
Chapitre 25
Espace vectoriel de dimension
finie

Les espaces engendrés par une famille finie de vecteurs sont de dimension finie. On
démontre alors que, toutes les familles libres et génératrices de cet ensemble F ont
le même cardinal. Cet invariant (appelé dimension) est essentiel dans l’étude des
espaces de dimension finie et permet de simplifier l’étude.
Nous concentrons sur les forme linéaire qui sont des applications linéaires des plus
simples : les noyaux de ces applications sont des hyperplan (de co-dimension 1, i.e.
supplémentaire à un espace de dimension 1). Dans le cas général, les applications
linéaires sont des matrices (et réciproquement). Nous trouverons alors un résultat
important qui formalise une heuristique sur les systèmes : le théorème du rang. Si
on change de base, les applications ne changent pas, seule la matrice de descrip-
tion évolue. Il doit donc y avoir un lien très profond entre les matrices associées à
une même application linéaire mais écrite dans des bases différentes. Matricielle-
ment, il s’agit de la relation de similitude entre matrices. . .
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1. Problèmes

Est-ce que (2,1) est une combinaison linéaire de (1,1) et de (1,2) ?
Assurément? Faut-il nécessairement connaître les nombres ω et ε tels
que (2,1) =ω(1,1)+ε(1,2) pour répondre à la question?
Et (2,1,0) est une combinaison linéaire de (1,1,1) et de (1,2,1)?

Problème 108 - Combinaison linéaire

Et (2,1,0) est une combinaison linéaire de (1,1,1) de (1,2,1), de (1,2,3) et
de (1,↗1,0).
Il semble que plus on ajoute de vecteurs dans la combinaison linéaire,
« plus la réponse à la question précédente est vraie ».
Et y a-t-il unicité dans cette écriture ? Est-ce important?

Problème 109 - Combinaison linéaire (unique)

Soit H un sous-espace vectoriel de E .
Existe-t-il un sev H ↘, unique ?, tel que H ≃H ↘ = E .

Problème 110 - Trouver un/le espace supplémentaire

Si B = (e1, . . .en) est une base de E , on sait que la description de chaque
vecteur est unique :

⇐ x ⇒ E ,⇑ !(x1, . . . xn) tel quex =
n∑

i=1
xi ei

Notons [·]Bi : x ↑↓ xi . Alors clairement [ϑx +µy]Bi = ϑ[x]Bi +µ[y]Bi , donc
cette application est linéaire. C’est l’application i -ieme coordonnées.
Et si au lieu de découper E en espace de dimension 1, on le découpe en
espace plus gros : E =≃r

i=1Ei .
Que peut-on dire de x ↑↓ xi avec x =∑r

i=1 xi où pour tout i ⇒Nr , xi ⇒ Ei .

Problème 111 - Coordonnées et projections

On suppose que B = (e1, . . .ep ) est une base de E et C = ( f1, . . . fn), une
base de F .
Alors f ⇒L (E ,F ) est parfaitement connue par l’ensemble des valeurs

⇐ j ⇒Np , f (e j ) =
n∑

i=1
ϑi , j fi

Donc la connaissance de f est équivalente à celle de (ϑI , j ), et donc à celle
d’une matrice.

Problème 112 - f ⇒L (E ,F ) avec E et F de dimension finie
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On a donc, pour deux bases fixées a priori B = (e1, . . .ep ) est une base de
E et C = ( f1, . . . fn), une bijection :

L (E ,F ) ↗↓Mn,p

Les opérations +,↔ . . . se correspondent-elles?
Et plus généralement, comment ces deux points de vue s’éclairent-ils
mutuellement?

On vient de voir que pour deux bases fixées a priori B = (e1, . . .ep ) est
une base de E et C = ( f1, . . . fn), on a une bijection :

L (E ,F ) ↗↓Mn,p

Et si on change de base, mais qu’on garde l’application linéaire f , que
peut-on dire des matrices qu’on obtient?

Problème 113 - Changement de bases

2. Bases et dimension

2.1. Existence et unicité de l’écriture de tout vecteur dans une
base

On dit qu’une famille de vecteurs de E est une base de E
si elle est une famille libre et génératrice de E .

Définition - Base d’un espace vectoriel

On dit bien UNE base et non LA base de E . . .
Attention - Non unicité

Exemple - Nombreux exemples
• une base de R2 est
• une base du R-e.v C est
• une base de {y ⇒F (R,R) | y ↘↘+ y ↘ ↗2y = 0} est

Existent-ils deux bases de C4 telles que les
seuls vecteurs communs à ces deux bases
soient (,0,1,1) et (1,1,0,0) ?
A quelle condition portant sur le scalaire x,
les vecteurs (1,1,1) et (1, x, x2) forment-ils une
base de R3 ?
A quelle condition portant sur le scalaire
x, les vecteurs (0,1, x), (x,0,1) et (x,1,1 + x)
forment-ils une base de R3 ?

Pour aller plus loin - Pour les impatients. . .
On définit la famille (ei )1⇓i⇓n deKn par

e1 = (1,0, . . . ,0);e2 = (0,1,0, . . . ,0); . . . ;en = (0, . . . ,0,1).

Alors cette famille est une base duK-e.vKn appelée base canonique deKn .
La base canonique de Mn,p (K) est la famille (Ei , j )i⇒Nn , j⇒Np .
La base canonique deKn[X ] est (1, X , X 2, . . . , X n) = (X i )0⇓i⇓n , celle deK[X ]
est (X i )i⇒N.

Proposition - Bases canoniques deKn , de Mn,p (K) et deKn[X ]

Exercice
Déterminer une base du R-e.v. Cn .

STOP Remarque - Démonstration de la base canonique
On ne démontre pas le nom de canonique. Il s’agit en fait d’une trace de
l’histoire des mathématiques.
Quant à la démonstration de la base, on voit que c’est celle qu’on utilise
depuis toujours. . .
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Une famille B = (ei )1⇓i⇓n de vecteurs de E est une base de E si et seule-
ment si, pour tout x ⇒ E , il existe une unique famille (ϑi )1⇓i⇓n ⇒ Kn telle
que

x =
n∑

i=1
ϑi ·ei

ϑ1, . . . ,ϑn s’appellent les coordonnées (ou composantes) de x dans la base
B.

Théorème - Caractérisation de la base

D’après ce théorème, si B est une base de E , alors

ωB :Kn ↗↓ E , (ϑ1,ϑ2, . . .ϑn ) ↑↗↓
n∑

i=1
ϑi ei

est une application bijective : ⇐ x ⇒ E , ⇑ !(ϑi )i tel que x =
n∑

i=1
ϑi ·ei .

Les coordonnées de x sont alors les antécédents de x parωB .
Pour la démonstration qui va suivre, on va montrer :

— ωB est injective si et seulement si B est libre.
— ωB est surjective si et seulement si B est génératrice de E .

Heuristique - La fonctionω

Démonstration
ωB est bien définie.
ωB est surjective ssi ⇐ x ⇒ E , ⇑ (ϑ1, . . .ϑn) ⇒ Kn tel que x =
ωB

(
(ϑi )

)
=

n∑
i=1

ϑi ·ei .

DoncωB est surjective si et seulement si B est génératrice de
E .
ωB est injective ssi [⇐ (ϑi )i , (µi )i ⇒Kn , ωB

(
(ϑi )

)
=ωB

(
(µi )

)
=⇔

(ϑi )i = (µi )i ]

ssi [⇐ (ϑi )i , (µi )i ⇒Kn ,
n∑

i=1
(ϑi ↗µi )ei = 0 =⇔⇐ i ⇒Nn ,

ϑi =µi ]
Donc ωB est injective si et seulement si B est une famille

libre. Finalement :
B est une base de E

si et seulement si B est libre et génératrice de E
si et seulement siωB est injective et surjective
si et seulement siωB est bijective
si et seulement si pour x ⇒ E , il existe une unique (ϑi )1⇓i⇓n ⇒

Kn telle que x =
n∑

i=1
ϑi ·ei

On dit qu’« une famille est génératrice (ou une base)DE E », si on oublie
l’objet indirect (« de . . . ») cela ne veut rien dire.
En revanche, une famille est libre, indépendamment de l’espace vecto-
riel considéré (mais pas du corps). On peut donc se contenter de « une
famille est libre ».

Attention - Ne pas oublier

STOP Remarque - Base infinie
Pour une base infinie on a un résultat similaire avec une famille presque nulle
(ϑi )i⇒I .

Application - Exemples classiques
• les coordonnées de a + i b dans la base (1, i ) du R-e.v C sont
• les coordonnées de (x1, . . . , xn) ⇒Kn dans la base canonique deKn sont
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2. Bases et dimension 509

2.2. Critère pour être une base

Soit F = (e1,e2, . . .ep ) une famille d’éléments de E .
On a les équivalences :

(i) F est une base de E .

(ii) F est une famille libre maximale (dans E).

(iii) F est une famille génératrice minimale de E .

Proposition - Base

On commence par démontrer deux lemmes :

Soient (e1, . . . ,ep ) une famille libre de E et x ⇒ E .
x ↖ vect(e1, . . . ,ep ) si et seulement si (e1, . . . ,ep , x) est encore libre.

ou x ⇒ vect(e1, . . . ,ep ) si et seulement si (e1, . . . ,ep , x) est lié

Lemme - Complétion libre

Soit (e1, . . . ,ep ,ep+1) une famille de E .
ep+1 ⇒ vect(e1, . . . ,ep ) si et seulement si vect(e1, . . . ,ep ,ep+1) =

vect(e1, . . . ,ep )

Lemme - Réduction liée

Si (e1, . . . ,ep ) une famille libre de E et x ↖ vect(e1, . . . ,ep ), alors (e1, . . .ep ) n’est pas maxi-
male.
Si (e1, . . . ,ep ,ep+1) une famille génératrice de E et ep+1 ⇒ vect(e1, . . . ,ep ), alors
(e1, . . .ep ,ep+1) n’est pas minimale.

Heuristique - Interprétation en terme de famille libre maximale et fa-
mille génératrice minimale

On commence par démontrer les lemmes puis la proposition.

Démonstration
Lemme de la complétion libre
Si x ⇒ vect(e1, . . .ep ), alors x est une c.l. non triviale de (e1, . . .ep ).

Donc la famille (e1, . . .ep , x) ne peut pas être libre.
Réciproquement. Supposons que x ↖ vect(e1, . . .ep ) (famille
libre).

Soient ϑ1, . . .ϑp ,ϑ ⇒K tels que
p∑

i=1
ϑi ·ei +ϑ ·x = 0.

Si ϑ ↙= 0, alors x =
p∑

i=1

↗ϑi
ϑ ei , donc x ⇒ vect(e1, . . .ep ) ce qui est

faux.

Donc ϑ= 0, et donc
p∑

i=1
ϑi ·ei = 0 et donc ⇐ i , ϑi = 0

Par conséquent, la famille (e1, . . . ,ep , x) est libre.
Lemme de la réduction liée
Si vect(e1, . . .ep ,ep+1) = vect(e1, . . .ep ).

Alors ep+1 élément du premier ensemble est dans le second.
Donc ep+1 ⇒ vect(e1, . . .ep ).

Réciproquement. Notons qu’on a évidemment l’inclusion :
vect(e1, . . . ,ep ) ∝ vect(e1, . . . ,ep ,ep+1).
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Et si x ⇒ vect(e1, . . . ,ep ,ep+1), alors x =
p+1∑
i=1

xi ei =
p∑

i=1
xi ei +

xp+1ep+1.

Et comme ep+1 =
p∑

i=1
ai ei , on a donc x =

p∑
i=1

(xi +xp+1ai )ei .

Et ainsi vect(e1, . . . ,ep ,ep+1) ∝ vect(e1, . . . ,ep ).
Par double inclusion, on a le résultat attendu

Démonstration

On démontre les résultats par implications successives (i ) ⇔
(i i ) ⇔ (i i i ).

— Si F = (e1, . . . ,en) est une base de E .
C’est donc une famille libre.
Et si x ⇒ E , alors x s’écrit comme une combinaison linéaire
des éléments de F .

Ainsi (e1,e2, . . . ,en , x) n’est pas libre. Et donc (e1,e2, . . .en)
est libre maximale.

— Si F = (e1, . . . ,en) est libre maximale,
alors pour tout x ⇒ E , nécessairement (e1,e2, . . . ,en , x) n’est
pas libre et donc x ⇒ vect(e1, . . .en).

et donc (e1, . . .en) est génératrice de E .
Elle est minimale. En effet, considérons i ⇒Nn .

alors si F \ {ei } était génératrice de E , alors ei ⇒
vect(e1, . . . ,ei↗1,ei+1, . . .en)

et comme F \ {ei } est toujours libre, on aurait
(e1,e2, . . .en) non libre. Absurde.

— Si F = (e1, . . .en) est génératrice minimale, alors F est gé-
nératrice.
Si F est liée, alors il existe i ⇒Nn tel que ei est une combi-
naison linéaire des autres.

Donc E = vect(e1, . . .en) = vect(e1, . . .ei↗1,ei+1 . . . ,en),
par réduction liée.

et ainsi F ne serait pas minimal. Absurde. Donc F est
libre.

2.3. Dimension d’un espace vectoriel

Existence de bases

Un K-espace vectoriel E est dit de dimension finie s’il admet une famille
génératrice finie.
Par convention {0E } est un espace de dimension finie.
S’il n’est pas de dimension finie, E est dit de dimension infinie.

Définition - Espace de dimension finie

On a le théorème suivant très important :

Soit E ↙= {0E } un espace vectoriel de dimension finie.
Soit E = (e1, . . . ,ep ) une famille libre de E et F = ( f1, . . . , fq ) une fa-
mille génératrice de E , alors : il existe une base de E de la forme B =

Théorème - Théorème de la base incomplète (lemme de Steinitz)
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(e1, . . . ,ep ,ep+1, . . . ,en) où {ep+1, . . . ,en} ∝F (quitte à être vide).
En d’autres termes on peut compléter une famille libre de E en une base
avec des vecteurs pris dans une famille génératrice.

Démonstration

On considère N = {card(E ,G ) tel que G ∝F et (E ,G ) libre}.
— N est non vide. Car p ⇒ N , puisqu’avec G = ′, on peut

créer un élément de N .
— N ∝N.
— N est majorée par p +q .

Donc N admet un plus grand élément, que l’on note n. Néces-
sairement : p ⇓ n ⇓ p +q .
On note alors G0 la sous-famille de F tel que (E ,G0) est libre et
card(E ,G0) = n.
Par construction, (E ,G0) est libre.
En fait elle est maximale. On peut aussi montrer qu’elle est gé-
nératrice de E :

Pour tout f ⇒F , f ⇒ vect(E ,G0) (sinon, on compléterait).
Donc E = vectF ∝ vect(E ,G0).

Ainsi, vect(E ,G0) est une base de E .
Le lemme de Steinitz est démontré

STOP Remarque - Constructivité? Algorithme
La démonstration précédente est efficace et propre. Mais elle souffre du fait
qu’elle ne dit pas concrètement comment on s’y prend de manière efficace.
On pire, il s’agit de faire toutes les 2q réunions (E ,G ) pour G ∝F .
On a un algorithme de complétion de famille libre, en une base (si l’espace
est de dimension finie) - en q étapes :

Pour le théorème de la base incomplète, on exploite un algorithme plus
efficace. On suit l’algorithme suivant :

1 B=[e [ i ] for i in range ( 1 ,p ) ]
2 E=vect (B)
3 for i in range (q ) :
4 i f f [ i ] notin E :
5 B=B+[ f [ i ] ]
6 E=vect (B)
7 return (B)

L’algorithme termine car il est paramétré avec une boucle for.
L’algorithme renvoie la famille libre maximale, contenant ei , pour tout
i ⇒Np .
Par construction, pour tout i ⇒Nq , fi ⇒ vect(B),

— en effet, ou bien fi n’appartenait pas à B au moment du test, et
alors, on l’a mis dans B ,

— ou bien il en faisait partie et toujours à la fin.
D’après le lemme de réduction : vectF = E ∝ vect(B).
Donc B est également une famille génératrice de E .

Il faut également montrer que B est une famille libre.
En fait, pour tout i , Bi est libre d’après le lemme de complétion libre.
C’est donc également le cas en fin d’algorithme.

Savoir faire - Base incomplète
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Application - Compléter E = ((1,1,1), (1,↗1,↗1)) en une base de R3.
On considère la base de canonique F = ((1,0,0), (0,1,0), (0,0,1)) de R3.

(1,0,0) ⇒ vect((1,1,1), (1,↗1,↗1)), car (1,0,0) = 1
2 ((1,1,1)+ (1,↗1,↗1))

(0,1,0) ↖ vect((1,1,1), (1,↗1,↗1)) : si (a,b,c) ⇒ vect((1,1,1), (1,↗1,↗1)),
alors b = c.
On considère alors vect((1,1,1), (1,↗1,↗1), (0,1,0)).

Enfin, (0,0,1) ⇒ vect((1,1,1), (1,↗1,↗1), (0,1,0)) car (0,0,1) = 1
2 ((1,1,1) ↗

(1,↗1,↗1)↗2(0,1,0)).
Donc une base de R3 complétée à partir de E est ((1,1,1), (1,↗1,↗1), (0,1,0)).
On remarque qu’elle est constituée de 3 vecteurs.

A partir d’un ensemble réduit à l’unique élément {0},

Si E , non réduit au vecteur nul, est de dimension finie, alors de toute
famille génératrice de E on peut extraire une base.

Corollaire -

Tout espace vectoriel de dimension finie, non réduit au vecteur nul, admet
une base.

Corollaire -

Cardinal d’une base

En fait, on a mieux, en terme de cardinaux

Soit L une famille libre de E et G une famille génératrice finie de E , alors
L est finie et

CardL ⇓ CardG

Proposition - Relation entre cardinaux de familles libres/familles gé-
nératrices

Pour la démonstration, on améliore la démonstration du lemme de Steinitz.
En cherchant un invariant : comment transformer un à un les élément de G en élément de
L tout en gardant la génération de E .
On démontre que pour tout s ⇓ card(L ) = p (q = card(G )) :

il existe Is ∝Nq , tel que card(Is ) = q ↗ s et E = vect
(
(ei )i⇒Ns , ( f j ) j⇒Is

)

Heuristique - Amélioration du lemme de Steinitz

Notons que la démonstration qui suit est en fait constructive !

Démonstration

On note donc p = card(L ) et q = card(G ). Par récurrence, on
démontre que pour tout s ⇒ [[0, p]],

P s : « il existe Is ∝ Nq , tel que card(Is) = q ↗ s et E =
vect

(
(ei )i⇒Ns , ( f j ) j⇒Is

)
. »

— P0 est vraie.
— Démontrons P1, même si ce n’est pas nécessaire.

e1 ⇒ E , donc il existe (ϑ j ) j⇒Nq ⇒Kq tel que e1 =
q∑

j=1
ϑ j f j .

Comme e1 est non nul (sinon (e1, . . .ep ) ne serait pas libre),
il existe j0 tel que ϑ j0 ↙= 0.

Et donc avec I1 =Nq \{ j0}, on trouve f j0 = 1
ϑ j0

e1↗
∑

j ↙= j0

ϑ j

ϑ j0

f j .

Par réduction lié : E = vect(e1, f1 . . . fq ) =
(
(e1, ( f j ) j⇒I1

)
.
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2. Bases et dimension 513

— Soit s ⇒Np↗1. On suppose que P s est vraie.
es+1 ⇒ E = vect

(
(ei )i⇒Ns , ( f j ) j⇒Is

)
, d’après P s .

Donc il existe (µi )i⇒Ns , (ϑ j ) j⇒Is ⇒Kq tel que es+1 =
∑

j⇒Ns

µe j +
∑

j⇒Is

ϑ j f j .

Comme (e1, . . .es ,es+1) est libre, nécessairement, il existe
js tel que ϑ js ↙= 0.

Et donc, au passage, nécessairement l’ensemble Is est non vide.
Et donc avec Is+1 = Is \ { js}, on trouve f js = 1

ϑ js
es+1 ↗

∑

i⇒Ns

µi

ϑ js

↗
∑

j⇒Is+1

ϑ j

ϑ js

f j .

Par réduction lié : E = vect
(
(ei )i⇒Ns , ( f j ) j⇒Is

)
= vect

(
(ei )i⇒Ns+1 , ( f j ) j⇒Is

)
=

vect
(
(ei )i⇒Ns+1 , ( f j ) j⇒Is+1

)
.

Donc P s+1 est vraie.
Le résultat obtenu avec Pp donne le théorème de la base incom-
plète et nécessairement Ip ↙=′, donc card(Ip ) = q ↗p ∞ 0, donc
p ⇓ q .

Autre interprétation :

Soit (e1, . . . ,en) une famille de vecteurs de E .
Soit (x j ) j⇒J une famille de vecteurs de E qui sont combinaisons linéaires
de (e1, . . . ,en) (i.e. : ⇐ j ⇒ J , x j ⇒ vect(e1,e2, . . .en)).
Si CardJ ∞ n +1 alors nécessairement la famille (x j ) j⇒J est liée.

Corollaire - Maximalité de liberté

Si l’espace vectoriel possède une famille libre infinie, alors il est de dimension
infinie (au sens : il n’est pas de dimension finie).

Il existe des espaces vectoriels de dimension infinie. C’est en particulier le
cas de RN ou de F (R,R).

Corollaire - Espace vectoriel de dimension infinie

On pourrait aussi parle de famille maximale
libre (de plus grand cardinal), ou de famille
minimale génératrice (de plus petit cardinal).
Le cardinal de toutes ces familles est le même :
c’est la dimension de l’espace

Pour aller plus loin - Famille libre maxima-
le/génératrice minimale

Démonstration
Par exemple : notons pour tout m ⇒ N : ϖm = (ϖm,n)n⇒N, la suite
nulle en tout terme sauf le me qui vaut 1.

La famille (ϖm)m est une famille infinie libre de RN.

De même : notons pour tout m ⇒Z, fm : x ↑↓
{

1 si x ⇒ [m,m +1[
0 sinon

.

La famille ( fm)m est une famille infinie libre de F (R,R).

On dit qu’un module est de type fini, s’il est en-
gendré par une famille fini d’éléments.
On peut montrer que M est un A-module de
type fini s’il existe une bijection linéaire de M
sur An (n étant la taille de la famille fini engen-
drant M). On dit qu’il est libre, s’il possède une
base.
Enfin, on s’intéresse souvent pour des raisons
de décomposition structurelle aux A-module
de torsion M (de type fini), les modules de tor-
sion vérifiant :

⇐ x ⇒ M ,⇑ a ⇒ A | ax = 0

Pour aller plus loin - Module (3)
Toutes les bases d’un K-espace vectoriel E de dimension finie, non réduit
au vecteur nul, ont même cardinal.

Théorème - Dimension constante

Démonstration
Si E est de dimension finie, il admet une base B, de cardinal fini.
Notons n = CardB.
Soit B↘ une autre base de E .
Alors B↘ est libre, et B est génératrice de E , donc CardB↘ ⇓
CardB.

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



514 Espace vectoriel de dimension finie

Alors B est libre, et B↘ est génératrice de E , donc CardB ⇓
CardB↘.
Donc pour tout L de E , CardB↘ = CardB = n.

Soit E unK-e.v. de dimension finie, non réduit au vecteur nul.
On appelle dimension de E le cardinal commun de toutes ses bases.
On le note dimE ou dimKE .
Par convention dim{0E } = 0.

Définition - Dimension

Exemple - Compléter
• dimKK

n =
• dimRC=
• dimRC

n =
• dimKKn[X ] =
• Pour a ⇒C (R,K), dimK{y ⇒F (R,K) | y ↘+a(t )y = 0} =
• Pour (a,b,c) ⇒K3 fixé, a ↙= 0, dimK{y ⇒F (R,K) |ay ↘↘+by ↘+c y =
0} =
• Pour (a,b,c) ⇒ K 3, a ↙= 0,c ↙= 0, dimK{(un)n⇒N ⇒ KN |aun+2 +
bun+1 + cun = 0} =

Soit E unK-e.v. de dimension n ∞ 1. Alors :
— Une famille libre de E de cardinal p vérifie p ⇓ n et c’est une base si

et seulement si p = n.
— Une famille génératrice de E de cardinal p vérifie p ∞ n et c’est une

base si et seulement si p = n.

Théorème - Conséquence sur les cardinaux

Démonstration
E est de dimension n, on note B une base de E . On sait que
CardB = n.
Si L est libre, on a vu que CardL ⇓ n.
Supposons en outre que CardL = n.

Si L n’est pas maximale, alors on peut obtenir une famille
libre avec plus de vecteurs qu’une famille génératrice (la base).

Impossible. Donc L est maximale, c’est donc une base de E
La réciproque est assurée.

Si G est génératrice de E , on a vu que p ∞ n.
Supposons en outre que CardG = n.

Si G n’est pas minimale, alors on peut obtenir une famille
génératrice de n ↗1 vecteurs,

avec un vecteur de moins que la famille libre qui est la base.
Impossible.

Donc G est génératrice minimale de E . Il s’agit donc d’une
base de E .
La réciproque est assurée.

En général pour montrer qu’une famille d’un K-e.v. de dimension n
connue est une base on montre qu’elle est libre de cardinal n.
(Dans de rares cas, on montre que la famille est génératrice et du bon
cardinal).

Savoir faire - Montrer qu’une famille est une base
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Exemple - Dans E =Rn

La famille ( f1, . . . , fn) définie par

f1 = (1,0, . . . ,0), f2 = (1,1,0, . . . ,0), . . . , fn = (1,1, . . . ,1)

est une base de Rn .
Exercice

Montrer que la famille des polynômes (Nk )0⇓k⇓n est une base de Rn [X ]. Avec

N0 = 1 ⇐ k ∞ 1 : Nk = X ↔ (X ↗1) · · · (X ↗k +1)
k !

(On appelle cette base, la base de Newton. Elle est en particulier intéressante pour :
⇐ h ⇒Z, N (h) ⇒Z)

Dimension d’un produit

Soient E ,F deux K-e.v. de dimension finie. Alors E ↔F est de dimension
finie et

dimE ↔F = dimE +dimF.

Théorème - Dimension d’un produit cartésien

Démonstration

On note, pour simplifier, dimE = n et dimF = p.
Notons B = (e1,e2, . . .en) une base de E et B↘ = ( f1, f2, . . . fp ) une
base de F .

⇐ x = (a,b) ⇒ E↔F⇑ !(a1, . . . an) ⇒Kn ,⇑ !(b1, . . .bp ) ⇒Kp , x =
(

n∑

i=1
ai ei ,

p∑

j=1
b j e j

)
=

n∑

i=1
ai (ei ,0)+

p∑

j=1
bi (0, f j )

Donc B↘↘ =
(
(e1,0), (e2,0) . . . , (en ,0), (0, f1), (0, f2) . . . (0, fp )

)
est

une base de E ↔F .
Ainsi dim(E ↔F ) = n +p = dimE +dimF .

Par récurrence :

Soient E1, . . . ,Ek des K-e.v. de dimensions finies respectivement n1, . . . ,nk .
Alors E1 ↔ · · ·↔Ek est de dimension finie égale à n1 +·· ·+nk .

Corollaire - Dimension d’un produit fini d’espaces vectoriels

2.4. Sous-espaces vectoriels en dimension finie

Dimension d’un s.e.v

Soit E unK-e.v. de dimension finie. Soit F un s.e.v de E .
Alors F est de dimension finie, avec dimF ⇓ dimE .
De plus

dimF = dimE si et seulement si E = F.

Théorème - Dimension d’un sous-espace vectoriel
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Démonstration
F est un sev de E .
F est dimension ⇓ k est équivalent à : toutes les familles libres
de F ont un cardinal ⇓ k.
Supposons donc que F n’est pas de dimension finie, ou avec une
dimension > n.

Alors (contraposée) il existe une famille libre de F d’au moins
n +1 éléments.
Mais ces éléments sont également dans E (sur le même corps
K), donc dimE ∞ n +1. Ce qui est faux.

Pour montrer que deux K-e.v. E et F de dimension finie sont égaux, on
montre généralement une inclusion et l’égalité des dimensions.

Savoir faire - Montrer que deux espaces vectoriels sont égaux

Les sous-espaces vectoriels de R2, autres que {0R2 } et R2, sont les droites
vectorielles.
Les sous-espaces vectoriels de R3, autres que {0R3 } et R3, sont les droites
vectorielles et les plans vectoriels.

Corollaire - S.e.v. de R2 et R3

Soit (x1, . . . , xp ) une famille finie de vecteurs d’unK-espace vectoriel.
On appelle rang de la famille (x1, . . . , xp ) la dimension du sous-espace
vectoriel vect(x1, . . . , xp ) :

rg (x1, . . . , xp ) = dimvect(x1, . . . , xp )

Définition - Rang d’une famille de vecteurs

Comme (x1, . . . , xp ) est une famille génératrice de vect(x1, . . . , xp ), on peut
affirmer

rg (x1, . . . , xp ) ⇓ p. Et

rg (x1, . . . , xp ) = p =⇔ (x1, . . . , xp ) est libre

Proposition - Majorant et

Sommes et supplémentaires

Soient E unK-e.v. de dimension finie, E1 et E2 deux s.e.v de E
Soient (e1, . . . ,ep ) une base de E1 et ( f1, . . . , fq ) une base de E2.
Alors E1 et E2 sont en somme directe si et seulement si

(e1, . . . ,ep , f1, . . . , fq ) (juxtaposition des bases de E1 et E2) est libre.
Dans ce cas c’est une base de E1 ≃E2 et on a

dimE1 ≃E2 = dimE1 +dimE2.

Le résultat se généralise à plus de deux s.e.v.

Théorème - Base et dimension d’une somme directe
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Démonstration

Supposons d’abord que (e1, . . . ,ep , f1, . . . , fq ) est libre.
Montrons que ⇐(x1, x2) ⇒ E1 ↔E2, x1 +x2 = 0E ⇔ x1 = x2 = 0E .

x1 ⇒ E1 s’écrit x1 =
p∑

i=1
ωi .ei et x2 ⇒ E2 s’écrit x2 =

q∑

j=1
ε j . f j ,

d’où

x1 +x2 = 0E ⇔
p∑

i=1
ωi .ei +

q∑

j=1
ε j . f j = 0E

⇔⇐(i , j ),ωi =ε j = 0 car (e1, . . . ,ep , f1, . . . , fq ) libre

⇔ x1 = x2 = 0E

On a donc

(e1, . . . ,ep , f1, . . . , fq ) libre ⇔ E1 +E2 directe.

Réciproquement, on suppose E1 +E2 directe.
Soient (ωi )1⇓i⇓p et (ε j )1⇓ j⇓q des familles d’éléments deK. On

a
p∑

i=1
ωi .ei +

q∑

j=1
ε j . f j = 0E ⇔

p∑

i=1
ωi .ei =

q∑

j=1
ε j . f j = 0E car la somme est directe

⇔⇐(i , j ),ω= i =ε j = 0 car les deux familles sont libres

Donc : E1 + E2 directe ⇔ (e1, . . . ,ep , f1, . . . , fq ) libre. D’où
l’équivalence.
D’autre part (e1, . . . ,ep , f1, . . . , fq ) est clairement une famille gé-
nératrice de E1 + E2 (toute CL de (e1, . . . ,ep , f1, . . . , fq ) est la
somme d’un élément de E1 et d’un élément de E2, et récipro-
quement), donc si elle est libre c’est une base de E1 ≃E2.

Soient E un e.v. de dimension finie n et F,G deux s.e.v de E . Alors

E = F ≃G ∈ F ∋G = {0E } et dimF +dimG = n;

E = F ≃G ∈ F +G = E et dimF +dimG = n;

E = F ≃G
∈ la juxtaposition d’une base de F et d’une base de G est une base de E .

Théorème - Caractérisation des couples de s.e.v supplémentaires

Exercice
Montrer que dans R4, F = vect((1,2,↗1,0), (0,2,0,1)) et G = vect((2,0,0,1), (1,0,0,1))
sont supplémentaires.

Démonstration
Si E = F ≃G .

Alors n = dimE = dim(F ≃G) = dimF +dimG . Et comme la
somme est directe, F ∋G = {0}.

Et de même : n = dimF + dimG et F +G ∝ E , avec même
dimension donc F +G = E .
Réciproquement, supposons que F ∋G = {0} et n = dimE =
dimF +dimG .

Donc la somme est directe : F +G = F ≃G . Puis par dim(F ≃
G) = dimF +dimG = dimE .
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Et comme F ≃G ∝ E , par égalité des dimensions : F ≃G = E .
Enfin, supposons que F +G = E et n = dimE = dimF +dimG .

Notons B1, une base de F et B2, une base de G .
rg (B1,B2) = dim(F +G) = dimE = dimF +dimG = rg (B1)+

rg (B2) = Card(B1)+Card(B2).
Donc (B1,B2) est une famille génératrice de E , de dimension

Card(B1)+Card(B2).
Il s’agit donc d’une base de E (bon nombre d’éléments) et

donc d’une famille libre.
Par conséquent, la somme est direct : F +G = F ≃G et donc

E = F ≃G .

STOP Remarque - Famille libre : F ∋G = {0} & Famille génératrice : F +G = E
Notonsω : F ↔G ↓ E , (x, y) ↑↓ x + y .

F ∋G = {0} △⇔ω injective

F +G = E △⇔ω surjective

F ≃G = E △⇔ω bijective

Ce qui est affirmé sur les familles libres (en particulier les savoir-faire) est
également vrai pour la caractéristique F∋G = {0} (ou « la somme est directe »).

Soit E unK-e.v. de dimension finie, F un s.e.v de E . Alors F admet au moins
un supplémentaire dans E .

Théorème - Existence de supplémentaires en dimension finie

Démonstration
Notons B une base de E (de dimension finie).
Soit F un s.e.v. de E . On note L une base de F .
L est libre dans E , on peut la compléter avec une sous-famille
de vecteurs de B, en une nouvelle base de E :

(L ,B↘) base de E Notons G = vect(B↘), alors F ≃G = E .

STOP Remarque - Processus algorithmique
La démonstration de ce théorème est tout aussi importante que le résultat
puisqu’elle fournit un moyen de recherche d’un supplémentaire en dimen-
sion finie.
Tout, ici, est équivalent au théorème de la base incomplète.
Exercice
Donner un supplémentaire dans R4 de F = vect((1,1,1,1), (2,0,1,1), (↗2,4,1,1))

Soient E unK-e.v. de dimension finie, F,G deux s.e.v de E . Alors

dim(F +G) = dimF +dimG ↗dim(F ∋G).

Théorème - Dimension d’une somme de deux s.e.v., relation de Grass-
man

On cherche G tel que E = F ≃G .
En réfléchissant aux dimensions, on trouve
que dimE = dimF +dimG = dimE↔G (produit
cartésien).
Il existe une sorte de division euclidienne : la
division en classe d’équivalence.
On note R : uRv ssi u ↗ v ⇒ F .
R est une relation d’équivalence. L’ensemble
des classes d’équivalence G = E

R = E
F est un

« espace vectoriel » et alors ⇐ x ⇒ E , !⇑ (U , y) ⇒
G↔F tel que x↗y ⇒U (= u) (classe de u et donc
x = y +U (mais ce n’est pas l’addition de E . . .)

Pour aller plus loin - Autre construction Démonstration

F ∋G ∝ F , donc il existe F ↘ ∝ F tel que F = F ↘ ≃ (F ∋G) ;
on a alors dimF = dimF ↘+dim(F ∋G).

F ∋G ∝ g , donc il existe G ↘ ∝G tel que G =G ↘ ≃ (F ∋G) ;
on a alors dimG = dimG ↘+dim(F ∋G).

Enfin : F +G = F ↘ ≃G ↘ ≃F ∋G .
En effet F ∝ F ↘ ≃F ∋G , donc F ∝ F ↘ ≃G ↘ ≃F ∋G

Et G ∝G ↘ ≃F ∋G , donc G ∝ F ↘ ≃G ↘ ≃F ∋G
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Donc F +G ∝ F ↘ ≃G ↘ ≃F ∋G (stabilité vectorielle)
Réciproquement : F ↘ ∝ F +G , G ↘ ∝ F +G , F ∋G ∝ F +G .

Donc F ↘ ≃G ↘ ≃F ∋G ∝ F +G (stabilité vectorielle)
Reste à montrer que la somme est directe.

Soient x ⇒ F ↘, y ⇒G ↘, z ⇒ F ∋G tels que x + y + z = 0.
Alors x = ↗y ↗ z ⇒ G (car y ⇒ G ↘ ∝ G , z ⇒ F ∋G ∝ G), donc

x ⇒ F ↘ ∋ (F ∋G) = {0}.
Ainsin x = 0, de même y = 0, puis z = 0.

On a ainsi F +G = F ↘ ≃G ↘ ≃F ∋G .
En passant au dimension :

dim(F+G) = dimF ↘+dimG ↘+dim(F∋G) = dimF↗dim(F∋G)+dimG↗dim(F∋G)+dim(F∋G)

dim(F +G) = dimF +dimG ↗dim(F ∋G)

Si F1, . . . ,Fp sont des s.e.v. de dimension finie de E K-espace vectoriel, alors

dim
p∑

i=1
Fi ⇓

p∑

i=1
dimFi

avec égalité si et seulement si la somme est directe.

Théorème - Dimension et somme d’espaces vectoriels

Démonstration

D’après la proposition précédente, pour k ∞ 2 :

dim(
k∑

i=1
Fi ) = dim(Fk )+dim(

k↗1∑

i=1
Fi )↗dim(Fk ∋ (

k↗1∑

i=1
Fi ))

On a donc dim(
k∑

i=1
Fi ) ⇓ dim(

k↗1∑

i=1
Fi )+dim(Fk ).

Et par téléscpage : dim(
p∑

i=k
Fk ) =

p∑

k=1

(
dim(

k∑

i=1
Fi )↗dim(

k↗1∑

i=1
Fi )

)
⇓

p∑

k=1
dim(Fk )

On a alors égalité, si et seulement si : ⇐ k ⇒Np , k ∞ 2 : dim(Fk ∋
k↗1∑
i=1

Fi ) = 0.

Donc pour tout k ⇒ Np , k ∞ 2, Fk est en somme directe avec
k↗1∑
i=1

Fi .

Ce qui est équivalent à : ⇐ k ⇒Np , k ∞ 2, Fk ≃
(

k↗1∑
i=1

Fi

)
.

Et donc finalement, équivalent à
p∑

k=1
Fk =

p⊕

k=1
Fk
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Soit E un K-e.v. de dimension quelconque et soit F un s.e.v de E . On dit
que

— F est une droite (vectorielle) si dimF = 1 ;
— F est un plan (vectoriel) si dimF = 2.
— F est un hyperplan (vectoriel) s’il admet un supplémentaire de di-

mension 1 (soit si dimF = n ↗1).

Définition - Droite et plan vectoriel

3. Ecriture d’une application linéaire en dimen-
sion finie

3.1. Détermination

Détermination par les bases

Soient E unK-e.v de dimension finie n et F unK-e.v. quelconque.
Soit B = (e1, . . . ,en) une base de E et ( f1, . . . , fn) une famille de n vecteurs
de F .
Alors il existe une unique application linéaire u de E dans F telle que

⇐i ⇒ [[1,n]], u(ei ) = fi .

On dit que u est entièrement déterminée par la donnée des images des
vecteurs d’une base.

Théorème - Image d’une base

Démonstration

C’est l’application

u : x(=
n∑

i=1
xi ei ) ↗↓

n∑

i=1
xi fi

STOP Remarque - Dimension infinie
Ce résultat se généralise à la dimension infinie.
Si (ei )i⇒I est une base de E et ( fi )i⇒I une famille de F (même ensemble
d’indices), alors il existe une unique application linéaire u ⇒L (E ,F ) telle que
u(ei ) = fi pour tout i ⇒ I .

Deux applications linéaires qui coïncident sur une base sont égales.
Corollaire - Egalité d’applications

Soit u ⇒ !K(Kn ,Kp ). Alors u est de la forme

u : Kn ↓Kp




x1
...

xn


 ↑↓




a11x1 +a12x2 +·· ·+a1n xn
a21x1 +a22x2 +·· ·+a2n xn

...
ap1x1 +ap2x2 +·· ·+apn xn




où
{

⇐i ⇒ [[1, p]]
⇐ j ⇒ [[1,n]],

, ai j ⇒K.

Corollaire - Applications linéaires deKn dansKp

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



3. Ecriture d’une application linéaire en dimension finie 521

Réciproquement, toute application de cette forme est linéaire duK-e.v.Kn

dans leK-e.v.Kp .

ToutK-e.v de dimension n est isomorphe àKn .
Si B une base de E K-e.v. de dimension finie non nulle n. Alors

u : E ↓Kn

x ↑↓ coordonnées de x dans B

est un isomorphisme de E dansKn .

Proposition - Surjection coordonnée

Démonstration

— Soient (x, y) ⇒ E 2, (ϑ,µ) ⇒K2.

x =
n∑

i=1
xi .ei , y =

n∑

i=1
yi .ei ⇔ϑ.x +µ.y =

n∑

i=1
(ϑxi +µyi ).ei

(ϑxi + µyi )1⇓i⇓n sont les coordonnées de ϑ.x + µ.y dans
B : u est linéaire.

— Tout (x1, . . . , xn) ⇒ Kn admet un unique antécédent par u,
c’est

∑n
i=1 xi .ei : u est bijective.

Soient E unK-e.v de dimension finie et F unK-e.v. a priori quelconque.
Alors E et F sont isomorphes si et seulement si F est de dimension finie
avec dimF = dimE .

Corollaire - Sans passer parKn

Démonstration

Soit u : E ↓Kn un isomorphisme (dimE = n).
— Si E et F sont isomorphes, soit v : E ↓ F un isomorphisme.

Alors v ▽u↗1 :Kn ↓ F est un isomorphisme et transforme
une base deKn en une base de F : F est de dimension finie
n.

— Si F de dimension finie n, alors il existe un isomorphisme
w : F ↓Kn , et alors w↗1▽u est un isomorphisme de E dans
F .

Soient E et F deuxK-e.v. de dimension finie. Alors L (E ,F ) est unK-e.v. de
dimension finie et

dimL (E ,F ) = dimE ↔dimF.

Théorème - Dimension de L (E ,F )
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Démonstration

Si dimE = n, dimF = p et si (e1, . . . ,en) est une base de E ,
( f1, . . . , fp ) une base de F , alors une base de L (E ,F ) est donnée
par la famille (ui , j )1⇓i⇓n,1⇓ j⇓p telle que ui , j soit l’unique appli-
cation linéaire de E dans F telle que

⇐k ⇒ [[1,n]], ui , j (ek ) = ϖi ,k f j .

(ce résultat se comprendra mieux avec les matrices)

STOP Remarque - Espace dual
Avec F =K on trouve dimE̸ = dimE .

Détermination par la restriction à des supplémentaires

E ,F désignent toujours deuxK-espaces vectoriels.

Soient E1 et E2 deux s.e.v. supplémentaires dans E et u1 ⇒ L (E1,F ),u2 ⇒
L (E2,F ). Alors il existe une unique application linéaire u ⇒ L (E ,F ) telle
que

u|E1 = u1 et u|E2 = u2.

Théorème -

Plus généralement :

Si E1, . . . ,Ep sont des s.e.v. de E (de dimension quelconque) vérifiant E =p
i=1 Ei et si ⇐i , ui ⇒ L (Ei ,F ), alors il existe une et une seule application

u ⇒L (E ,F ) telle que ⇐i , u|Ei = ui

Théorème - Description unique sur une famille de supplémentaires

Démonstration

Elle existe : c’est

u : x =
p∑

i=1
xi ↗↓

p∑

i=1
ui (xi )

(où l’on a décomposé x sur la décomposition E = p
i=1 Ei

Elle est unique : en réfléchissant deux secondes on voit bien qu’il
ne peut pas y en avoir une autre.

3.2. Matrice d’une application linéaire

Matrice d’une famille de vecteurs

Soit E un K-espace vectoriel de dimension n et B = (e1, . . . ,en) une base de
E .

La matrice dans la base B d’une famille (x1, . . . , xp ) de vecteurs de E est la
matrice dont la j -ième colonne, pour j ⇒ [[1, p]], est formée des coordon-
nées de x j dans la base B. C’est donc la matrice à n lignes et p colonnes :

MB(x1, . . . , xp ) =




a11 · · · · · · a1p
a21 · · · · · · a2p

...
...

...
...

an1 · · · · · · anp



= (ai , j )1⇓i⇓n;1⇓ j⇓p

Définition - Matrice d’une famille de p vecteurs
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telle que, pour tout j , x j =
n∑

i=1
ai , j ei .

Exemple - Dans R2

On considère B =
(
(1,1), (1,↗1)

)
une base de R2.

Puis x1 = (1,2), x2 = (0,0) et x3 = (↗1,1).

Alors MB(x1, x2, x3) =
( 3

2 0 0
↗1

2 0 ↗1

)

Dans le cas particulier d’une famille à un vecteur x, la matrice MB (x) est une matrice
colonne, c’est la matrice colonne formée des coordonnées de x dans la base B. On parle
souvent de la « matrice du vecteur x dans la base B ».
Soit B la base canonique deKn . L’application

Kn ↓Mn,1(K)
x ↑↓MB (x)

est alors un isomorphisme d’espaces vectoriels. On identifie donc usuellement matrices
colonnes (à n lignes) et vecteurs deKn

Heuristique - Cas particulier p = 1 : la « matrice du vecteur x dans B »

Matrice d’une application linéaire

E et F sont deux espaces vectoriels sur K, de dimension finie (respective-
ment n et p).
B = (e1, · · · ,en) et C = ( f1, · · · , fp ) désignent respectivement des bases de E
et de F .
Soit u ⇒ L (E ,F ), alors ⇐ j ⇒ [[1,n]],u(e j ) ⇒ F et donc on peut écrire u(e j ) =

p∑

i=1
ai j fi .

On appelle matrice de u dans les bases B et C , la matrice :

MB,C (u) =M (u,B,C ) =




a11 · · · · · · a1n
a21 · · · · · · a2n

...
...

...
...

ap1 · · · · · · apn



= (ai j )1⇓i⇓p;1⇓ j⇓n

ai j désigne la i-ième coordonnée de u(e j ) dans C .
C’est la matrice dans C de la famille (u(e1), . . . ,u(en)).

Définition - Matrice d’un morphisme u

Il s’agit d’une matrice à n colonnes (nombre de vecteurs d’une base de
l’ensemble de départ) et p lignes (dimension de l’ensemble d’arrivée),
soit p lignes et n colonnes.

Attention - Taille de la matrice

Exemple - Matrice de P ↑↓ P ↘

Soit E =R3[X ], F =R2[X ] et u(P ) = P ↘

Les bases canoniques respectives B et C de E et F sont B =
(1, X , X 2, X 3) et C = (1, X , X 2).
On décompose u(X j ) pour j variant de 1 à 4 sur C : (p = 3,n = 4)
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3 lignes et 4 colonnes :

u(1) = 0 = 0.1+0.X +0.X 2,

u(X ) = 1 = 1.1+0.X +0.X 2,

u(X 2) = 2X = 0.1+2.X +0.X 2,

u(X 3) = 3X 2 = 0.1+0.X +3.X 2.

La matrice de u dans les bases canoniques est donc

MB,C (u) =




0 1 0 0
0 0 2 0
0 0 0 3


 .

Soient E et F deux K-e.v., dimE = n, dimF = p. On suppose fixées B une
base de E et C une base de F . Alors, pour toute matrice A ⇒ Mp,n(K), il
existe une unique application linéaire u ⇒L (E ,F ) telle que MB,C (u) = A.

Théorème - Réciproquement de la matrice au morphisme

Démonstration

Par construction, cette unique application ne peut être que :

u : e j ↑↓
p∑

i=1
Coefi , j (A) fi

Soient E et F deux K-e.v., dimE = n, dimF = p. On suppose fixées B une
base de E et C une base de F .
Soient u ⇒ L (E ,F ), A = MB,C (u), X la matrice colonne des coordonnées
d’un vecteur x de E dans la base B, alors la matrice colonne Y des coor-
données de y = u(x) dans la base C est donnée par la relation

Y = AX .

Proposition - Calcul matriciel de l’opération u(x)

Démonstration

y =
p∑

i=1
Coefi (Y ) = u(x) = u

(
n∑

j=1
x j e j

)
=

n∑

j=1
x j u

(
e j

)

=
n∑

j=1
Coef j (X )

(
p∑

i=1
Coefi , j (A)

)
=

p∑

i=1

(
n∑

j=1
Coef j (X )Coefi , j (A)

)
.

Donc pour tout i ⇒ Np , Coefi (Y ) =
n∑

j=1

(
Coefi , j (A)Coef j (X )

)
=

Coefi (AX ), donc Y = AX .

Soient A,B ⇒Mp,n(K). Alors :


⇐X ⇒Mn,1(K), AX = B X


⇔ A = B

Corollaire - Nouveau critère d’égalité matriciel
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Démonstration
Pour tout x ⇒ E , u(x) = v(x), donc u = v donc A = B

Soient E un K-espace vectoriel de dimension n, B une base de E , u ⇒
L (E). Alors, pour u ⇒ L (E), MB,B(u) ⇒ Mn(K) s’appelle la matrice de u
dans la base B et se note simplement MB(u) (ou M (u,B)).

Définition - Matrice d’un endomorphisme

Exemple - Dans R2

On prend E = F = R2 comme espaces vectoriels (on les inter-
prète comme l’espace vectoriel des vecteurs du plan), on choisit
la base B = ((1,0), (0,1)) =C ce qui correspond aux vecteursεi et
εj sur les axes. On caractérise géométriquement le morphisme

u : E ↓ F tel que MB(u) =
(
1 0
0 ↗1

)

comme la symétrie orthogonale d’axe Ox.
Exercice
Quelle est la matrice dans la base B = C de la symétrie orthogonale par rapport à la
première bissectrice?

L (F,G) & Mn,p (K) isomorphes

Soient E , F deux K-espaces vectoriels (dimE = n,dimF = p) de bases
respectives B, C , u, v ⇒L (E ,F ), ω,ε ⇒K alors

MB,C (ωu +εv) =ωMB,C (u)+εMB,C (v).

L’application
L (E ,F ) ↓Mp,n(K)
u ↑↓MB,C (u)

est donc un isomorphisme d’espaces vectoriels.

Théorème - L’application linéaire u ↑↓MB,C (u)

Soient trois espaces vectoriels E ,F,G munis des bases respectives B,C ,D,
et deux applications linéaires u ⇒ L (E ,F ), v ⇒ L (F,G). Alors la matrice de
v ▽u ⇒L (E ,G) est donnée par

MB,D(v ▽u) =MC ,D(v)↔MB,C (u)

Théorème - Produit matriciel et composition

Démonstration
Le coefficient de ωu +εv(e j ) selon f j est égal

au coefficient de (ωu)(e j )+ (εv)(e j ) selon f j
au coefficient de ωu(e j )+εv(e j ) selon f j
au nombre de ωCoefi , j (M (u))+εCoefi , j (M (v)) selon f j .

Donc M (ωu +εv) =ωM(u)+εM(v).
Autre méthode : si y = u(e j ), alors se traduit matriciellement par
Y =M (u)↔E j .
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Et donc z = v ▽u(e j ) se traduit matriciellement par M (u ▽
v)E j = Z =M (v)↔ (M (u)↔E j ) = [M (v)↔M (u)]E j .

Ce résultat est vrai pour tout E j , donc M (v ▽u) = M (v)↔
M (u)

STOP Remarque - Nouvelle interprétation du produit matriciel
Cela justifie, d’une nouvelle façon, l’utilité de la définition de la multiplica-
tion entre les matrices : ceci permet de calculer avec un nombre fini d’opéra-
tions une composée de deux applications linéaires.

Soit E un K-espace vectoriel de dimension n et B une base de E . L’appli-
cation u ↑↓ MB(u) est un isomorphisme d’algèbres de L (E) sur Mn(K)
(isomorphisme d’espaces vectoriels et morphisme d’anneaux)

Corollaire -

Soient E et F deux espaces vectoriels de même dimension n (en particulier
on peut avoir E = F ) de bases respectives B et C ,
Soit u une application linéaire de E dans F et A =MB,C (u).
Alors u est bijective (donc est un isomorphisme)

si et seulement si A est inversible.
Et alors

A↗1 =MC ,B(u↗1)

Proposition - Bijection de u et inversibilité de M

Ce résultat peut être utilisé de deux façons :
— Pour trouver l’isomorphisme réciproque de u, on calcule l’inverse

de la matrice de u (voir plus loin pour les méthodes).
— Pour trouver l’inverse d’une matrice, on peut parfois la recon-

naître comme la matrice d’un isomorphisme dont on sait facile-
ment exprimer l’endomorphisme réciproque.

Savoir faire - Exploitation

Démonstration
u est bijective ssi ⇑ v ⇒L (F,E) tel que u ▽ v = v ▽u = id.
u est bijective ssi ⇑ v ⇒L (F,E) tel que M (v)↔ A = A↔Mv = In u
est bijective ssi A est inversible

Exercice
Soit A ⇒ Mn+1(R) définie par ai j =

( j↗1
i↗1

)
(avec la convention

( j
i

)
= 0 si j < i ) pour

i , j ⇒ [[1,n +1]]2. Justifier l’inversibilté de A et déterminer A↗1.

Réciproquement, application canoniquement associée à une matrice

L’application de Kn dans Mn,1(K) qui à x = (x1, . . . , xn ) associe la matrice colonne X =


x1
...

xn


 est un isomorphisme naturel (”canonique”) entreKn et Mn,1(K). Il permet d’identi-

fier un n-uplet x avec la matrice colonne X .

Heuristique - Identification

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



3. Ecriture d’une application linéaire en dimension finie 527

D’autre part, on sait que si u ⇒LK(Kn ,Kp ), alors u est de la forme

u : Kn ↓Kp




x1
...

xn


 ↑↓




a11x1 +a12x2 +·· ·+a1n xn
a21x1 +a22x2 +·· ·+a2n xn

...
ap1x1 +ap2x2 +·· ·+apn xn




où ⇐i ⇒ [[1, p]], ⇐ j ⇒ [[1,n]], ai j ⇒K.

Soit A ⇒ Mp,n(K), alors il existe une unique application linéaire u ⇒
L (Kn ,Kp ) telle que la matrice de u dans les bases canoniques respectives
de Mn,1(K) ou Kn et Mp,1(K) ou Kp soit A. On dit alors que u est canoni-
quement associée à A.
u peut alors être identifiée à l’application

Mn,1 ↓Mp,1(K)
X ↑↓ AX

Définition - Application canoniquement associée à A

STOP Remarque - Convention d’usage
On écrit aussi y = Ax avec x ⇒Kn , y ⇒Kp .

Soit A ⇒Mp,n(K) et u l’application linéaire canoniquement associée.
On rappelle que :

Ker A = {X ⇒Kn →Mn,1(K) | AX = 0Kp }

Im A = {Y ⇒Kp →Mp,1(K) |⇑X ⇒Kn →Mn,1(K),Y = AX }.

Par les identifications précédentes Ker A = Keru et Im A = Im u.

Proposition - Noyau, image

Réinterprétation du produit par blocs

Soient F et G deux sous-espaces supplémentaires de E K-e.v. (dimE =
n,dimF = p) et u ⇒ L (E) telle que la matrice de u s’écrive, dans une base

adaptée à la décomposition E = F ≃G , par blocs
(

A B
C D

)
(avec A ⇒Mp (K)).

Alors :
— F est stable par u si et seulement si C = On↗p,p ; dans ce cas A =

M (u|F )
— G est stable par u si et seulement si B = Op,n↗p ; dans ce cas D =

M (u|G )

Proposition - Blocs nuls et stabilité

Démonstration
On ne démontre que le premier cas.
Notons ( f1, . . . fp ) une base de F et (g1, . . . gn↗p ) une base de G . F
est stable par u si et seulement si pour tout j ⇓ p, u( f j ) ne s’écrit
qu’en fonction de ( f1, . . . fp ).

⇐ j ⇓ p,⇐ i > p +1, la i coordonnée de u( f j ) est nul.
⇐ j ⇓ p,⇐ i > p +1, Coefi , j (M) = 0.
C =On↗p,p .
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Exercice
Montrer que les projecteurs et les symétries ont, dans des bases bien choisies, des ma-
trices par blocs très simples.

STOP Remarque - Généralisation
La notation et le calcul par blocs peuvent se généraliser à plus de deux blocs.
La condition : la taille des blocs doit être compatible au produit envisagé.

On peut aussi voir le produit AX =
p∑

i=1
xi Ci comme un produit par blocs. . .

3.3. Changements de bases

Le but de ce paragraphe est de trouver le lien entre les différentes matrices
d’une même application linéaire lorsque l’on change de bases dans les en-
sembles E et F .

Matrice de passage

Soient E unK-e.v. de dimension n,
B = (e1, · · · ,en) (ancienne) et B↘ = (e ↘1, · · · ,e ↘n) (nouvelle), deux bases de E .
On appelle matrice de passage de B à B↘, notée PB↘

B (ou PB,B↘ ), la matrice
de la famille B↘ dans la base B :

PB↘
B =MB(e ↘1, · · · ,e ↘n) =MB↘,B(idE ,E )

Définition - Matrice de passage (changement de base vectoriel)

On obtient donc la matrice de passage P de B à B↘ en écrivant en
colonnes les coordonnées dans la base B des vecteurs e ↘i (de B↘).
(C’est celle que l’on sait écrire sans problème car les vecteur e ↘i sont
toujours donnés par leurs coordonnées dans B)

Attention - Ecrire la bonne matrice

On a PB↘
B =MB↘,B(I dE ).

Une matrice de passage est donc inversible (car I dE est bijectif) et
(PB↘

B )↗1 = PB
B↘ .

Théorème - Inverse d’une matrice de passage

Pas de démonstration supplémentaire.

Soient E un K-espace vectoriel, B et B↘ deux bases de E et P la matrice
de passage de B à B↘. Si X est la matrice colonne des coordonnées dans
B de x ⇒ E et X ↘ la matrice colonne des coordonnées dans B↘ de x, alors
X = P X ↘, c’est-à-dire

MB(x) = PB↘
B MB↘ (x)

Théorème - Calcul matriciel du changement de base

Se souvenir que la formule donne facilement les coordonnées dans l’an-
cienne base en fonction des coordonnées dans la nouvelle base, ce qui
est rarement ce dont on a besoin! Pour avoir les coordonnées dans la
nouvelle base en fonction des anciennes, il faut calculer P↗1.

Savoir faire - Petite aide mnémnotechnique
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Démonstration
MB↘,B(I dE )↔MB↘(x) =MB(x)

Matrices équivalentes

Soient E ,F deux K-e.v., de bases B et B↘ pour E , C et C ↘ pour F . On pose
P = PB↘

B et Q = PC ↘
C .

Alors, si u ⇒L (E ,F ), A =MB,C (u), A↘ =MB↘,C ↘ (u) on a

A↘ =Q↗1 AP

Théorème - Changement de base d’une application de L (E ,F )

Démonstration à bien savoir faire, pour retrouver rapidement le résultat.
On rappelle que si « tout va bien » (dimension) : MB,D(u ▽ v) = MC ,D(u)↔
MB,C (v) (flèche à l’envers pour les bases)

Démonstration
A↘ =MB↘,C ↘(u▽id) =MB,C ↘(u)MB↘,B(id) =MB,C ↘(id▽u)MB↘,B(id) =
MC ,C ↘(id)MB,C (u)MB↘,B(id)

STOP Remarque - Rappel
On rappelle que deux matrices A et B sont équivalentes, s’il existe P,Q ⇒
GL n(K) tel que A = P ↔B ↔Q↗1.
On a également vu que A et B sont équivalentes si et seulement si rg (A) =
rg (B). Et qu’il existe une famille de représentants des classes d’équivalence :
les Jr

A,B ⇒Mn,p (K) sont équivalentes si et seulement si
elles représentent la même applications linéaire dans des bases diffé-

rentes (a priori au départ et à l’arrivée)

Proposition - Nouvelle interprétation de l’équivalence matricielle

Démonstration
Cela découle du théorème. . .

Matrices semblables

Dans le cas particulier où E = F on peut prendre B =C et B↘ =C ↘ d’où Q = P
et on a le théorème suivant :

Soient E unK-espace vectoriel, B et B↘ deux bases de E et P la matrice de
passage de B à B↘. Alors, si u ⇒L (E), A = M atB(u), A↘ = M atB↘ (u) on a

A↘ = P↗1 AP

Théorème -

Exercice
Soit E =R2. On considère les deux vecteurs f1 = (1,2) et f2 = (1,3).

1. Montrer que B↘ = ( f1, f2) est une base de E .

2. Soit B la base canonique de E . Ecrire la matrice de passage PB↘
B

.

3. Soit x = (4,1) ⇒ E . Déterminer matriciellement les coordonnées de x dans la base
B↘.

4. Soit u l’endomorphisme de E défini par u((x, y)) = (2x+y, x↗y). Ecrire les matrices
de u dans les bases B et B↘.
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A,B ⇒ Mn(K) sont dites semblables s’il existe P ⇒ GLn(K) telle que B =
P↗1 AP .

Définition - Matrices semblables

STOP Remarque - Relation d’équivalence
Il s’agit d’une relation d’équivalence. C’est une relation particulière qui dérive
de la relation « être équivalente ».
Etant plus précise, les classes d’équivalence pour la relation de similitude
sont plus nombreuse. Le cours de diagonalisation de seconde année consiste
à chercher des représentants relativement simples (diagonale, au mieux) de
ces classes de similitude. On a alors, par récurrence,

Si A et B son semblables, précisément : B = P↗1 AP .
Alors pour tout k ⇒N, B k = P↗1 Ak P (car PP↗1 = In).

Proposition - Calcul de puissance

Soient E unK-espace vectoriel de dimension n, A,B ⇒Mn(K).
Alors les matrices A et B sont semblables si et seulement si

il existe B et B↘, bases de E , u ⇒L (E) tq A =MB(u) et B =MB↘ (u).
Autrement dit, A et B sont semblables si elles représentent le même endo-
morphisme dans deux bases différentes.

Théorème - Ré-interprétation de la similitude

Il n’y a pas unicité du triplet (B,B↘,u). Il faut donc choisir un représen-
tant.
En revanche, on connait A et B puis donc P .
Classiquement, on considère (dans l’ordre) :

1. E =Mn,1(K) (équivalent àKn)

2. B = (X1, . . . Xn), la base canonique de E

3. u : X ↑↓ A↔X . Par construction A =MB(u).

En fait comme B est la base canonique, AX j =C j (A) =
n∑

i=1
[A]i , j Xi

4. B↘ = P (B) = (Y1,Y2, . . .Yn) = (P X1,P X2, . . .P Xn), c’est bien une
base car P est inversible.
u(Y j ) = u(P X j ) = AP X j = PB X j = PC j (B), car B est la base cano-
nique.

Donc u(Y j ) = P
n∑

i=1
[B ]i , j Xi =

n∑

i=1
[B ]i , j P Xi =

n∑

i=1
[B ]i , j Yi Ainsi

MB↘ (u) = B

Truc & Astuce pour le calcul - Etant donnée A et B , trouver B, B↘ et u

Exercice

Soit A =




1 2 3
3 1 2
2 3 1


. Montrer que A est semblable à t A.

Deux matrices semblables ont même trace.
Proposition - Matrices semblables et trace
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Démonstration

Si A et B sont semblables, alors

Tr(B) = Tr(P↗1 AP ) = Tr(APP↗1) = Tr(A)

(On peut permuter circulairement le produit matriciel au coeur
de la trace.

Soit E est unK-espace vectoriel de dimension finie. Soit B une base de E .
Soit u ⇒L (E). On appelle trace de u le scalaire

Tr u = Tr(u) = Tr MB(u).

Définition - Trace d’un endomorphisme

STOP Remarque - Une démonstration?
Ceci a bien un sens d’après la proposition précédente qui assure que les ma-
trices de u dans des bases différentes ont toujours la même trace (invariante
selon la base considérée).

L’application trace sur L (E) est linéaire et

⇐u, v ⇒L (E), Tr(u ▽ v) = Tr(v ▽u).

Corollaire - Propriétés simples de Tr

Soit p ⇒ L(E) un projecteur. Alors Tr(p) = rg (p).
Proposition - Rang=trace d’un projecteur

Démonstration

On a vu qu’en prenant une base adaptée à E = Im p≃Ker p, on a

P =M (u) =
(

Ir 0
0 On↗r

)

On a alors Tr(u) = Tr(P ) = r = dim(Im p) = rg (p)

4. Théorème (formule) du rang et conséquences

4.1. Théorème du rang

Rang(s)

Soient E ,F deux K-espaces vectoriels (de dimensions quelconques) et u ⇒
L (E ,F ). On dit que u est de rang fini si Im u est de dimension finie et on
appelle alors rang de u la dimension de Im u :

rg u = dimIm u

Définition - Rang d’une application linéaire

Rappels :

Soit (x1, . . . , xp ) une famille finie de vecteurs d’un K-espace vectoriel. On
appelle rang de la famille (x1, . . . , xp ) la dimension du sous-espace vectoriel
vect(x1, . . . , xp ) :

rg (x1, . . . , xp ) = dimvect(x1, . . . , xp )

Définition - Rang d’une famille de vecteurs
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Soit A ⇒Mp,n(K) On appelle rang de A (noté rg A) la dimension de Im A.
Définition - Rang d’une matrice

STOP Remarque - Nouvelle définition
Cette nouvelle définition est conforme à celle vu au premier semestre - en
complément.
Le rang de la matrice étaient obtenu comme nombre de pivot après échelon-
nage de la matrice.

Théorème du rang

Soient E et F deuxK-e.v. et u ⇒L (E ,F ). Si S est un supplémentaire de Ker u
dans E alors l’application

ũ : S ↓ Im u
x ↑↓ u(x)

est un isomorphisme de S sur Im u

Proposition - Isomorphisme canonique (de projection)

Démonstration
C’est en effet une application linéaire.
Et si x ⇒ Ker ũ,

alors 0 = ũ(x) = u(x), donc x ⇒ Keru.
Mais par ailleurs, x ⇒ S, donc x ⇒ Keru ∋S = {0}.
Donc ũ est injective.

Par ailleurs, ũ est également surjective sur Im u.
En effet, si y ⇒ Im u, il existe x ⇒ E tel que y = u(x).
Puis x = x1 +x2, avec x1 ⇒ S et x2 ⇒ Keru.
Donc y = u(x) = u(x1)+u(x2) = ũ(x1) et y ⇒ Im ũ.

Soient E un K-e.v. de dimension finie, F un K-e.v. (de dimension quel-
conque) et u ⇒L (E ,F ). Alors

dimE = dimKer u +dimIm u = dimKer u + rg u

Théorème - Théorème du rang

Démonstration
Comme S est isomorphe à Im u, on a donc dimS = rg u.
Et comme E = S ≃ Keru est de dimension finie : dimE =
dimKeru +dimS = dimKer u + rg u

4.2. Application du théorème du rang (Critère de bijection)

Soit u ⇒L (E ,F ).
— Si E est de dimension finie, alors u est de rang fini et rg u ⇓ dimE

avec égalité si et seulement u est injective.
— Si F est de dimension finie, alors u est de rang fini et rg u ⇓ dimF

avec égalité si et seulement u est surjective.

Proposition - Critère de surjection/injection
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Démonstration
Théorème du rang :rg u = dimE ↗dimKeru.

Donc rg u ⇓ dimE avec égalité si et seulement Keru = {0} si et
seulement u est injective.
Im u ∝ F , donc

rg u ⇓ dimF avec égalité si et seulement Im u = F si et seule-
ment si u est surjective.

Si E et F sont de dimensions finies on a donc rg u ⇓ min(dimE ,dimF )

E ,F deux K -espaces vectoriels de dimensions finies égales (dimF =
dimE). Soit u ⇒L (E ,F ). On a équivalence de
(i) rg u = dimE
(ii) u est injective
(iii) u est surjective
(iv) u est bijective (donc un isomorphisme)

Théorème - Equivalences des caractères de u (cas dimension finie)

Démonstration

— (i) ∈ (ii) d’après la propriété précédente (première partie).
— Comme dimF = dimE , (i) ∈ (iii) d’après la propriété pré-

cédente (seconde partie).
— Donc (i) ⇔ (ii) et (iii) ⇔ (iv).

Réciproquement, si (iv) alors u est un isomorphisme de E
sur F , rg u = dimF = dimE (surjection)

STOP Remarque - Dans la pratique : u endomorphisme
On exploite souvent ce théorème dans le cas où u ⇒L (E) et donc E = F . Les
deux espaces ont nécessairement la même dimension.
Il n’y a plus d’hypothèses spécifiques à vérifier. Ce qui donne la caractérisa-
tion des automorphismes qui suit

E ,F,G trois K-espaces vectoriels de dimensions finies, u ⇒ L (E ,F ), v ⇒
L (F,G).

— si u est un isomorphisme, alors rg (v ▽u) = rg v
— si v est un isomorphisme, alors rg (v ▽u) = rg u

Proposition - Conservation du rang

Démonstration

On a le graphe :
E

u↗↓ F
v↗↓G

Et donc les relations :

Im v ▽u = Im v|Im u Ker v ▽u = {x | u(x) ⇒ Ker v}

Si u est un isomorphisme, Im u = F et donc rg (v|Im u = rg (v).
Si v est un isomorphisme, u(x) ⇒ Ker v ∈ u(x) = 0 ∈ x ⇒ Keru.

donc dimKer v ▽u = dimKeru, par théorème du rang rg (v ▽
u) = rg u.

On obtient ainsi la caractérisation des automorphismes en dimension finie :
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E unK-espace vectoriel de dimension finie n. Soit u ⇒L (E). On a équiva-
lence de
(i) rg u = n
(ii) u est injective
(iii) u est surjective
(iv) u est bijective (donc un automorphisme, soit u ⇒GL(E))
(v) il existe v ⇒L (E) tel que v ▽u = I dE (u admet un inverse à gauche)
(vi) il existe w ⇒L (E) tel que u ▽w = I dE (u admet un inverse à droite)

Théorème - Cas des endomorphismes

4.3. Itération

Soient u ⇒L (E ,F ) et v ⇒L (F,G), avec E et F de dimensions finies.
Alors rg (v ▽u) ⇓ min(rg u, rg v).

Proposition - Majoration de rg (v ▽u) en toute généralité

Démonstration

Im (v ▽u) ∝ Im v . Il suffit de prendre les dimensions pour une
première inégalité.
Keru ∝ Ker v ▽u, ainsi dimKeru ⇓ dimKer v ▽u, donc (théorème
du rang) :

rg u = dimE ↗dimKeru ∞ dimE ↗dimKer(v ▽u) = rg (v ▽u)

Pour les inégalités sur les rang, ou les inclusions Im /Ker, on exploite :
— la composition (cf. démonstration précédente)
— la restriction à A sev de E : u|A

On pense : u|A : A ↓ F , x ↑↓ u(x), on a Keru|A = Keru ∋ A donc
rg u|A = dim A↗dim(Keru ∋ A).

Savoir faire - Exploiter le rang d’endomorphisme restreint ou composé

L’exercice suivant est classique (première question). La fin est importante :
Exercice
Soit u ⇒ L (E), avec E de dimension finie. On note, pour tout r ⇒ N, Ir = Im ur et
ir = dim(Ir ) et Kr = Kerur et kr = dimKr .

1. Montrer que Kr ∝ Kr+1 et Ir+1 ∝ Ir . Qu’en déduire pour les suites (ir ) et (kr ).

2. Montrer que Kr = Kr+1 si et seulement si Ir+1 = Ir .

3. On note s = min{r | Kr = Kr+1}. Montrer que s existe et que ⇐ r ∞ s, Kr = Ks (et
Ir = Is ).
Montrer que dans ce cas E = Ks ≃ Is .

4. Montrer que pour tout r ⇓ s +1, kr+1 ↗kr ⇓ kr ↗kr↗1.
On dit que la suite (kr ) est concave. De même ici, on dirait que (ir ) est convexe.
On pourra considérer H tel que Kr+1 = H ≃Kr et u|H : H ↓ Kr , bijective. . .

4.4. Formes linéaires et hyperplans

Bases duales
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Soit B = (ei )i⇒I une base de l’espace vectoriel E .
On note e̸i l’unique forme linéaire sur E vérifiant

⇐ j ⇒ I ,e̸i (e j ) = ϖ j
i =

{
1 si i = j
0 si i ↙= j

.

On l’appelle forme linéaire coordonnée d’indice i relative à la base B

Définition - Forme linéaire coordonnée

Autre nom :

Soit B = (ei )i⇒I une base de l’espace vectoriel E .
Alors B̸ = (e̸i )i⇒I est une base de L (E ,K) = E̸, appelée base duale de B

Proposition - Base duale

On aurait pu exploiter les dimensions, mais pédagogiquement, on montre
plus :

Démonstration

• Supposons que
∑

i⇒I
ϑi e̸

i = 0E̸ .

Donc en ek : 0E̸(ek ) = 0 =
∑

i⇒I
ϑi e̸

i (ek )
∑

i⇒I
ϑiϖi ,k = ϑk Donc la

famille B̸ est libre.
• Soit f ⇒ E̸. On note ωi = f (ei )
Pour tout x =∑

k⇒I xk ek ⇒ E ,
∑

i⇒I
ωi e̸

i (x) =
∑

i⇒I
ωi

∑

k⇒I
xk e̸

i (ek ) =
∑

i⇒I
ωi

∑

k⇒I
xk e̸

i (ek ) =
∑

i⇒I
ϑi xi

Et

f (x) = f

(
∑

k⇒I
xk ek

)
=

∑

k⇒I
xk f (ek ) =

∑

k⇒I
xkωk

Donc f =
∑

i⇒I
ωi e̸

i .

Hyperplan et équation d’un hyperplan

Soit H un sous-espace vectoriel de E . On a équivalence des propriétés :

(1) il existe une droite vectorielle D telle que E = H ≃D

(2) il existe une forme linéaire non nulle ϱ telle que H = Kerϱ

Si ces propriétés sont vérifiées on dit que H est un hyperplan (vectoriel) de
E .

Proposition - Noyau de forme linéaire et hyperplan

On appelle crochet de dualité, l’application bi-
linéaire de E̸ ↔E dansK :

<
n∑

i=1
ai e̸i |

n∑

j=1
b j e j >=

n∑

k=1
ak bk

C’est une forme de produit scalaire. Elle fait le
lien algébrique avec les fameux « bra-kets » de
la mécanique quantique.

Pour aller plus loin - Produit scalaireDémonstration
Si E = H ≃D , avec D une droite, donc D = vect(x).

On note p, la projection sur D , parallèlement à H .
Alors y ⇒ H ssi p(y) = 0. Mais p n’est pas une forme linéaire.
Pour tout a ⇒ E , p(a) ⇒ D , donc il existe ϑa ⇒K tel que p(a) =

ϑa x.
On a alors H = Kerϱ avec ϱ : a ↑↓ϑa , forme linéaire.

Réciproquement, si H = Kerϱ avec ϱ non nul,
alors il existe a ⇒ E tel que ϱ(a) ↙= 0.
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Notons D = vect(a).
Soit x ⇒ E , y = x ↗ ϱ(x)

ϱ(a) a.

Alors, par linéarité, ϱ(y) =ϱ(x)↗ ϱ(x)
ϱ(a)ϱ(a) = 0, donc y ⇒ H .

z = ϱ(x)
ϱ(a) a ⇒ D et donc E = D +H .

Enfin, si x ⇒ D∋H , alors x =ϑa, avec 0 =ϱ(x) =ϑϱ(a) et donc
ϑ= 0 (car ϱ(a) ↙= 0).

Ainsi x = 0 et donc D ≃H .

D’après la démonstration.

Si H est un hyperplan de E et si a ↖ H , alors E = H ≃vect(a).
Corollaire - Choix d’un supplémentaire

Soit ϱ ⇒ E̸. Alors pour tout x ↖ Kerϱ, E = Kerϱ≃vect(x).
Corollaire - Version forme linéaire

Démonstration
Si x ↖ Kerϱ, et ϑ=ϱ(x),

alors pour tout a ⇒ E , a = (a ↗ ϱ(a)

ϑ
x)

  
⇒Kerϱ

+ ϱ(a)

ϑ
x

  
⇒vect(x)

. On montre

également l’unicité.

Deux formes linéaires ϱ et ς sont proportionnelles si et seulement elles
ont le même noyau, c’est-à-dire que pour ϕ,ς ⇒L (E ,K),

Kerϱ= Kerς∈⇑ϑ ⇒K̸ |ϱ=ϑς

Proposition - Proportionnalité des formes linéaires

Démonstration

Si ⇑ϑ ⇒K̸ |ϱ=ϑς, alors :

x ⇒ Kerϱ∈ϱ(x) = 0 ∈ς(x) = 1

ϑ
ϱ(x) = 0 ∈ x ⇒ Kerϕ

Réciproquement, si H = Kerϱ= Kerς.
Il existe D = vect(a) tel que E = D ≃Kerϱ= D ≃Kerς.
Soit x ⇒ E , ⇑ ϑ ⇒ K, z ⇒ H tels que x = ϑa + z ϱ(x) = ϑϱ(a) et

ς(x) =ϑς(a).
Et donc ϱ(x) = ϱ(a)

ς(a)ς(x). Donc ϱ= A↔ς avec A = ϱ(a)
ς(a) .

Soient H un hyperplan et ϱ ⇒L (E ,K) tels que H = Kerϱ. Alors l’equation
ϱ(x) = 0 s’appelle une équation de H .

Définition - Equation d’un (hyper)plan

STOP Remarque - Infinité d’équations
H admet alors une infinité d’équations, obtenues en écrivant ϑϱ(x) = 0 avec
ϑ ⇒K\ {0}.
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Les hyperplans d’un espace vectoriel E de dimension finie n sont exacte-
ment les sous-espaces de dimension n ↗1.
Dans une base (e1, . . . ,en) donnée, ce sont les ensembles d’équation

a1x1 +·· ·+an xn = 0

où (a1, . . . , an) ⇒Kn \ {0Kn }, (x1, . . . , xn) étant les coordonnées de x ⇒ E dans
la base (e1, . . . ,en).

Proposition - Cas de la dimension finie

Démonstration

Comme D est une droite vectoriel, dim H = dimE ↗ dimD =
n ↗1.
H = Kerϱ. Or il existe a1(=ϱ(e1)), a2, . . . an(=ϱ(en)) ⇒K tel que

ϱ : x =
n∑

i=1
xi e1 ↗↓

n∑

i=1
xi ai

On a donc H = {x =∑n
i=1 xi ei ⇒ E | a1x1 +·· ·+an xn = 0}

Intersection d’hyperplans et dimension

On commence dans un espace vectoriel de dimension n.
A chaque équation, la dimension diminue de une unité.
Les seules exceptions : si une nouvelle équation est une combinaison linéaire des précé-
dentes.
Réciproquement, un sous-espace vectoriel de dimension r dans E de dimension n est le
noyau de n ↗ r forme linéaires, ou autrement écrit est obtenu à partir de n ↗ r équations.

Heuristique - Une équation : un degré perdu

Soient m ⇒N̸ et H1, . . . , Hm des hyperplans de E . Alors

dim
 m

i=1
Hi


∞ dimE ↗m.

Proposition - Réduction des dimensions

On commence par un lemme

Soitϱ une forme linéaire définie sur E et F , un sev de E de dimension finie
égale à p.
Alors F ∋Kerϱ est de dimension finie et p ↗1 ⇓ dim(F ∋Kerϱ) ⇓ p.
Précisément : dim(F ∋Kerϱ) = p ∈ F ∝ Kerϱ∈ rg ϱ|F = 0. Sinon dim(F ∋
Kerϱ) = p ↗1.

Lemme -

Démonstration

Notons que le théorème du rang appliqué à ϱ|F donne :

dimF = rg ϱ|F +dimKerϱ∋F

Or ϱ étant une forme linéaire, rg ϱ|F ⇓ rg ϱ⇓ 1.
On a alors les équivalences :

rg ϱ|F = 0 ∈ dimKerϱ∋F = dimF ∈ Kerϱ∋F = F ∈ F ∝ Kerϱ
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Démonstration
Par récurrence sur m, en exploitant le lemme.
D’abord, le résultat est vrai pour m = 1 : dim H1 = dimE ↗ 1 ∞
dimE ↗1.
Supposons que le résultat est vrai pour m.
Soient H1, . . . Hm+1 m +1 hyperplans de E .
Notons F = H1 ∋ · · ·∋ Hm . Alors d’après l’hypothèse de récur-
rence, dim(F ) ∞ n ↗m.
Puis,

m
i=1 Hi


= F ∋Hm+1.

Soit ϱm+1, une forme linéaire telle que Hm+1 =ϱm+1.

On applique le résultat du lemme : dim
m

i=1 Hi


= dim(F ∋

Hm+1) ∞ dimF↗1 = n↗(m+1) Avec Pm est vraie. On trouve bien,
n ↗m ↗1 = dim H ↗1 ⇓ dim(H ∋Hm+1)

Soient E de dimension n, F un sous-espace vectoriel de E de dimension
n ↗m (m ⇒ N̸). Alors il existe m hyperplans H1, H2, . . . , Hm de E tels que
F =m

i=1 Hi .

Proposition - Expression exacte

Démonstration

Notons ( fm+1, . . . fn) une base de F . On peut la compléter avec
g1, . . . gm en une base de E .
Soit Di = vect(gi ), de dimension 1 et Hi = vect(g1, . . . gi↗1, gi+1, . . . gm , fm+1, . . . fn)
un hyperplan supplémentaire à Di dans E .

Supposons que x =
m∑

i=1
ϑi gi +

n∑

j=m
µ j f j .

On a alors l’écriture de x selon E = Di ≃ Hi : x = ϑi gi + (x ↗
ϑi gi ).

x ⇒
m

i=1
Hi ∈⇐ i ⇒Nm x ⇒ Hi ∈⇐ i ⇒Nmϑi = 0 ∈ x ⇒ F

Autre point de vue

On peut exploiter la force brute des espaces vectoriels et être plus efficace dans la démons-
tration.
Le coût : on perd le côté algorithmique de la démonstration.
En revanche, il est bon d’avoir deux points de vue. . .

Heuristique - Autre approche

Rappel :

Soient m ⇒N̸ et H1, . . . , Hm des hyperplans de E . Alors

dim
 m

i=1
Hi


∞ dimE ↗m.

Proposition - Réduction des dimensions
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Démonstration

Pour tout i ⇒Nm , on note ϱi ⇒ E̸, telles que Hi = Kerϱi .
Soit r = rg (ϱ1,ϱ2, . . .ϱm).
il existe donc i1, i2, . . . ir ⇒ Nm tels que (ϱi1 , . . . ,ϱir ) base de
Im (ϱ1, . . .ϱm).
On note (xi1 , . . . xir ) une base antéduale (rappel :ϱik (xih ) = ϖk,h).
On peut compléter (xi1 , . . . xir ) avec (yr+1, . . . yn) en base de E ,

de manière à ce que ϱik (yh) = 0, pour tout h ⇒ [[r + 1,n]] et
k ⇒Nr .
On a alors

m

i=1
Hi =

r

j=1
Kerϱi j = vect(yr+1, . . . yn)

On a donc dim
m

i=1 Hi = n ↗ r avec r ⇓ m, donc dim
m

i=1 Hi ∞
n ↗m.

Interprétation géométrique

Dans R2 :
— les hyperplans vectoriels sont les droites vectorielles
— l’intersection de deux droites est de dimension ∞ 0 (en fait 0 ou 1)
— le s.e.v. {0R2 }, de dimension 0 = 2↗2, s’écrit comme intersection de

deux droites.
Dans R3 :

— les hyperplans vectoriels sont les plans vectoriels
— l’intersection de deux plans est de dimension ∞ 1 (en fait 1 ou 2)
— les droites, de dimension 1 = 3↗2, s’écrivent comme intersection de

deux plans
— le s.e.v. {0R2 }, de dimension 0 = 3↗3, s’écrit comme intersection de

trois plans.
Dans les deux cas, on retrouve bien les équations usuelles de droites vec-
torielles dans R2, de plans vectoriels ou de droites vectorielles dans R3.

Corollaire - Interprétation géométrique

5. Rang (et noyau) d’une matrice

5.1. Rappel sur la résolution d’un système linéaire

On doit résoudre le système (S) : AX = b d’inconnue X , avec A ⇒Mn,p (K).
— Si b ↖ Im A, alors S =′
— Si b ⇒ Im A.

Alors il existe X0 ⇒Mp,1(K) tel que A↔X0 = b.

AX = b △⇔ A(X ↗X0) = 0 △⇔ X ↗X0 ⇒ Ker A

Alors S = X0 +Ker A = {X0 +Y ,Y ⇒ Ker A} (espace affine).

Proposition - Résolution (théorique) d’un système linéaire
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Soit, à résoudre, le système non carrée AX = b.

1. On exploite la méthode du pivot de Gauss pour échelonner le
système.
On obtient un système de la forme

(E)





a1,1x1 +a1,2x2 +·· ·+ · · ·+ · · ·+a1,p xp = b1
. . .

...
...

...
ar,r+k xr+k +·· ·+ar,p xp = br





r équations
principales

0 = br+1
...

...
...

0 = bn





n ↗ r
équations
auxiliaires

Dans ce cas r est appelé rang du système.
Et x1, x2 . . . xr sont appelés les inconnues principales et xr+1, xr+2, . . . xp
sont appelés les inconnues auxiliaires ou les variables libres

2. On commente le système échelonné :
— Combien d’équations principales : c’est le rang de A (voir plus

bas)
— Combien de variables libres?
— Quel variable libre choisir?
— Exprimer les variables principales en fonction des variables

libres

3. Donner la forme de l’ensemble des solutions du système sous
forme de combinaisons linéaires

Savoir faire - Résolution pratique d’un système linéaire

Exercice

Résoudre





x +y +z = 2
x +y ↗z = ↗1

2x +2y = 3
et





x +y +z = 2
x +y ↗z = ↗1

2x +2y = 1

On a vu qu’il y a une correspondance (calcul de l’inverse) entre la donnée d’une matrice A
et la donnée d’un système S : AX = 0. Mais :

— Le rg (A) est défini à partir des colonnes de A : rg (A) = dim(Im A) (voir plus loin)
— Le rg (S ) est défini à partir des lignes de S (donc de A) : nombre pivots non nuls

lorsqu’on échelonne S
Est-ce toujours la même valeur? Et si oui, comment le démontrer ? Avec le noyau, ou mieux
avec la transformation qui va suivre. . .

Heuristique - Synthèse

5.2. « Action » des matrices surKn →Mn,1(K)

On dit qu’un groupe G agit sur un ensemble E ,
s’il existe une opération (loi interne) naturel

G ↔E ↓ E , (a, x) ↑↓ a · x

qui vérifie eG · x = x, pour tout x et (a ↔b) · x =
a · (b ·x).
La connaissance de G donne des informations
sur cette action.
Et réciproquement, la connaissance de cette
action donne des informations sur G et E .
Les actions de groupe ont envahit les ma-
thématiques et la physique depuis les années
1950. . .

Pour aller plus loin - Action d’un groupe sur
un ensemble

D’après le produit par blocs :

Soit A = (C1|C2| · · · |Cp ), une matrice (association de colonnes de taille n).

Soit X =




x1
...

xp


, une matrice colonne.

On a alors AX qui est une matrice colonne, plus précisément :
AX = x1C1 +x2C2 +·· ·+xpCp ,

combinaison linéaire des colonnes de A, avec les coefficients-scalaires de
X .

Proposition - Multiplication à droite par une colonne : c.l. des co-
lonnes
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Ce résultat justifie le point de vue suivant :

5.3. Image d’une matrice et famille génératrice

Soit A = (C1|C2| · · · |Cp ) ⇒Mn,p (K).
On appelle image de A, l’ensemble

Im A = vect(C1,C2, . . . ,Cp )
= {x1C1 +x2C2 +·· ·+xpCp , x1, x2, . . . xp ⇒K}
= {A↔X | X ⇒Mp,1(K)}

.

Il s’agit du sous espace vectoriel de Mn,1(K) (des matrices colonnes) en-
gendré par les p colonnes de A.
On appelle rang de A, noté rg (A), la dimension de Im A.

Définition - Image et rang d’une matrice

Par définition, Im A (de dimension r ) est un s.e.v. de Mn,1(K) (de dimension
n).
Ils sont égaux, si et seulement si ils ont la même dimension :

Soit A = (C1|C2| · · · |Cp ) ⇒Mn,p (K). Supposons que le rang de A est r .
Alors (C1,C2, . . . ,Cp ) est génératrice de Mn,1(K), i.e. Im A =Mn,1(K)

si et seulement si r = n

Proposition - Famille génératrice, rang d’une matrice

STOP Remarque - Pour les systèmes linéaires
On reprendra ce résultat lors de l’étude complète des systèmes linéaires

5.4. Noyau d’une matrice et famille libre

Analyse - Les colonnes de A forment-elles une famille libre?
Nous avons vu un critère simple pour voir si les colonnes de
A = (C1| · · · |Cp ) sont génératrices de Mn,1(K).
La question qui se pose ensuite est de savoir s’ils forment dans
leur ensemble une famille libre.
Il s’agit donc de montrer que

p∑

i=1
xi Ci = 0 ⇔⇐ i ⇒Np , xi = 0

La proposition de gauche est exactement celle-ci : AX = 0, celle
de droite est X = 0.
Donc (C1,C2, · · ·Cp ) libre ssi {X ⇒Mp,1(K) | AX = 0} = {0p }

Soit A ⇒Mn,p (K).
On appelle noyau de A, l’ensemble

Ker A = {X ⇒Mp,1(K) | AX = 0}.
Il s’agit d’un sous espace vectoriel de Mp,1(K).

Définition - Noyau d’une matrice

Exercice
Démontrer qu’il s’agit bien de sous-espaces vectoriels.

D’après l’analyse faite quelques lignes plus haut :
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Soit A = (C1|C2| · · · |Cp ) ⇒Mn,p (K).
(C1,C2, . . . ,Cp ) est une famille libre de Mn,1(K) ssi Ker A = {0}

Proposition - Famille libre, noyau d’une matrice

5.5. Théorème du rang

Soit A ⇒Mn,p (K). Alors : dim(Ker A)+ rg (A) = p
Théorème - Théorème du rang

Démonstration

Soit Y1,Y2, . . .Ym , une base de Ker A.
Comme Ker A ∝ Mn,1(K), on peut la compléter en une base de
Mn,1(K).
Notons Y1,Y2, . . .Ym ,Ym+1, . . .Yn , cette base complétée.

Im A = {AX , X ⇒Mn,1(K) = {A
n∑

k=1
ak Yk , (a1, . . . an) ⇒Kn} = {A

n∑

k=m+1
ak Yk , (am+1, . . . an) ⇒Kn}

car AY1 = AY2 = . . . AYm = 0.
Finalement

Im A = vect(AYm+1, . . . AYn)

Or cette dernière famille est libre :
n∑

k=m+1
bk AYk = 0 ∈

n∑

k=m+1
bk Yk ⇒ Ker A ∈

n∑

k=m+1
bk Yk = 0

car vect(Ym+1, . . .Yn)≃Ker A, donc
n∑

k=m+1
bk AYk = 0 ∈⇐ k ⇒ [[m +1,n]],bk = 0

car (Ym+1, . . .Yn) est une famille libre. Donc rg (A) = dim(Im A) =
n ↗ (m +1)+1 = n ↗m = n ↗dimKer A

5.6. Bilan : nouveau critère d’inversibilité (pour une matrice
carrée)

Soit A ⇒Mn(K).
Alors, les quatre propositions suivantes sont équivalentes :

i) A est inversible
ii) Ker A = {0}
iii) Im A =Mn,1(K)
iv) le rang de A est égal à n

Théorème - Noyau de A, image de A et inversibilité

Il faut bien faire attention qu’ici la matrice carrée de taille n ↔n agit sur
l’espace des matrices colonnes de taille n ↔1.
Ici p = n, cela est nécessaire pour espérer que la matrice soit carrée.
On étudie donc alternativement les actions de A sur les deux espaces
Mn,n(K) = Mn(K) (première partie précédente) et Mn,1(K) (sur cette
partie)

Attention - Les ensembles du contexte
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Démonstration
Notons A = (C1|C2| · · · |Cn).
1. Avec le théorème du rang, on peut affirmer immédiatement
que ii) et iii) sont équivalentes. 2. De même nous avons vu que
les propositions iii) et iv) sont équivalentes.
3. Enfin montrons que i)⇔ ii) et que iii)=ii)⇔ i).
Si A est inversible.

Soit X ⇒ Ker A, alors AX = 0 et donc A↗1 AX = X = A↗1↔0 = 0.
Donc X = 0 et donc Ker A ∝ {0}.
L’inclusion réciproque est vraie donc Ker A = {0}.

Si Im A =Mn,1(K).

Alors E1 =




1
0
...
0


 ⇒ Im A, donc il existe X1 tel que AX1 = E1.

De même pour tout i ⇒ Nn , où Ei est une colonne de 0 ex-
cepté en ligne i où il y a un 1.

Et donc A↔(X1|X2| · · · |Xn) = (AX1|AX2| · · · AXn) = (E1|E2| · · ·En) =
In .

Ainsi, A est inversible, et A↗1 = (X1|X2| · · · |Xn)

Exercice

Avec A =




1 2 3
4 5 6
↗1 ↗2 ↗3


 et B =




1 ↗2 1
↗2 4 ↗2
1 ↗2 1


, on voit que A↔B = 0.

Pourquoi est-il simple de voir (autrement) que A et B ne sont pas inversibles?
Quelles sont les dimensions des noyaux et images de A et de B

5.7. Action : (P,Q) ·M ↑↓ P ↔M ↔Q↗1

Lorsque deux matrices sont équivalentes, on dit qu’elles sont dans une même classe
d’équivalence.
La bonne habitude consiste alors à décrire cette classe d’équivalence en choisissant un
représentant plus ou moins naturel (le plus simple).
(Comme pour l’angle principal θ0 ⇒ [↗π,π[ représentant de la classe d’équivalence
{θ | eiθ = a, avec |a| = 1} = {θ0 +2kπ,k ⇒Z}).
Pour y arriver, une bonne méthode consiste d’abord à chercher un invariant, c’est-à-dire
un objet (mathématique) caractéristique des classes d’équivalence

T (A) = T (B) △⇔ A et B sont équivalentes

Cet invariant est le rang de A. Et le représentant sera la matrice Jr (n, p)

Heuristique - Précision sur les classes d’équivalence

Nous avons vu que toute matrice inversible pouvait s’écrire comme pro-

duit de matrices élémentaires (transvection, dilatation, transposition) (il suf-

fit d’appliquer l’algorithme de Gauss à son inverse).
STOP Remarque - Inversibilité comme un cas particulier. . .
Nous avons vu que les opérations élémentaires conservent le caractère d’in-

versibilité d’une matrice.

Peut-être conservent-elles quelque chose de plus « large », autrement dit l’in-

versibilité serait qu’un cas particulier.

En effet, elles conservent le rang. Une matrice A est alors inversible ssi r = n.

Analyse - Reprise de l’algorithme de Gauss
Considérons une matrice A,
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1. Par produit à gauche avec des matrice de transvection et
transposition, on peut rendre A sous la forme d’une ma-
trice échelonnée Ae .
On rappelle qu’on appelle pivot, les éléments non nuls qui
bordent inférieurement la matrice alors obtenue.

Ae = (EnEn↗1 . . .E1)↔ A

On note r , le nombre de pivots non nuls ainsi obtenus.

2. Puis par produit à gauche (ou à droite) avec des matrices
de dilatations, on peut rendre les pivots de Ae égaux à 1.
On obtient alors la matrice A1

e .

A1
e = (Dk . . .D1)(EnEn↗1 . . .E1)↔ A

3. Puis (fin de la résolution de l’algorithme de Gauss), par
produit à gauche (toujours), on annule un à un les termes
au dessus de la bordure des pivots égaux à 1 (en commen-
çant par les colonnes de fin). On obtient une matrice éche-
lonnée A1,0

e , avec r nombres 1 en bordure, non forcément
sur la diagonale.

A1,0
e = (E ↘

p E ↘
p↗1 . . .E ↘

1)(Dk . . .D1)(EnEn↗1 . . .E1)↔ A

4. Puis par produit à droite (pour la première fois), par des
matrices de transposition, on peut transformer A en une
matrice toute particulière :

Jr (n, p) =
(

Ir Or,p↗r
On↗r,r On↗r,p↗r

)
=

(
1

i=p
E ↘

i

1

j=k
D j

1

h=n
Eh

)

  
P↗1

↔A↔
(

1

*=m
E ↘↘
*

)

  
Q

Soit A ⇒Mn,p (K).
Pour toute matrice U ⇒GLn(K) (inversible !), alors rg (U ↔ A) = rg (A).
Pour toute matrice V ⇒GLp (K) (inversible !), alors rg (A↔V ) = rg (A).

Proposition - Conservation du rang

Démonstration

On note A = (C1|C2| · · · |Cp ).
On a alors :

X ⇒ vect(UC1,UC2 . . . ,UCp ) ∈ X =
p∑

k=1
akUCk =U ↔ (

p∑

k=1
akCk )

U établit donc une surjection (on parle d’isomorphisme) de
Im A sur Im U A.
Et si U X =U Y , alors U (X ↗Y ) = 0, donc X ↗Y = 0, donc X = Y ,
ainsi U est injective.

En fait, U inversible donc injective, indépendamment des
espaces considérés
Donc dim(Im (U A)) = dim(Im (A)).
De même Si X ⇒ Ker AV , alors V X ⇒ Ker A. V établit une bijection
de Ker AV sur Ker A.

Donc dimKer A = dimKer(AV ) et par théorème du rang :
rg (A) = rg (AV ).
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Il découle alors de l’algorithme du pivot de Gauss :

Soit A, une matrice de Mn,p (K).
rg (A) est égal au nombre de pivots (non nul) de toute matrice échelonnée
obtenue à partir de l’algorithme de Gauss appliqué à A.
C’est-à-dire, rg (A) est le nombre de pivots de toute matrice échelonnée
équivalente à A

Proposition - Rang d’une matrice

Démonstration
Il faut juste démontrer que le rang d’une matrice échelonnée
avec r pivots non nuls est r .
Son noyau est trivialement n↗r . C’est le nombre de lignes nulles.
Par théorème du rang, son rang vaut n ↗ (n ↗ r ) = r .

Soient n, p deux entiers et r ⇓ min(n, p).

On définit Jr (n, p) = (ωi j )1⇓i⇓n,1⇓ j⇓p ⇒Mn,p (K) où ωi j

{
1 si i = j ⇓ r
0 sinon

Jr (n, p) =




1 0 0 · · · · · · 0

0
. . .

. . .

0
. . . 1 0 · · · · · · 0

0 0 0 · · · · · · 0
...

...
...

0 0 0 · · · · · · 0




=
(

Ir Or,p↗r
On↗r,r On↗r,p↗r

)

Op,q étant la matrice nulle de Mp,q (K).

Définition - Matrice « Jr »

En l’absence d’ambiguïté sur la taille de la matrice on la note Jr .

rg (A) = r si et seulement si il existe (P,Q) ⇒ GLn(K) ↔GLp (K), tels que
A = P Jr Q↗1

si et seulement si A et Jr sont équivalentes.

Théorème - Représentant normal

Par transitivité avec Jr :

A et B sont équivalentes ssi rg (A) = rg (B)
Corollaire - Invariant

Démonstration
Nous avons vu, par l’étude de l’algorithme que si rg (A) = r , alors
A est équivalente à Jr (n, p).
La réciproque est vrai :

AQ = P Jr est de rang r (P est inversible et Jr de rang r ).
A = (P Jr )Q est de rang r car Q est inversible.

rg (AT ) = rg (A)
Proposition - Rang de la AT
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Démonstration
A = P Jr Q↗1, et donc AT = (QT )↗1 J T

r P T , donc AT est équivalente
à Jr (et à A !).
On en déduit qu’elles ont le même rang.

D’abord interprétons le calcul.
Considérons AQ = P Jr . Ecrivons Q et P en ligne de colonnes : Q = (C1| · · · |Cp ) donc
AQ = (AC1| . . . ACp ).
Alors que P Jr = (C ↘

1| · · · |C
↘
n )↔ Jr = (C ↘

1| · · · |C
↘
r |O| · · ·O).

Si r = dim A.
(Y1, . . .Yr est une base Im A, ⇑ C1 . . .Cr tel que Yi = ACi et on complète avec une base du
noyau.
On obtient Q, puis P . . .
Ici, on exploite à fond le théorème du rang.

Heuristique - Autre interprétation (1)

On peut aussi voir cela comme un changement de base de Mn,1(K) et de Mp,1(K) avec
A : Mp,1(K) ↓Mn,1(K) (canoniquement).

Heuristique - Autre interprétation (2)

5.8. Matrices extraites

On appelle matrice extraite de A toute matrice obtenue en supprimant une
ou plusieurs lignes, une ou plusieurs colonnes de A.

Définition - Matrice extraites

Soit B une matrice extraite de A, alors rg (B) ⇓ rg (A).
Proposition - Extraction est diminution du rang

Démonstration
Par suite d’opérations élémentaires, qui ne changent pas la va-
leurs du rang, il est possible de transformer A en une matrice de

la forme
(

B C
D E

)
où B est la matrice en question, extraite de A.

Puis par opérations élémentaires, on peut échelonner B et donc
A en partie.
Notons r = rg (B). On trouve alors r pivots non nuls dans A.
Donc rg (A) ∞ r .

On en déduit une méthode pour connaître le rang d’une matrice :

Soit A ⇒Mn,p (K).
Alors rg A est l’ordre maximum d’une matrice carrée inversible extraite de
A.

Proposition - Voir le rang d’une matrice

Démonstration

Pour toutes matrices B extraites de A, rg (B) ⇓ rg (A).
Il suffit donc maintenant de trouver une matrice B d’ordre r , in-
versible extraite de A.
rg (A) = r = vect(C1,C2, . . .Cp ).
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Donc il existe une famille libre extraite de (Ci )1⇓i⇓p de r élé-
ments : (C ↘

1, . . .C ↘
r ), telle que

rg (A) = r = vect(C1,C2, . . .Cp ) = vect(C ↘
1, . . .C ↘

r )

La matrice A1 =
(
C ↘

1|C ↘
2| · · · |C ↘

r
)
⇒ Mn,r (K) est une matrice ex-

traite de A de rang r .
La matrice AT

1 =
(
(L↘

1)T |(L↘
2)T | · · · |(L↘

n)T )
⇒Mr,n(K) est également

de rang r .
On peut lui extraire à elle également, n ↗ r colonnes : A2 =(
(L↘↘

1)T |(L↘↘
2)T | · · · |(L↘↘

r )T )
⇒Mr,n(K) est de rang r .

Enfin, B = AT
2 est une matrice extraite de A, elle est de rang égale

à r également.

Soit A ⇒Mn,p (K), alors
rg A ⇓ min(n, p).

Corollaire - Majoration du rang

Démonstration
Comme rg (A) = vect(C1, . . .Cp ), alors rg (A) ⇓ p.
Et comme dimKer A ∞ 0, on a aussi rg (A) = n ↗dimKer A ⇓ n

Les propositions suivantes sont déjà connues, mais leurs interprétations sont
nouvelles : à partir des applications linéaires. . .

6. Bilan

Synthèse

↭ On reprend une remarque précédente : les éléments de E s’écrivent
les uns à partir des autres par addition et multiplication par constante.
Ces descriptions sont potentiellement multiples : nous préférons la
description unique qui élimine les quiproquos.
Deux questions :
— est-il possible que ⇐ u,⇑ !(v, w) tel que u = v +w ? Quel contrainte

sur v, w ? La réponse, ils sont pris dans des ensembles supplémen-
taires (deux conditions : existence et unicité)

— est-il possible que ⇐ u,⇑ !(ϑi )i⇒I ⇒ KI tel que u =
∑

i⇒I
ϑi ei ? Quel

contrainte sur (ei )i⇒I ? La réponse, il s’agit d’une famille génératrice
de E et libre (deux conditions : existence et unicité)

↭ Emerge alors la notion de dimension finie. Si dans un espace, il existe
une base finie de cardinal n, alors toutes les bases sont du même
cardinal. C’est très pratique (cela réduit alors la double contrainte
précédente à une seule contrainte.)

↭ Lorsque les espaces E et F sont de dimensions finies, l’espace L (E ,F )
est alors isomorphe à MdimE ,dimF (K). On retrouve l’ensemble des ré-
sultats sur les matrices, ils s’interprètent de façon renouvelée et réci-
proquement MdimE ,dimF (K) éclaire l’espace L (E ,F ).
Et en particulier, on peut retrouver le théorème du rang.

↭ Enfin, les formes linéaires nous occupent tout particulièrement, car
elles sont comme la dualité de la notion de base. Elle permette de
reprendre la notion de dimension, par décroissance.
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Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Base incomplète
— Savoir-faire - Montrer qu’une famille est une base
— Savoir-faire - Montrer que deux espaces vectoriels sont égaux
— Savoir-faire - Exploitation (lien matrice/isomorphisme)
— Savoir-faire - Petite aide mnémnotechnique
— Truc & Astuce pour le calcul. Etant données A et B , trouver B, B↘ et u.
— Savoir-faire - Exploiter le rang d’endomorphisme restreint ou composé
— Savoir-faire - Résolution pratique d’un système linéaire

Notations

Notations Définitions Propriétés Remarques
rg(x1, x2, . . . xn ) dim(vect(x1, x2, . . . xn ))
rg (u) Rang de u rg (u) = dim(Im u) dimE = dim(Ker A)+ rg (A), u in-

versible ssi rg (A) = dimE .
Tr(u) Trace de u Tr(u) = Tr

(
MB (u)

)
(quelle que soit B). Tr(u ▽ v) = Tr(v ▽u),

si p projecteur : Tr(p) = rg (p)
Im (A) Image de la matrice A Im (A) = vect(Ck (A)) = {AX ; X ⇒Mp,1(K)}
Ker(A) Noyau de la matrice A Ker(A) = {X ⇒Mp,1 | AX = 0} A inversible ssi Ker A = {0}
rg (A) Rang de A rg (A) = dim(Im A) p = dim(Ker A) + rg (A), A inver-

sible ssi rg (A) = p, rg (A) = rg (AT )
Jr (n, p) =(

Ir Or,p↗r
On↗r,r On↗r,p↗r

)Matrice Jr rg (A) = r △⇔⇑ P,Q ⇒GLn (K)↔GLp (K) tel
que A = P ↔ Jr ↔Q

Retour sur les problèmes

108. En fait, c’est tout le but de ce cours de montrer qu’ll s’agit de terminer
LES (unique, car c’est une famille libre) coordonnées de (2,1) avec la
famille (génératrice de R2) :

(
(1,1), (1,2)

)
.

Ici : (2,1) = 3(1,1)↗1(1,2).
En revanche,

(
(1,1,1), (1,2,1)

)
ne forme pas une base de R3. L’écriture

de (2,1,0) comme c.l. de cette famille n’est pas assurée, mais pas né-
cessairement impossible non plus a priori. Il faut calculer. . .
En regardant les deux première valeurs, on a nécessairement (2,1, ·) =
3(1,1,1)↗1(1,2,1) = (2,1,2). Ce n’est donc pas possible.

109. Il n’y a pas unicité, la famille considérée n’est pas libre.
En effet : (2,1,0) = 3(1,1,1)+0(1,2,1)↗(1,2,3)+0(1,↗1,0) =↗3(1,1,1)+
3(1,2,1)+0(1,2,3)+2(1,↗1,0).
Ce n’est important que si l’on veut être sûr de ne pas avoir de quipro-
quo. Donc c’est souvent très important !

110. Si E est de dimension finie, on peut trouver H mais il n’est pas unique.
Comment unifier tous les espaces vectoriels H ↘ ? On peut exploiter la
structure affine. Dans la marge vous trouverez des idées.
Avec un produit scalaire, H⊥ est alors un espace supplémentaire de H ,
naturelle.

111. Cours

112. Cours : c’est l’isomorphisme de L (E ,F ) ↓Mp,n(K) étant données une
base pour E et une pour F .

113. Elles sont équivalentes, voire semblable si E = F et qu’on considère les
mêmes bases.
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