⇒ Propriétés de la borne supérieure (de R)
- ⇒ Densités dans R
 - Valeur approchée à 10^{-k} , par excès et par défaut
 - Densité de \mathbb{D} , puis \mathbb{Q} et enfin $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R} .

- ⇒ Construction de R
- ⇒ Fonctions classiques associées àℝ

- ⇒ Construction de ℝ
- ⇒ Fonctions classiques associées àℝ

- ⇒ Propriétés de la borne supérieure (de ℝ)
- ⇒ Densités dans ℝ

Pour la prochaine fois

- Lecture du cours : chapitre 18 Suites numériques
 - Problèmes
 - 2. Exemples fondamentaux
 - Suites extraites
- Exercices N° 296 & 302