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Espace vectoriel de dimension

finie

Résumé -

Les espaces engendrés par une famille finie de vecteurs sont de dimension finie. On
démontre alors que, toutes les familles libres et génératrices de cet ensemble F ont
le méme cardinal. Cet invariant (appelé dimension) est essentiel dans 'étude des
espaces de dimension finie et permet de simplifier l'étude.

Nous concentrons sur les forme linéaire qui sont des applications linéaires des plus
simples : les noyaux de ces applications sont des hyperplan (de co-dimension1, i.e.
supplémentaire a un espace de dimension 1). Dans le cas général, les applications
linéaires sont des matrices (et réciproquement). Nous trouverons alors un résultat
important qui formalise une heuristique sur les systemes : le théoreme du rang. Si
on change de base, les applications ne changent pas, seule la matrice de descrip-
tion évolue. 1l doit donc y avoir un lien tres profond entre les matrices associées a
une méme application linéaire mais écrite dans des bases différentes. Matricielle-
ment, il s'agit de la relation de similitude entre matrices. ..
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1. Problemes

? Probléme 108 - Combinaison linéaire
Est-ce que (2,1) est une combinaison linéaire de (1,1) etde (1,2)?
Assurément? Faut-il nécessairement connaitre les nombres «a et § tels
que (2,1) = a(1,1) + B(1,2) pour répondre a la question?
Et (2,1,0) est une combinaison linéaire de (1,1,1) etde (1,2,1)?

? Probléeme 109 - Combinaison linéaire (unique)
Et (2,1,0) est une combinaison linéaire de (1,1,1) de (1,2,1), de (1,2,3) et
de (1,—-1,0).
Il semble que plus on ajoute de vecteurs dans la combinaison linéaire,
«plus la réponse a la question précédente est vraie ».
Ety a-t-il unicité dans cette écriture? Est-ce important?

? Probléme 110 - Trouver un/le espace supplémentaire
Soit H un sous-espace vectoriel de E.
Existe-t-il un sev H', unique?, tel que Ho H' = E.

? Probleme 111 - Coordonnées et projections
Si 98 = (ey,...ey) est une base de E, on sait que la description de chaque
vecteur est unique :

n
VY x€E3(x,...x,) telquex=)_ xie
i=1

Notons [‘]‘? : x — Xx;. Alors clairement [Ax + ,uy]‘? = Mx]‘? + ,u[y]?, donc
cette application est linéaire. C’est 'application i-ieme coordonnées.

Et si au lieu de découper E en espace de dimension 1, on le découpe en
espace plus gros: E = &;_, E;.

Que peut-on dire de x — x; avec x = Y._, x; ol pour tout i € N, x; € E;.

? Probleme 112 - f € £(E, F) avec E et F de dimension finie
On suppose que % = (ey,...ep) est une base de E et € = (f1,... fu), une
base de F.

Alors f € £(E, F) est parfaitement connue par I'’ensemble des valeurs

n
VieN,, flej)=Y Aijfi
i=1

Doncla connaissance de f est équivalente a celle de (15,;), et donc a celle
d’'une matrice.
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On a dong, pour deux bases fixées a priori %8 = (e1,... ep) est une base de
Eet€ =(f1,...fn), une bijection :

Z(E,F) —’-/%n,p

Les opérations +, x... se correspondent-elles?
Et plus généralement, comment ces deux points de vue s’éclairent-ils
mutuellement?

? Probléme 113 - Changement de bases
On vient de voir que pour deux bases fixées a priori 8 = (ey,...ep) est
une base de E et € = (f1,... f), on a une bijection :

Z(E,F) _’v/%n,p

Et si on change de base, mais qu’'on garde 'application linéaire f, que
peut-on dire des matrices qu’on obtient?

2. Bases et dimension

2.1. Existence et unicité del’écriture de tout vecteur dans une

base

Définition - Base d’un espace vectoriel
On dit qu'une famille de vecteurs de E est une base de E
si elle est une famille libre et génératrice de E.

M Attention - Non unicité
< On dit bien UNE base et non LA base de E...

7 Exemple - Nombreux exemples

Proposition - Bases canoniques de K", de ./, ,(K) et de K, [X]
On définit la famille (e;)1<;<, de K" par

e =(1,0,...,0);e.=(0,1,0,...,0);...;¢, = (0,...,0,1).

Alors cette famille est une base du [K-e.v K" appelée base canonique de K.
La base canonique de .4y, , (K) est la famille (Ej, ;) jen,,, jen,,-

Labase canonique de K ,[X] est (1, X, X?,..., X™) = (X%)o<i<n, celle de K[X]
est (X7)jen-

Exercice
Déterminer une base du R-e.v. C".

Remarque - Démonstration de la base canonique

On ne démontre pas le nom de canonique. Il s’agit en fait d'une trace de

I'histoire des mathématiques.

Quant a la démonstration de la base, on voit que c’est celle qu’'on utilise

depuis toujours. ..

Pour aller plus loin - Pour les impatients...

Existent-ils deux bases de C* telles que les
seuls vecteurs communs a ces deux bases
soient (,0,1,1) et (1,1,0,0) ?

A quelle condition portant sur le scalaire x,
les vecteurs (1,1,1) et (1, x,x%) forment-ils une
base deR3 ?

A quelle condition portant sur le scalaire
x, les vecteurs (0,1,x), (x,0,1) et (x,1,1 + x)
forment-ils une base de R3 ?
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Théoreme - Caractérisation de la base

Une famille 2 = (e;)1<i<» de vecteurs de E est une base de E si et seule-
ment si, pour tout x € E, il existe une unique famille (1;);<ij<n € K" telle

que
n
X = Z /1,' 41
i=1
A1,..., A, Sappellent les coordonnées (ou composantes) de x dans la base
B.

< Heuristique - La fonction ®
D’apres ce théoreme, si 2 est une base de E, alors

n
CD%ZK”—>E, (/11,/12,.../1,1)—»Z/1,-e,-
i=1

n
est une application bijective : ¥ x € E, 31(1;); telque x = ¥ 1;-e;.

i=1
Les coordonnées de x sont alors les antécédents de x par ®gg.

Pour la démonstration qui va suivre, on va montrer :
— @ estinjective si et seulement si 2 est libre.
— @y est surjective si et seulement si 28 est génératrice de E.

Démonstration

M Attention - Ne pas oublier

On dit qu’« une famille est génératrice (ou une base)DE E », si on oublie
I'objet indirect («de ... ») cela ne veut rien dire.

En revanche, une famille est libre, indépendamment de I’espace vecto-
riel considéré (mais pas du corps). On peut donc se contenter de « une

famille est libre ».
Remarque - Base infinie

Pour une base infinie on a un résultat similaire avec une famille presque nulle
Ai)ier-

Application - Exemples classiques
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Proposition - Base

Soit & = (ey, ey, ... ep) une famille d’éléments de E.
On ales équivalences :

(i) & estune basede E.

(ii) & est une famille libre maximale (dans E).

(iii) & est une famille génératrice minimale de E.

On commence par démontrer deux lemmes :

Lemme - Complétion libre
Soient (e, ..., ep) une famille libre de E et x € E.

ou

x ¢ vect(ey,...,ep) sietseulementsi (e, ..., ep, X) est encore libre
x e vect(ey,...,ep) si et seulementsi (ey,..., ep, x) est lié

Lemme - Réduction liée

Soit (ey, ..., ep, ep+1) une famille de E.

ep+1 € vect(ey,...,ep) si et seulement si vect(ey,...,ep,ept1) =
vect(ey,...,ep)

*Heuristique - Interprétation en terme de famille libre maximale et fa-
mille génératrice minimale

Si (e1,...,ep) une famille libre de E et x ¢ vect(ey, ..., ep), alors (ey,...ep) n'est pas maxi-
male.

Si (e1,...,ep,ep+1) une famille génératrice de E et ep+1 € vect(er,...,ep), alors
(e1,...ep, ep+1) N'est pas minimale.

On commence par démontrer les lemmes puis la proposition.

Démonstration
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Démonstration

2.3. Dimension d’un espace vectoriel

Existence de bases

Définition - Espace de dimension finie

Un K-espace vectoriel E est dit de dimension finie s’il admet une famille
génératrice finie.

Par convention {Og} est un espace de dimension finie.

S’il n’est pas de dimension finie, E est dit de dimension infinie.

On a le théoréme suivant trés important :

Théoréme - Théoréeme de la base incomplete (lemme de Steinitz)

Soit E # {0g} un espace vectoriel de dimension finie.

Soit & = (ey,...,ep) une famille libre de E et & = (fi,...,f;) une fa-
mille génératrice de E, alors : il existe une base de E de la forme 2 =
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(e1,...,€p,ep+1,...,€p) OU{epi1,..., et € F (quitte a étre vide).
En d’autres termes on peut compléter une famille libre de E en une base
avec des vecteurs pris dans une famille génératrice.

Démonstration

Remarque - Constructivité? Algorithme

La démonstration précédente est efficace et propre. Mais elle souffre du fait
qu’elle ne dit pas concrétement comment on s’y prend de maniere efficace.
On pire, il s’agit de faire toutes les 29 réunions (&,%) pour ¢ c &.

On a un algorithme de complétion de famille libre, en une base (si I'espace
est de dimension finie) - en g étapes :

/~Savoir faire - Base incompléte
Pour le théoreme de la base incompleéte, on exploite un algorithme plus
efficace. On suit 'algorithme suivant :

1 B=[e[i] for i in range(1l,p)]

> E=vect(B)

s for i in range(q):

4 if f[i] notin E :
5 B=B+[f[i]]

6 E=vect(B)

7 return (B)

Lalgorithme termine car il est paramétré avec une boucle for.
Lalgorithme renvoie la famille libre maximale, contenant e;, pour tout
i €Np.
Par construction, pour tout i € Ny, fi e vect(B),
— en effet, ou bien f; n'appartenait pas a B au moment du test, et
alors, on I’a mis dans B,
— ou bien il en faisait partie et toujours a la fin.
D’apres le lemme de réduction : vect¥ = E c vect(B).
Donc B est également une famille génératrice de E.
11 faut également montrer que B est une famille libre.
En fait, pour tout i, B; est libre d’apres le lemme de complétion libre.
C’est donc également le cas en fin d’algorithme.
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4 Application - Compléter & = ((1,1,1), (1,—1,—1)) en une base de R>.

A partir d'un ensemble réduit a I'unique élément {0},

Corollaire -

Si E, non réduit au vecteur nul, est de dimension finie, alors de toute
famille génératrice de E on peut extraire une base.

Corollaire -

Tout espace vectoriel de dimension finie, non réduit au vecteur nul, admet
une base.

Cardinal d’une base

En fait, on a mieux, en terme de cardinaux

Proposition - Relation entre cardinaux de familles libres/familles gé-
nératrices

Soit £ une famille libre de E et ¢ une famille génératrice finie de E, alors
% est finie et

Card & < Card¥

«*Heuristique - Amélioration du lemme de Steinitz
Pour la démonstration, on améliore la démonstration du lemme de Steinitz.

En cherchant un invariant : comment transformer un a un les élément de ¢ en élément de
2 tout en gardant la génération de E.

On démontre que pour tout s < card(Z) = p (g = card(¥)) :
il existe Is = Ng, tel que card(Is) = g —setE = vect((e,-),-ng, (fj)jg]s)

Notons que la démonstration qui suit est en fait constructive!

Démonstration
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Autre interprétation :

Corollaire - Maximalité de liberté

Soit (ey, ..., e,) une famille de vecteurs de E.

Soit (x;) jey une famille de vecteurs de E qui sont combinaisons linéaires
de (ey,...,ey) (ie.: V j€ ], xj e vect(ey, ey,...ey,)).

Si CardJ = n +1 alors nécessairement la famille (x;) je; est liée.

Sil’espace vectoriel posseéde une famille libre infinie, alors il est de dimension
infinie (au sens : il n’est pas de dimension finie).

Corollaire - Espace vectoriel de dimension infinie

11 existe des espaces vectoriels de dimension infinie. C’est en particulier le
cas de RN ou de Z (R, R).

Démonstration

@Pour aller plus loin - Famille libre maxima-

le/génératrice minimale
On pourrait aussi parle de famille maximale
libre (de plus grand cardinal), ou de famille
niinimale génératrice (de plus petit cardinal).
Le cardinal de toutes ces familles est le méme :
c’est la dimension de I'espace

Théoréme - Dimension constante

Toutes les bases d'un K-espace vectoriel E de dimension finie, non réduit
au vecteur nul, ont méme cardinal.

Démonstration

Pour aller plus loin - Module (3)

On dit qu’un module est de type fini, s’il est en-
gendré par une famille fini d’éléments.

On peut montrer que M est un A-module de
type fini s'il existe une bijection linéaire de M
sur A™ (n étant la taille de la famille fini engen-
drant M). On dit qu'il est libre, s’il posséde une
base.

Enfin, on s’intéresse souvent pour des raisons
de décomposition structurelle aux A-module

de torsion M (de type fini), les modules de tor-
sion vérifiant :

AP - Cours de maths MPSI 3 (Fermat - 2025
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Définition - Dimension

Soit E un K-e.v. de dimension finie, non réduit au vecteur nul.

On appelle dimension de E le cardinal commun de toutes ses bases.
Onle note dim E ou dim E.

Par convention dim {0z} = 0.

4 Exemple - Compléter

Théoreme - Conséquence sur les cardinaux
Soit E un K-e.v. de dimension n = 1. Alors :
— Une famille libre de E de cardinal p vérifie p < n et c’est une base si
et seulement si p = n.
— Une famille génératrice de E de cardinal p vérifie p = n et c’est une
base si et seulement si p = n.

Démonstration

/~Savoir faire - Montrer qu'une famille est une base
En général pour montrer qu'une famille d'un K-e.v. de dimension n
connue est une base on montre qu’elle est libre de cardinal 7.
(Dans de rares cas, on montre que la famille est génératrice et du bon
cardinal).

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



2. Bases et dimension

515

4 Exemple - Dans E = R"

Exercice
Montrer que la famille des polynémes (Nj)o<k<n €St une base de Ry, [X]. Avec

X x(X=1)- (X —k+1)

No=1 Vk=1:N; o

(On appelle cette base, la base de Newton. Elle est en particulier intéressante pour :

VheZ N(h)e2)

Dimension d’'un produit

Théoréme - Dimension d’un produit cartésien
Soient E, F deux K-e.v. de dimension finie. Alors E x F est de dimension
finie et

dimE x F=dimE +dimF.

Démonstration

Par récurrence :

Corollaire - Dimension d’'un produit fini d’espaces vectoriels
Soient Ej, ..., Ex des K-e.v. de dimensions finies respectivement ny, ..., .
Alors E x --- x Ej est de dimension finie égale a n +--- + ng.

2.4. Sous-espaces vectoriels en dimension finie

Dimension d’'un s.e.v

Théoréme - Dimension d’'un sous-espace vectoriel
Soit E un K-e.v. de dimension finie. Soit F un s.e.vde E.
Alors F est de dimension finie, avec dim F < dim E.

De plus

dim F = dimE si et seulement si E = F.
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Démonstration

/~Savoir faire - Montrer que deux espaces vectoriels sont égaux
Pour montrer que deux K-e.v. E et F de dimension finie sont égaux, on
montre généralement une inclusion et 1'égalité des dimensions.

Corollaire - S.e.v. de R? et R®

Les sous-espaces vectoriels de R?, autres que {Og2} et R?, sont les droites
vectorielles.

Les sous-espaces vectoriels de R3, autres que {Ops} et R3, sont les droites
vectorielles et les plans vectoriels.

Définition - Rang d’'une famille de vecteurs

Soit (x1,..., Xp) une famille finie de vecteurs d'un [K-espace vectoriel.

On appelle rang de la famille (x,...,x,) la dimension du sous-espace
vectoriel vect(xy, ..., xp) :

rg (x1,...,Xp) = dimvect(xy,..., Xp)

Comme (x1,...,%p) est une famille génératrice de vect(xy,...,xp), on peut
affirmer

Proposition - Majorant et
rg (x1,...,Xp) < p. Bt

rg (X1,...,Xp) = p = (x1,..., X)) estlibre

Sommes et supplémentaires

Théoréme - Base et dimension d’'une somme directe
Soient E un K-e.v. de dimension finie, E; et E;> deux s.e.vde E
Soient (ey, ..., ep) une base de E et (f1,..., f;) une base de Ej.
Alors Ej et E» sont en somme directe si et seulement si
(e1,...,ep, f1,..., f¢) (juxtaposition des bases de E et E) est libre.
Dans ce cas c’est une base de E; @ E> et on a

dim E; @ E> = dim E; + dim Es.

Le résultat se généralise a plus de deux s.e.v.
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Démonstration

Théoréme - Caractérisation des couples de s.e.v supplémentaires
Soient E un e.v. de dimension finie n et F, G deux s.e.vde E. Alors

E=FeGe FNnG={0g}etdimF+dimG = n;

E=FeGe F+G=EetdimF+dimG=n;

E=FeG
& lajuxtaposition d’'une base de F et d'une base de G est une base de 1

Tt

Exercice
Montrer que dans [R4, F = vect((1,2,-1,0),(0,2,0,1)) et G = vect((2,0,0,1),(1,0,0,1))

sont supplémentaires.

Démonstration
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Remarque - Famille libre : F N G = {0} & Famille génératrice: F+ G=E
Notons®:FxG—E, (x,y)— x+Y.

F NG ={0} < @ injective

F + G = E < @ surjective
F & G = E < ® bijective

Ce qui est affirmé sur les familles libres (en particulier les savoir-faire) est
également vrai pour la caractéristique FNG = {0} (ou «]la somme est directe »).

Théoreme - Existence de supplémentaires en dimension finie
Soit Eun K-e.v. de dimension finie, F un s.e.vde E. Alors F admet au moins
un supplémentaire dans E.

Démonstration

Remarque - Processus algorithmique

La démonstration de ce théoreme est tout aussi importante que le résultat
puisqu’elle fournit un moyen de recherche d'un supplémentaire en dimen-
sion finie.

Tout, ici, est équivalent au théoréme de la base incompléte.

Exercice

Donner un supplémentaire dans R?* de F = vect((1,1,1,1),(2,0,1,1),(~2,4,1,1))

Théoreme - Dimension d’une somme de deux s.e.v., relation de Grass-
man
Soient E un K-e.v. de dimension finie, F, G deux s.e.v de E. Alors

dim (F+G) =dimF + dim G — dim (F N G).

Pour aller plus loin - Autre construction

On cherche G telque E=F & G.

En réfléchissant aux dimensions, on trouve
quedimE =dim F+dim G = dim E x G (produit
cartésien).

1 existe une sorte de division euclidienne : la
division en classe d’équivalence.

Onnote Z : uRv ssiu—veF.

Z est une relation d’équivalence. L'ensemble

des classes d’équivalence G = 52 = E est un

« espae&veemﬂeL»elLalers#eE—ELeéLyJ%
G x F tel que x—y € U(= ) (classe de u &Bonrc €
x =y+U (mais ce n'est pas I'addition de E. . .)

Démonstration
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Théoréeme - Dimension et somme d’espaces vectoriels
SiFy,...,Fysontdes s.e.v. de dimension finie de E K-espace vectoriel, alors

p p
dim ZFi < dim F;
=1

i=1 i

avec égalité si et seulement si la somme est directe.

Démonstration
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s N
Définition - Droite et plan vectoriel
Soit E un K-e.v. de dimension quelconque et soit F un s.e.v de E. On dit
que

— F est une droite (vectorielle) sidim F =1;
— F estun plan (vectoriel) sidim F = 2.

— F est un hyperplan (vectoriel) s’il admet un supplémentaire de di-
L mension 1 (soitsidimF =n—-1).

J

3. Ecriture d’'une application linéaire en dimen-
sion finie

3.1. Détermination

Détermination par les bases

Théoréme - Image d’'une base
Soient E un [K-e.v de dimension finie 7 et F un K-e.v. quelconque.

Soit & = (ey,...,e,) une base de E et (fi,..., f») une famille de n vecteurs
de F.

Alors il existe une unique application linéaire u de E dans F telle que
Vie[l,nl, ule;) = fi.

On dit que u est entierement déterminée par la donnée des images des
vecteurs d'une base.

Démonstration

Remarque - Dimension infinie
Ce résultat se généralise a la dimension infinie.

Si (e;)ies est une base de E et (fj)jc; une famille de F (méme ensemble

d’indices), alors il existe une unique application linéaire u € £ (E, F) telle que
u(e;) = f; pour touti € I.

Corollaire - Egalité d’applications
Deux applications linéaires qui coincident sur une base sont égales.

Corollaire - Applications linéaires de K" dans K?
Soit u € L (K", KP). Alors u est de la forme

u: K" — KP
anxy+apx,+---+ainxn

a1 X1+ axpXxy+---+dxpxn ot V{E [[l’p]]
Vjell,nl,

X1
yaij eK.

Xn ’
ap1X1+ap2Xp+ -+ apnXn
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Réciproquement, toute application de cette forme est linéaire du K-e.v. K"

dansle K-e.v. KP.

Proposition - Surjection coordonnée
Tout K-e.v de dimension n est isomorphe a K”.

Si 28 une base de E K-e.v. de dimension finie non nulle n. Alors
u: E—-K"

x+— coordonnées de x dans %

est un isomorphisme de E dans K”.

Démonstration

Corollaire - Sans passer par K"

Soient E un K-e.v de dimension finie et F un K-e.v. a priori quelconque.

Alors E et F sont isomorphes si et seulement si F est de dimension finie
avec dimF =dimE.

Démonstration

Théoréeme - Dimension de £ (E, F)

Soient E et F deux [K-e.v. de dimension finie. Alors £ (E, F) est un K-e.v. de
dimension finie et

dim £(E,F) =dimE xdimF.
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Démonstration

Remarque - Espace dual
Avec F =K on trouve dim E* = dim E.

Détermination par la restriction a des supplémentaires

E, F désignent toujours deux K-espaces vectoriels.

Théoréeme -

Soient E; et E, deux s.e.v. supplémentaires dans E et u; € £(Ej,F), up €

Z(E», F). Alors il existe une unique application linéaire u € Z(E, F) telle
que

Ui, = uy et g, = up.

Plus généralement :

Théoréme - Description unique sur une famille de supplémentaires
Si Ey, ..., Ep sont des s.e.v. de E (de dimension quelconque) vérifiant E =

@le E; etsi Vi, u; € £(E;, F), alors il existe une et une seule application
ue g(E,F) telle que Vl, ulEi = U;

Démonstration

3.2. Matrice d’'une application linéaire

Matrice d’'une famille de vecteurs

Soit E un K-espace vectoriel de dimension n et 28 = (e, ..., e,) une base de
E.

p
Définition - Matrice d’une famille de p vecteurs
La matrice dans la base 98 d'une famille (xi,..., x,) de vecteurs de E est la

matrice dont la j-ieme colonne, pour j € [1, pl, est formée des coordon-
nées de x; dans la base 8. C’est donc la matrice a n lignes et p colonnes :

~

an

aip
as ap

Map(x1,.Xp) = | = (ai,1<isml<j<p
Aan1 Anp
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n
telle que, pour tout j, x; = Z aije;.
i=1

7 Exemple - Dans R?

<*Heuristique - Cas particulier p = 1 : la « matrice du vecteur x dans % »
Dans le cas particulier d’'une famille a un vecteur x, la matrice .#g(x) est une matrice
colonne, c’est la matrice colonne formée des coordonnées de x dans la base 8. On parle
souvent de la « matrice du vecteur x dans la base 98 ».

Soit 28 la base canonique de K". Lapplication

K" _’Jﬂn,l(K)
X — Mg (x)

est alors un isomorphisme d’espaces vectoriels. On identifie donc usuellement matrices
colonnes (a n lignes) et vecteurs de K"

Matrice d’'une application linéaire

s N
Définition - Matrice d’'un morphisme u

E et F sont deux espaces vectoriels sur K, de dimension finie (respective-
ment n et p).

B =(e1, -, en) et € = (f1, -+, fp) désignent respectivement des bases de E
etde F.

Soit u € £(E, F), alors Vj € [1,n], u(e;) € F et donc on peut écrire u(e;) =

p
Zaijfi.
i=1

On appelle matrice de u dans les bases 8 et 6, la matrice :

ar e e alﬂ
a1 e e azn

Mape(W) = M, B,6) = . | = @ijh<isprsjsn

apl s vee apn

a;j désigne la i-iéme coordonnée de u(e;) dans 6.
\C’est la matrice dans € de la famille (u(ey),..., u(e,)).

M Attention - Taille de la matrice
Il s’agit d’'une matrice a n colonnes (nombre de vecteurs d'une base de
I'ensemble de départ) et p lignes (dimension de I’ensemble d’arrivée),
soit p lignes et n colonnes.

7 Exemple - Matrice de P — P’
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Théoréme - Réciproquement de la matrice au morphisme

Soient E et F deux K-e.v,, dimE = n, dim F = p. On suppose fixées % une
base de E et € une base de F. Alors, pour toute matrice A € . , (), il
existe une unique application linéaire u € £ (E, F) telle que g « (1) = A.

Démonstration

Proposition - Calcul matriciel de ’'opération u(x)

Soient E et F deux K-e.v,, dimE = n, dim F = p. On suppose fixées % une
base de E et € une base de F.

Soient u € Z(E,F), A= Mz« (u), X la matrice colonne des coordonnées
d’un vecteur x de E dans la base 9, alors la matrice colonne Y des coor-
données de y = u(x) dans la base € est donnée par la relation

Y =AX.

Démonstration

Corollaire - Nouveau critere d’égalité matriciel
Soient A, B € 4}, (K). Alors :

(¥X €., 00, AX = BX) = A=B
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L |

Démonstration

Définition - Matrice d’'un endomorphisme

Soient E un K-espace vectoriel de dimension n, 98 une base de E, u €
Z(E). Alors, pour u € Z(E), Ma,zu) € 4, (K) s'appelle la matrice de u
dans la base 2 et se note simplement g (u) (ou .4 (u,2B)).

@’f Exemple - Dans R?

Exercice
Quelle est la matrice dans la base 98 = € de la symétrie orthogonale par rapport a la
premiére bissectrice ?

Z(E G) & My p(K) isomorphes

Théoreme - Lapplication linéaire u — # g « (u)
Soient E, F deux K-espaces vectoriels (dimE = n,dimF = p) de bases
respectives B, €, u,ve Z(E,F), a, f € K alors

Map e (au+ Bv) = allg () + BMa e (V).

Lapplication
ZLEF) — MpnK)
u — Mp ¢ (U)

est donc un isomorphisme d’espaces vectoriels.

Théoréme - Produit matriciel et composition

Soient trois espaces vectoriels E, F, G munis des bases respectives %, 6,9,
et deux applications linéaires u € £ (E, F), v € Z(F, G). Alors la matrice de
voue Z(E,G) est donnée par

Map (Vo u) = Mg g (V) x Map (1)

Démonstration
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Remarque - Nouvelle interprétation du produit matriciel
Cela justifie, d'une nouvelle facon, I'utilité de la définition de la multiplica-

tion entre les matrices : ceci permet de calculer avec un nombre fini d’opéra-
tions une composée de deux applications linéaires.

Corollaire -
Soit E un K-espace vectoriel de dimension 7 et 28 une base de E. Lappli-

cation u — #g(u) est un isomorphisme d’algebres de £ (E) sur .4, (K)
(isomorphisme d’espaces vectoriels et morphisme d’anneaux)

Proposition - Bijection de u et inversibilité de .#
Soient E et F deux espaces vectoriels de méme dimension 7 (en particulier
on peut avoir E = F) de bases respectives & et €,
Soit u une application linéaire de E dans F et A = A g ¢ (u).
Alors u est bijective (donc est un isomorphisme)
si et seulement si A est inversible.
Et alors

Al =Ml mgu™

/~Savoir faire - Exploitation
Ce résultat peut étre utilisé de deux facons :
— Pour trouver I'isomorphisme réciproque de u, on calcule I'inverse
de la matrice de u (voir plus loin pour les méthodes).
— Pour trouver l'inverse d'une matrice, on peut parfois la recon-
naitre comme la matrice d'un isomorphisme dont on sait facile-
ment exprimer I’endomorphisme réciproque.

Démonstration

Exercice

Soit A € My+1(R) définie par a;; = ({j) (avec la convention ({) =0 si j < i) pour
i,jell,n+ 112. Justifier Iinversibilté de A et déterminer AL,

Réciproquement, application canoniquement associée a une matrice

< Heuristique - Identification
Lapplication de K" dans .#p,1(K) qui & x = (x1,...,Xp) associe la matrice colonne X =
X1
est un isomorphisme naturel ("canonique”) entre K et ./, n,1 (). Il permet d’identi-
Xn
fier un n-uplet x avec la matrice colonne X.
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D’autre part, on sait que si u € L (K", KKP), alors u est de la forme
w: K" —KP
x ajlxy+appxp+---+dipxn
1

a1 X1 +axexp+---+axpxn

ouVvie[l,pl, Vjell,nl, a;j K.

ap1X1 +ap2X2 +--+apnXn

s N
Définition - Application canoniquement associée a A

Soit A € ) ,(K), alors il existe une unique application linéaire u €
L (K™, KP) telle que la matrice de u dans les bases canoniques respectives

de A1 (K) ou K" et 4,1 (K) ou KP soit A. On dit alors que u est canoni-
quement associée a A.

u peut alors étre identifiée a I’application

«fﬂn,l _'-/%p,l(K)
X — AX
-

e Remarque - Convention d’'usage
On écrit aussi y = Ax avec x e K", y e K”.

Proposition - Noyau, image

Soit A € A, (KK) et ul'application linéaire canoniquement associée
On rappelle que::

KerA={XeK" = M,1[K)|AX = Okr}

ImA={Y eKP =4, 1(K)|3X eK" = M1 (K),Y = AX}.

Par les identifications précédentes Ker A= Ker u et Im A = Im u.

Réinterprétation du produit par blocs

Proposition - Blocs nuls et stabilité

Soient F et G deux sous-espaces supplémentaires de E K-e.v. (dimE =
n,dimF = p) et u € Z(E) telle que la matrice de u s’écrive, dans une base

adaptée ala décomposition E = F& G, par blocs (2 f)) (avec A € Mp(K)).
Alors :

— F est stable par u si et seulement si C = O,—p p; dans ce cas A =
M (wF)

— G est stable par u si et seulement si B = Op »—p; dans ce cas D =
M (u)G)

Démonstration
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Exercice
Montrer que les projecteurs et les symétries ont, dans des bases bien choisies, des ma-
trices par blocs trés simples.

Remarque - Généralisation
La notation et le calcul par blocs peuvent se généraliser a plus de deux blocs.
La condition : la taille des blocs doit étre compatible au produit envisagé.

p

On peut aussi voir le produit AX = Z x;C; comme un produit par blocs. ..
i=1

3.3. Changements de bases

Le but de ce paragraphe est de trouver le lien entre les différentes matrices
d’'une méme application linéaire lorsque 'on change de bases dans les en-
sembles E et F.

Matrice de passage

p
Définition - Matrice de passage (changement de base vectoriel)
Soient E un K-e.v. de dimension n,

B = (e, -, ep) (ancienne) et B' = (e}, -, e),) (nouvelle), deux bases de E.

On appelle matrice de passage de 9 a %8, notée Pg/ (ou Pg g ),la matrice
de la famille 98’ dans la base 2 :

P2 = Ugp(e,,- €)= M 5(dE )

M Attention - Ecrire la bonne matrice
On obtient donc la matrice de passage P de 9 a %' en écrivant en
colonnes les coordonnées dans la base 28 des vecteurs e;. (de &8)).
(Cest celle que I'on sait écrire sans probleme car les vecteur e sont
toujours donnés par leurs coordonnées dans 98)

Théoréme - Inverse d'une matrice de passage

OnaPZ% = Uy 5(1dp).

Une matrice de passage est donc inversible (car Idg est bijectif) et
()" =P,

Pas de démonstration supplémentaire.

Théoréme - Calcul matriciel du changement de base

Soient E un K-espace vectoriel, 2 et %' deux bases de E et P la matrice
de passage de % a %B'. Si X est la matrice colonne des coordonnées dans
% de x € E et X' la matrice colonne des coordonnées dans 28’ de x, alors
X =PX', cest-a-dire

Mep(X) = PL Moy (%)

/~Savoir faire - Petite aide mnémnotechnique
Se souvenir que la formule donne facilement les coordonnées dans I’an-
cienne base en fonction des coordonnées dans la nouvelle base, ce qui
est rarement ce dont on a besoin! Pour avoir les coordonnées dans la
nouvelle base en fonction des anciennes, il faut calculer P71,
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Démonstration

Matrices équivalentes

Théoréeme - Changement de base d’'une application de Z(E, F)

Soient E, F deux K-e.v., de bases 9 et %' pour E, € et €' pour F. On pose
P=P% etQ=P%.

Alors, siue £(E,F), A= Mgp (), A' = Mg 4 (1) ona

A =Q7'AP

Démonstration a bien savoir faire, pour retrouver rapidement le résultat.
On rappelle que si « tout va bien » (dimension) : g g (1o V) = Me o (u) x
M, (V) (fleche al'envers pour les bases)

Démonstration

Remarque - Rappel

On rappelle que deux matrices A et B sont équivalentes, s'il existe BQ €
GL,(K)telque A=PxBx QL.

On a également vu que A et B sont équivalentes si et seulement si rg (A) =
rg (B). Et qu'il existe une famille de représentants des classes d’équivalence :
les J,

Proposition - Nouvelle interprétation de I'équivalence matricielle
A, B € My, (K) sont équivalentes si et seulement si
elles représentent la méme applications linéaire dans des bases diffé-

rentes (a priori au départ et a I'arrivée)

Démonstration

Matrices semblables

Dans le cas particulier ot E = F on peut prendre 8 =€ et 8’ = ¢’ dou Q=P
et on a le théoréme suivant :

Théoréme -
Soient E un [K-espace vectoriel, 8 et 8’ deux bases de E et P la matrice de
passage de 8 a %B'. Alors, si u€ £(E), A= Matg(u), A' = Matg (u) on a

A =p7lAp

Exercice
Soit E = R2. On considére les deux vecteurs fi=Q,2) et L=(1,3).

1. Montrer que %8’ = (fi, f>) est une base de E.

2. Soit % la base canonique de E. Ecrire la matrice de passage Pg.

3. Soit x = (4,1) € E. Déterminer matriciellement les coordonnées de x dans la base
B

4. Soit u 'endomorphisme de E défini par u((x, y)) = (2x+y, x—y). Ecrire les matrices
de u dans les bases % et A'.
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Définition - Matrices semblables

A, B € ,(K) sont dites semblables s'il existe P € GL,(K) telle que B =
P1AP.

Remarque - Relation d’équivalence

I1s’agit d'unerelation d’équivalence. C’est une relation particuliere qui dérive
de la relation « étre équivalente ».

Etant plus précise, les classes d’équivalence pour la relation de similitude
sont plus nombreuse. Le cours de diagonalisation de seconde année consiste
a chercher des représentants relativement simples (diagonale, au mieux) de
ces classes de similitude. On a alors, par récurrence,

Proposition - Calcul de puissance
Si A et B son semblables, précisément : B = P1AP.
Alors pour tout k € N, B¥ = P71 AP (car PP~! = I,,).

Théoréme - Ré-interprétation de la similitude
Soient E un [K-espace vectoriel de dimension n, A, B € 45, (K).
Alors les matrices A et B sont semblables si et seulement si

il existe B et #', bases de E, u€ L (E) tq A= Mz (u) et B = Mg (u).
Autrement dit, A et B sont semblables si elles représentent le méme endo-
morphisme dans deux bases différentes.

*‘@’*Truc & Astuce pour le calcul - Etant donnée A et B, trouver 9%, %’ et u
Il n'y a pas unicité du triplet (98, %', u). 1l faut donc choisir un représen-
tant.

En revanche, on connait A et B puis donc P.

Classiquement, on considere (dans I'ordre) :

1. E =y, (K) (équivalent a K")
2. B=(Xy,...Xy),labase canonique de E

3. u:X— Ax X.Par construction A= .4z (u).
n
En fait comme 28 est la base canonique, AX; = C;j(A) = Z [Al;,; X;
i=1
4. B = P(B) = (1, Ys,...Y,) = (PX1,PXy,...PX,), cest bien une
base car P est inversible.

u(Y;) =u(PX;) = APX; = PBX; = PC;(B), car % estla base cano-

nique.
n n n
Donc u(Y;) = P) [Bl;jX; = Y [Bl;jPX; = ) [Bl;;Y; Ainsi
i=1 i=1 i=1
Mz (u) =B
Exercice
1 2 3
Soit A=[3 1 2|.Montrer que A est semblable & “A.
2 3 1

Proposition - Matrices semblables et trace
Deux matrices semblables ont méme trace.
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Démonstration

Définition - Trace d'un endomorphisme
Soit E est un K-espace vectoriel de dimension finie. Soit 98 une base de E.
Soit u € Z(E). On appelle trace de u le scalaire

Tru=Tr(u) =TrMg(u).

Remarque - Une démonstration?

Ceci a bien un sens d’apres la proposition précédente qui assure que les ma-
trices de u dans des bases différentes ont toujours la méme trace (invariante
selon la base considérée).

Corollaire - Propriétés simples de Tr
Lapplication trace sur £ (E) est linéaire et

Yu,ve Z(E), Tr(uov) =Tr(vou).

Proposition - Rang=trace d’un projecteur
Soit p € L(E) un projecteur. Alors Tr (p) =g (p).

Démonstration

4. Théoreme (formule) du rang et conséquences

4.1. Théoréeme durang
Rang(s)

Définition - Rang d’une application linéaire

Soient E, F deux K-espaces vectoriels (de dimensions quelconques) et u €
Z(E, F). On dit que u est de rang fini si Im u est de dimension finie et on
appelle alors rang de u la dimension de Im u :

rg u=dimIm u

Rappels :

e N
Définition - Rang d’'une famille de vecteurs

Soit (x1,...,xp) une famille finie de vecteurs d'un K-espace vectoriel. On
appelle rang de la famille (x1, ..., xp) la dimension du sous-espace vectoriel
vect(xy,..., Xp) :

rg (x1,...,Xp) = dimvect(xy, ..., Xp)
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A\ J
Définition - Rang d’'une matrice
Soit A € 4, »(K) On appelle rang de A (noté rg A) la dimension de Im A.

Remarque - Nouvelle définition

Cette nouvelle définition est conforme a celle vu au premier semestre - en
complément.

Le rang de la matrice étaient obtenu comme nombre de pivot aprés échelon-
nage de la matrice.

Théoréme du rang

Proposition - Isomorphisme canonique (de projection)
Soient E et F deuxK-e.v.et u € Z(E, F). Si S estun supplémentaire de Ker u
dans E alors I'application

ni: S—Imu
x— u(x)

est un isomorphisme de S sur Im u

Démonstration

Théoréme - Théoréme du rang
Soient E un K-e.v. de dimension finie, F un K-e.v. (de dimension quel-
conque) et u € Z(E, F). Alors

dimE = dimKer u+dimIm u =dimKer u+rg u

Démonstration

4.2. Application du théoréme du rang (Critere de bijection)

Proposition - Critere de surjection/injection
Soit ue Z(E, F).
— Si E est de dimension finie, alors u est de rang fini et rg u < dim E
avec égalité si et seulement u est injective.
— Si F est de dimension finie, alors u est de rang fini et rg u < dim F

avec égalité si et seulement u est surjective.

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



4. Théoreme (formule) du rang et conséquences

533

Démonstration

Si E et F sont de dimensions finies on a donc rg # < min(dim E, dim F)

Théoreme - Equivalences des caracteéres de u (cas dimension finie)

E,F deux K-espaces vectoriels de dimensions finies égales (dimF =
dim E). Soit u € Z(E, F). On a équivalence de

(Hrg u=dimE

(ii) u est injective

(iii) u est surjective

(iv) u est bijective (donc un isomorphisme)

Démonstration

Remarque - Dans la pratique : © endomorphisme

On exploite souvent ce théoreme dans le cas ou1 u € Z(E) et donc E = F. Les
deux espaces ont nécessairement la méme dimension.

Il n'y a plus d’hypotheses spécifiques a vérifier. Ce qui donne la caractérisa-
tion des automorphismes qui suit

Proposition - Conservation du rang
E, F,G trois K-espaces vectoriels de dimensions finies, u € Z(E,F), v €
Z(EG).

— si u est un isomorphisme, alors rg (vou) =1g v

— si v estun isomorphisme, alors rg (vou) =rg u

Démonstration

On obtient ainsi la caractérisation des automorphismes en dimension finie :
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Théoreme - Cas des endomorphismes

E un K-espace vectoriel de dimension finie 7. Soit u € £ (E). On a équiva-
lence de

@Drgu=n

(ii) u est injective

(iii) u est surjective

(iv) u est bijective (donc un automorphisme, soit u € GL(E))

(v) il existe v € Z(E) tel que vo u = Idg (u admet un inverse a gauche)

(vi) il existe w € £ (E) tel que uo w = Idg (u admet un inverse a droite)

4.3. Itération

Proposition - Majoration de rg (v o 1) en toute généralité
Soient ue Z£(E,F) et ve £L(FG), avec E et F de dimensions finies.
Alors rg (vo u) < min(rg u,rg v).

Démonstration

/~Savoir faire - Exploiter le rang d’endomorphisme restreint ou composé
Pour les inégalités sur les rang, ou les inclusions Im /Ker, on exploite :
— la composition (cf. démonstration précédente)
— larestrictiona Asevde E: uj4
On pense : yja: A — F, x — u(x), on a Keruyj4 = Kerun A donc
1g uja =dim A—dim (Kerun A).

Lexercice suivant est classique (premiere question). La fin est importante :
Exercice

Soit u € £ (E), avec E de dimension finie. On note, pour tout r € N, I, = Im u’ et
ir =dim(I;) et Kr =Keru et ky =dimK;.

1. Montrer que Ky < K41 et Ir4+1 < I. Qu'en déduire pour les suites (iy) et (kr).

2. Montrer que K, = K41 si et seulement si I41 = I.

3. On note s =min{r | K, = K;+1}. Montrer que s existe et que V r = s, K; = K (et
I =I).
Montrer que dans ce cas E = K5 & I5.

4. Montrer que pour tout r < s+ 1, ky41 — kr < kr — kr—1.
On dit que la suite (k) est concave. De méme ici, on dirait que (i;) est convexe.
On pourra considérer H tel que Kr+1 = H® K et ujg : H— K, bijective. ..

4.4. Formes linéaires et hyperplans

Bases duales
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P

Définition - Forme linéaire coordonnée
Soit 2 = (e;)jc; une base de I'espace vectoriel E.
On note e} I'unique forme linéaire sur E vérifiant

; 1sii=j
. o) =8 = J
vjel,e,-(eﬂ—‘si_‘{ Osii#j

\On I'appelle forme linéaire coordonnée d’indice i relative a la base 2

Autre nom :

Proposition - Base duale
Soit 2 = (e;)je; une base de 'espace vectoriel E.

Alors B* = (e;) 1 est une base de £ (E,K) = E*, appelée base duale de %8

On aurait pu exploiter les dimensions, mais pédagogiquement, on montre

plus:

Démonstration

Hyperplan et équation d'un hyperplan

Proposition - Noyau de forme linéaire et hyperplan
Soit H un sous-espace vectoriel de E. On a équivalence des propriétés :

(1) il existe une droite vectorielle D telle que E= H& D

(2) il existe une forme linéaire non nulle ¢ telle que H = Ker ¢

Si ces propriétés sont vérifiées on dit que H est un hyperplan (vectoriel) de
E.

Démonstration

Pour aller plus loin - Produit scalaire

On appelle crochet de dualité, 'application bi-
linéaire de E* x E dansK :

n n n
< Z a,-e?l Z bjej>= Z ayby
i=1 j=1 k=1

C’est une forme de produit scalaire. Elle fait le
lien algébrique avec les fameux « bra-kets » de
la mécanique quantique.
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D’apres la démonstration.

Corollaire - Choix d'un supplémentaire
Si H est un hyperplan de E et si a ¢ H, alors E = H @ vect(a).

Corollaire - Version forme linéaire
Soit ¢ € E*. Alors pour tout x ¢ Ker ¢, E = Ker ¢ & vect(x).

Démonstration

Proposition - Proportionnalité des formes linéaires
Deux formes linéaires ¢ et ¥ sont proportionnelles si et seulement elles
ont le méme noyau, c’est-a-dire que pour ¢, v € Z(E,K),

Kerg =Kery © I e K" | = Ay

Démonstration

Définition - Equation d’un (hyper)plan
Soient H un hyperplan et ¢ € Z(E,K) tels que H = Ker ¢. Alors 'equation
¢(x) = 0 s’appelle une équation de H.

e Remarque - Infinité d’équations
H admet alors une infinité d’équations, obtenues en écrivant A¢(x) = 0 avec
A eK\{0}.
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Proposition - Cas de la dimension finie

Les hyperplans d'un espace vectoriel E de dimension finie n sont exacte-
ment les sous-espaces de dimension n — 1.

Dans une base (ey, ..., e;) donnée, ce sont les ensembles d’équation
axy+---+apx,=0

ou (ay,...,a,) € K"\ {0kn}, (x1,...,x,) étant les coordonnées de x € E dans
la base (ey,...,en).

Démonstration

Intersection d’hyperplans et dimension

<*Heuristique - Une équation : un degré perdu
On commence dans un espace vectoriel de dimension 7.
A chaque équation, la dimension diminue de une unité.

Les seules exceptions : si une nouvelle équation est une combinaison linéaire des précé-
dentes.

Réciproquement, un sous-espace vectoriel de dimension r dans E de dimension n est le
noyau de n — r forme linéaires, ou autrement écrit est obtenu a partir de n — r équations.

Proposition - Réduction des dimensions
Soient m € N* et Hy, ..., Hy, des hyperplans de E. Alors

s

dim (

Hi) =dimE - m.
i=1

On commence par un lemme

Lemme -

Soit ¢ une forme linéaire définie sur E et F, un sev de E de dimension finie
égale a p.
Alors F nKer ¢ est de dimension finie et p —1 < dim (F nKer¢) < p.

Précisément : dim (FnKer¢g) = p & F c Kerg © rg ¢|r = 0. Sinon dim (Fn
Kergp)=p-1.

Démonstration
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Démonstration

Proposition - Expression exacte

Soient E de dimension n, F un sous-espace vectoriel de E de dimension
n—m (m € N*). Alors il existe m hyperplans Hj, Hy, ..., H, de E tels que
F= ﬂ?il H;

Démonstration

Autre point de vue

~*Heuristique - Autre approche

On peut exploiter la force brute des espaces vectoriels et étre plus efficace dans la démons-
tration.

Le cott : on perd le coté algorithmique de la démonstration.
En revanche, il est bon d’avoir deux points de vue...

Rappel :

Proposition - Réduction des dimensions

Soient m € N* et Hy, ..., Hy, des hyperplans de E. Alors

s

dim(' H,-) >dimE - m.

i=1
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Démonstration

Interprétation géométrique

Corollaire - Interprétation géométrique
Dans R? :
— les hyperplans vectoriels sont les droites vectorielles
— l'intersection de deux droites est de dimension = 0 (en fait 0 ou 1)
— le s.e.v. {Opz}, de dimension 0 = 2 — 2, s’écrit comme intersection de
deux droites.
Dans R3 :
— les hyperplans vectoriels sont les plans vectoriels
— l'intersection de deux plans est de dimension = 1 (en fait 1 ou 2)
— les droites, de dimension 1 = 3—2, s’écrivent comme intersection de
deux plans
— le s.e.v. {Op2}, de dimension 0 = 3 — 3, s’écrit comme intersection de
trois plans.
Dans les deux cas, on retrouve bien les équations usuelles de droites vec-
torielles dans R?, de plans vectoriels ou de droites vectorielles dans R.

5. Rang (et noyau) d'une matrice

5.1. Rappel sur la résolution d’un systeme linéaire

Proposition - Résolution (théorique) d’un systéme linéaire
On doit résoudre le systéme (S) : AX = b d'inconnue X, avec A € 4y ,(K).
— Sib¢Im A, alors & =@
— Sibelm A.
Alors il existe Xo € 4y (K) tel que A x Xo = b.

AX=b< A(X-Xy) =0 X - Xy eKerA

Alors ¥ = Xp+Ker A= {Xy+ Y, Y € Ker A} (espace affine).
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/~Savoir faire - Résolution pratique d’un systéme linéaire
Soit, a résoudre, le systéme non carrée AX = b.

1. On exploite la méthode du pivot de Gauss pour
systeme.
On obtient un systeme de la forme

échelonner le

Pour aller plus loin - Action d’un groupe sur
un ensemble

On dit qu'un groupe G agit sur un ensemble E,

s'il existe une opération (loi interne) naturel

GxE—E (a,x)—a-x

qui vérifie eg - x = x, pour tout x et (ax b) - x =
a-(b-x).

La connaissance de G donne des informations
sur cette action.

Et réciproquement, la connaissance de cette
action donne des informations sur G et E.

Les actions de groupe ont envahit les ma-
thématiques et la physique depuis les années

ay Xy +aipXxy ettt a1 pXy = b,
. r équations
. principales
(E) Arr+kXr+k Tt arpXp = Dr
0 = br+1 n—r
: : équations
0 = b, auxiliaires

Dans ce cas r est appelé rang du systéme.
Et x1, X2 ... X, sont appelés les inconnues principales et x; 41, Xr+2,...
sont appelés les inconnues auxiliaires ou les variables libres

2. On commente le systeme échelonné :
— Combien d’équations principales : c’est le rang de A (voir plus
bas)
— Combien de variables libres?
— Quel variable libre choisir?
— Exprimer les variables principales en fonction des variables
libres
3. Donner la forme de I'ensemble des solutions du systéme sous
forme de combinaisons linéaires
Exercice
X +y +z 2 X +y +z 2
Résoudre x +y -z = -1 et x 4y -z = -1
2x  +2y = 3 2x  +2y = 1

«*Heuristique - Synthese
On avu qu’il y a une correspondance (calcul de I'inverse) entre la donnée d'une matrice A
etla donnée d'un systeme . : AX = 0. Mais :
— Lerg (A) est défini a partir des colonnes de A : rg (A) = dim (Im A) (voir plus loin)
— Lerg (&) est défini a partir des lignes de . (donc de A) : nombre pivots non nuls
lorsqu’on échelonne .
Est-ce toujours la méme valeur? Et si oui, comment le démontrer ? Avec le noyau, ou mieux
avec la transformation qui va suivre...

5.2. «Action» des matricessur K" = 4, (K)

D’apres le produit par blocs :

Proposition - Multiplication a droite par une colonne : c.l. des co-

lonnes

Soit A= (C1|C;|---|Cp), une matrice (association de colonnes de taille r).
x1

Soit X = , une matrice colonne.

X
P
On a alors AX qui est une matrice colonne, plus précisément :
AX=x1C1+x2Co + -+ +xpCp,
combinaison linéaire des colonnes de A, avec les coefficients-scalaires de

X.

1950... AP -
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Ce résultat justifie le point de vue suivant :

5.3. Image d’'une matrice et famille génératrice

(Déﬁnition - Image et rang d’'une matrice
Soit A= (C1|Ca|---|Cp) € My, p(K).
On appelle image de A, 'ensemble
ImA =vect(Cy,Cy,...,Cp)
={x1C1+ 102G + -+ + xpCp, X1, X2,... Xp EK} .
={Ax X | X e My (K)}
11 s’agit du sous espace vectoriel de .4, 1 (K) (des matrices colonnes) en-
gendré par les p colonnes de A.

\On appelle rang de A, noté rg (A), la dimension de Im A. )

Par définition, Im A (de dimension r) est un s.e.v. de .41 (K) (de dimension
n.
IIs sont égaux, si et seulement si ils ont la méme dimension :

Proposition - Famille génératrice, rang d’'une matrice

Soit A= (C1|Cz|---|Cp) € My, (K). Supposons que le rang de A est r.

Alors (Cy, Cy,...,Cp) est génératrice de 45,1 (K), i.e. Im A = 4y 1 (K)
si et seulementsir=n

Remarque - Pour les systémes linéaires
On reprendra ce résultat lors de I’étude complete des systemes linéaires

5.4. Noyau d’'une matrice et famille libre

Lo Analyse - Les colonnes de A forment-elles une famille libre?

Définition - Noyau d’'une matrice

Soit A€ My, p (K).

On appelle noyau de A, I'ensemble
KerA={Xe€ ) (K)| AX =0}.

Il s’agit d’'un sous espace vectoriel de .41 ().

Exercice
Démontrer qu'’il s’agit bien de sous-espaces vectoriels.

D’apres I'analyse faite quelques lignes plus haut :
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Proposition - Famille libre, noyau d’'une matrice
Soit A= (C1|Cy|---|Cp) € Mp,p(K).
(C1,Cy, ..., Cp) est une famille libre de .4, 1 (IK) ssi Ker A = {0}

5.5. Théoréeme durang

Théoréme - Théoréme du rang
Soit A€ My, (K). Alors : dim (Ker A) +1g (A) = p

Démonstration

5.6. Bilan: nouveau critere d’inversibilité (pour une matrice
carrée)

Théoréme - Noyau de A, image de A et inversibilité
Soit A € A, (K).
Alors, les quatre propositions suivantes sont équivalentes :
i) A estinversible
ii) Ker A={0}
iii) Im A = Mu1(K)
iv) lerangde Aestégalan

[ Attention - Les ensembles du contexte
11 faut bien faire attention qu’ici la matrice carrée de taille n x n agit sur
I'espace des matrices colonnes de taille 7 x 1.
Ici p = n, cela est nécessaire pour espérer que la matrice soit carrée.
On étudie donc alternativement les actions de A sur les deux espaces
My n(K) = M, (K) (premiere partie précédente) et .4, (K) (sur cette
partie)
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>

Démonstration
Exercice
1 2 3 1 -2 1
Avec A=| 4 5 6 etB=| -2 4 -2 |,onvoitque AxB=0.
-1 -2 -3 1 -2 1

Pourquoi est-il simple de voir (autrement) que A et B ne sont pas inversibles ?
Quelles sont les dimensions des noyaux et images de A et de B

5.7. Action: PQ)-M—PxMx Q!

< Heuristique - Précision sur les classes d’équivalence

Lorsque deux matrices sont équivalentes, on dit qu’elles sont dans une méme classe
d’équivalence.

La bonne habitude consiste alors a décrire cette classe d’équivalence en choisissant un
représentant plus ou moins naturel (le plus simple).

(Comme pour 'angle principal 09 € [-n,7[ représentant de la classe d’équivalence
0] elt = a, avec |a| =1} = {0y + 2km, k € Z3).

Pour y arriver, une bonne méthode consiste d’abord a chercher un invariant, c’est-a-dire
un objet (mathématique) caractéristique des classes d’équivalence

T(A) = T(B) < A et B sont équivalentes

Cet invariant est le rang de A. Et le représentant sera la matrice J (n, p)

Nous avons vu que toute matrice inversible pouvait s’écrire comme pro-
duit de matrices élémentaires (transvection, dilatation, transposition) (il suf-
fit d’appliquer I'algorithme de Gauss a son inverse).

Remarque - Inversibilité comme un cas particulier...

Nous avons vu que les opérations élémentaires conservent le caractere d’in-
versibilité d'une matrice.

Peut-étre conservent-elles quelque chose de plus «large », autrement dit I'in-
versibilité serait qu'un cas particulier.

En effet, elles conservent le rang. Une matrice A est alors inversible ssi r = n.
Lo Analyse - Reprise de I'algorithme de Gauss
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Proposition - Conservation du rang
Soit A€ My, (K).

Pour toute matrice U € GL,(K) (inversible!), alors rg (U x A) =g (A).
Pour toute matrice V € GL, (K) (inversible!), alors rg (A x V) =rg (A).

Démonstration

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



5. Rang (et noyau) d’'une matrice

545

11 découle alors de 'algorithme du pivot de Gauss :

Proposition - Rang d’'une matrice

Soit A, une matrice de .4, , (K).

rg (A) est égal au nombre de pivots (non nul) de toute matrice échelonnée
obtenue a partir de I’algorithme de Gauss appliqué a A.

C’est-a-dire, rg (A) est le nombre de pivots de toute matrice échelonnée
équivalente a A

Démonstration

(s N
Définition - Matrice « J; »
Soient n, p deux entiers et r < min(n, p).

P N lsii=j<r
On définit /- (n, p) = (a;j)1<i<n,1<j<p € An,p([K) O Ocij{ /

0 sinon
1 0 0 oo oo (f)
0
Jmp=[0 - 1 0 . .0 =( I Ow—r)
0 0 0 0 On-r,r On—r,pfr
0 0O 0 oo aca (]

\Op'q étant la matrice nulle de .4, 4(K).

En I'absence d’ambiguité sur la taille de la matrice on la note J;.

Théoréme - Représentant normal

rg (A) = r si et seulement si il existe (P,Q) € GL,(K) x GL,(K), tels que
A=PJ. Q!

si et seulement si A et J, sont équivalentes.

Par transitivité avec J; :

Corollaire - Invariant
A et B sont équivalentes ssirg (A) =rg (B)

Démonstration

Proposition - Rang dela AT
g (A7) =rg (A)
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Démonstration

<*Heuristique - Autre interprétation (1)
D’abord interprétons le calcul.

Considérons AQ = PJ;. Ecrivons Q et P en ligne de colonnes
AQ = (ACy]... ACp).

Alors que PJy = (C{|---IC},) x Jr = (C{|---1C}|O]--- O).
Sir=dimA.

1 Q = (C1l--+1Cp) donc

(Y7,...Y; est une base Im A, 3 Cj ...C; tel que Y; = AC; et on compléte avec une base du
noyau.
On obtient Q, puis P...

Ici, on exploite a fond le théoreme du rang.

< Heuristique - Autre interprétation (2)

On peut aussi voir cela comme un changement de base de .41 (K) et de J[p,l (K) avec
A llp,1 (K) — Mp,1 (K) (canoniquement).

5.8. Matrices extraites

( )
Définition - Matrice extraites

On appelle matrice extraite de A toute matrice obtenue en supprimant une
ou plusieurs lignes, une ou plusieurs colonnes de A.

J/

Proposition - Extraction est diminution du rang
Soit B une matrice extraite de A, alors rg (B) <rg (A).

Démonstration

On en déduit une méthode pour connaitre le rang d’'une matrice :

Proposition - Voir le rang d’'une matrice
Soit A€ My, (K).

Alors rg A est’ordre maximum d'une matrice carrée inversible extraite de
A.

Démonstration
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Corollaire - Majoration du rang
Soit A€ My, (K), alors
rg A<min(n, p).

Démonstration

Les propositions suivantes sont déja connues, mais leurs interprétations sont
nouvelles : & partir des applications linéaires. ..

6. Bilan

Syntheése

~» On reprend une remarque précédente : les éléments de E s’écrivent
les uns a partir des autres par addition et multiplication par constante.

Ces descriptions sont potentiellement multiples : nous préférons la

description unique qui élimine les quiproquos.

Deux questions :

— est-il possible que V u,3!(v, w) tel que u = v+ w? Quel contrainte
sur v, w? La réponse, ils sont pris dans des ensembles supplémen-
taires (deux conditions : existence et unicité)

— est-il possible que V u,3!(A;)ies € K! tel que u = Z/liei? Quel

€
contrainte sur (e;) ;e ? Laréponse, il s’agit d'une familllelgénératrice
de E et libre (deux conditions : existence et unicité)

~+ Emerge alors la notion de dimension finie. Si dans un espace, il existe
une base finie de cardinal n, alors toutes les bases sont du méme
cardinal. C’est trés pratique (cela réduit alors la double contrainte
précédente a une seule contrainte.)

~> Lorsque les espaces E et F sont de dimensions finies, 'espace Z (E, F)
est alors isomorphe a #gim £ dim r (). On retrouve I'ensemble des ré-
sultats sur les matrices, ils s’interpretent de facon renouvelée et réci-
proquement A gim ,dim r (K) éclaire 'espace £ (E, F).

Et en particulier, on peut retrouver le théoréme du rang.
~> Enfin, les formes linéaires nous occupent tout particulierement, car

elles sont comme la dualité de la notion de base. Elle permette de
reprendre la notion de dimension, par décroissance.
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Savoir-faire et Truc & Astuce du chapitre
— Savoir-faire - Base incomplete
— Savoir-faire - Montrer qu'une famille est une base
— Savoir-faire - Montrer que deux espaces vectoriels sont égaux
— Savoir-faire - Exploitation (lien matrice/isomorphisme)
— Savoir-faire - Petite aide mnémnotechnique
— Truc & Astuce pour le calcul. Etant données A et B, trouver 8, 8’ et u.
— Savoir-faire - Exploiter le rang d’endomorphisme restreint ou composé
— Savoir-faire - Résolution pratique d'un systéme linéaire
Notations
Notations Définitions Propriétés Remarques
rg(xy, x2,...Xn) dim (vect(x1, x2,...Xxp))
rg (u) Rangde u rg (1) = dim (Im u) dimE = dim (Ker A) +rg (A), u in-
versible ssirg (A) =dimE.
Tr(w) Trace de u Tr(u) = Tr(# g (w)) (quelle que soit %B). Tr(uov) =Tr(vouw),
si p projecteur : Tr(p) =rg (p)
Im (A4) Image de la matrice A Im (A) = vect(Cy(A)) = {AX; X € Mp1 (K)}
Ker (A) Noyau de la matrice A Ker (A) = {X € Mp1 | AX =0} Ainversible ssi Ker A = {0}
rg (A) Rangde A rg (A) = dim (Im A) p = dim(Ker A) + rg (A), A inver-
sible ssirg (4) = p, rg (A) =g (AT)
Jr(n, p) = Matrice J, 1g (A =r<=3IPQeGLyK) x GLp(K) tel
I Orp-r que A=Px JrxQ
On-r,r On—r,p—r

Retour sur les problémes

108.

109.

110.

111.
112.

113.

En fait, c’est tout le but de ce cours de montrer qu’ll s’agit de terminer
LES (unique, car c’est une famille libre) coordonnées de (2,1) avec la
famille (génératrice de R?) : ((1,1),(1,2)).

Ici: (2,1) =3(1,1) - 1(1,2).

En revanche, ((1, 1,1),(1,2, 1)) ne forme pas une base de R3. Lécriture
de (2,1,0) comme c.l. de cette famille n’est pas assurée, mais pas né-
cessairement impossible non plus a priori. Il faut calculer...

En regardant les deux premiére valeurs, on a nécessairement (2,1,-) =
3(1,1,1)-1(1,2,1) = (2,1,2). Ce n'est donc pas possible.

Il n'y a pas unicité, la famille considérée n’est pas libre.

Eneffet: (2,1,0)=3(1,1,1)+0(1,2,1)-(1,2,3)+0(1,-1,0) = -3(1,1,1) +
3(1,2,1)+0(1,2,3) +2(1,-1,0).

Ce n'est important que si l'on veut étre stir de ne pas avoir de quipro-
quo. Donc c’est souvent tres important!

Si E est de dimension finie, on peut trouver H mais il n'est pas unique.
Comment unifier tous les espaces vectoriels H'? On peut exploiter la
structure affine. Dans la marge vous trouverez des idées.

Avec un produit scalaire, H* est alors un espace supplémentaire de H,
naturelle.

Cours

Cours: c’est'isomorphisme de £ (E, F) — ., (K) étant données une
base pour E et une pour F.

Elles sont équivalentes, voire semblable si E = F et qu’'on considére les
mémes bases.
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