
Chapitre 26
Structures affines

Un espace affine est un espace vectoriel translaté (ou encore avec une origine
ailleurs qu’en 0). Une autre façon de penser le lien espace vectoriel/espace affine
consiste à faire un faire un parallèle avec le lien base B = (ωi ,ωj ,ωk) (d’un espace
vectoriel) / repère R = (O,ωi ,ωj ,ωk) (d’un espace affine).
Après avoir vu quelques généralités sur les espaces affines, nous nous concentrons
sur les deux exemples typiques de notre programme :

— L’ensemble des solutions d’un système d’équation linéaire non homogène.
(Nous pouvons également penser aux solutions d’une équation différen-
tielles linéaire avec second membre. . .)

— L’espace affine géométrique R2 ou R3. . .
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550 Structures affines

1. Problèmes

La géométrie (classique) permet de voir les espaces vectoriels.
Une droite linéaire {(x, y) → R2 | y = ax} est un sous-espace vectoriel de
dimension 1 de R2.
En géométrie classique, il y a aussi dans l’espace R2 des sous-ensembles
non sev, appelés droites affine : {(x, y) → R2 | y = ax +b}. Elle est "paral-
lèle" à la droite précédente, mais décalée (translatée) de b (ordonnée à
l’origine).
Comment peut-on, de la même façon, découper un espace vectoriel en
mille-feuille : l’une est vectoriel, les autres affines et parallèles ?

Problème 114 - Droite linéaire vs. droite affine

A tous les problèmes linéaires nous pouvons associer une structure d’es-
pace vectoriel.
L’ensemble des inconnues est l’espace vectoriel et le problème code une
application linéaire.
Lorsqu’il s’agit de trouver les racines du problèmes (solutions lorsque le
second membre est nul), on se trouve en présence d’un noyau d’appli-
cations linéaires.
Exemple : trouver (un) telle que ↑ n →N, un+3 ↓un+1 +un = 0.
L’espace est E = KN, l’application linéaire est ε : (un) ↔↗ (vn) avec
↑ n →N, vn = un+3 ↓un+1 +un . Il s’agit de trouver Kerε.
Mais si le second membre est non nul, quelle est la structure de l’en-
semble des solutions ?
Exemple : trouver (un) telle que ↑ n →N, un+3 ↓un+1 +un = n +2.

Problème 115 - Structure affine de l’ensemble des solutions

d’un problème linéaire

Si la géométrie permet de mieux voir les espaces et définir les espaces
affines, on peut espérer que les structures algébriques permettent réci-
proquement de mieux comprendre la géométrie.
Que peut-on dire de l’intersection de trois hyperplans affines dans l’es-
pace ? Est-il possible de coder ce problème sous forme de système à
résoudre ? De quelle façon, le rang du système nous informe sur l’en-
semble intersecté?

Problème 116 - Réciproquement

On note pour F sev de E et a → E , F l’espace affine a +F .
Ainsi b →F ↘≃⇐ f → F tel que b = a + f ↘≃ b ↓a → F .
On définit ainsi une relation d’équivalence : aRF b.
Que peut-on dire de l’espace affine F en terme de classe d’équivalence
de a pour RF ?
Si H est supplémentaire de F dans E , on a H est un système de représen-
tants de classes pour RF .

Problème 117 - Espaces quotients et supplémentaires
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2. Introduction 551

Réciproquement, peut-on exploiter cette relation, pour créer un espace
vectoriel F , « supplémentaire » (d’une certaine façon) à F dans E ?

2. Introduction

Soit E unK-espace vectoriel (K=R ou C).

On va s’intéresser à la structure affine de E ,
c’est-à-dire que les éléments de E vont être re-
pérés par rapport à une origine et considérés
comme des “points” (on les notera de préfé-
rence en majuscule dans ce cas). Les éléments
de E “espace vectoriel”, seront noté de préfé-
rence en minuscule avec une flèche, et on peut,
pour faire la différence, noter ωE l’ensemble E
quand il est considéré comme espace vectoriel.
D’autre fois, E est l’espace vectoriel considéré
et E un espace affine associé. . .

Pour aller plus loin - Principe et notation
Si A,B → E , on note

↓↗
AB = B ↓ A → ωE . On a alors

↓↗
AB =ω0 ⇒ A = B

B = A+ωu ⇒ωu =↓↗
AB

↓↗
B A =↓↓↗AB
↓↗
AB +↓↗

BC =↓↗
AC

Heuristique - Addition (et soustraction) affine

On appelle alors repère affine de E tout couple (ϑ,B) d’un point ϑ de E (l’origine du
repère) et d’une base B de ωE . Si B = (ωe1, . . . , ωen ) alors tout point X de E s’écrit de manière
unique sous la forme X = ϑ+∑n

i=1 xi ωei ; on dit que les xi sont les coordonnées du point

X dans le repère affine, ce sont également les coordonnées du vecteur
↓↓↗
ϑX dans la base B.

(Le choix d’une origine permet “d’identifier “ E et ωE .)

Heuristique - Repère affine

3. Translatés d’un sous-espace vectoriel

3.1. Translation (linéaire)

Soit (E ,+, ·) un K -e.v.

Soit a → E . On appelle translation de vecteur a l’application

ta : E ↗ E
x ↔↗ x +a

Définition - Translation

On note T (E) l’ensemble des translations de E . Alors (T (E),⇑) est un
groupe commutatif.
En particulier

— I dE est la translation de vecteur nul.
— ta ⇑ tb = tb ⇑ ta = ta+b .
— ta est bijective de bijection réciproque t↓a

Proposition - Le groupe des translations T (E)

Démonstration

Pour tout x → E ,

(ta⇑tb)(x) = ta(tb(x)) = ta(x+b) = (x+b)+a = x+(a+b) = ta+b(x) = (tb⇑ta)(x)

En fait, on crée ainsi un morphisme bijectif de groupes : ω :
(E ,+) ↗ (T (E),+). . .

On notera bien, pour ce qui suit, que nous ne définissons jamais (ici) un
espace affine, mais seulement des sous-espaces affines (à partir d’un espace
vectoriel).
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552 Structures affines

3.2. (Sous-)Espaces affines

Soit F ⇓ E , autrement écrit : F une partie de E .
On dit que F est un sous-espace affine de E s’il existe a → E et F sous-
espace vectoriel de E tels que

F = ta(F ) = {a + f ; f → F }

On note alors F = a +F et on dit que le s.e.v F est la direction du s.e.a. F .

Définition - Sous-espace affine (d’un espace vectoriel)

STOP Remarque - Eléments de F
D’après la définition, les éléments de F sont des éléments de E donc des
vecteurs !
Et pourtant la « tradition » veut qu’on appelle ces éléments des points. On
les notera souvent avec une lettre majuscule.
STOP Remarque - Autre notation
Si on note un s.e.a. F , on notera sa direction ωF .
STOP Remarque - Unicité de F
La définition parle de LA direction F . Faut-il comprendre qu’il est unique?

Démonstration
Supposons F = a +F = a⇔+F ⇔.

alors comme 0 → F,0 → F ⇔, alors a et a⇔ →F .
Et donc il existe b → F tel que a⇔ = a +b et donc a⇔ ↓a → F .
Par symétrie : a ↓ a⇔ → F ⇔, puis, comme ce sont des espaces

vectoriels : a ↓a⇔ → F ↖F ⇔.
Ensuite, pour tout x → F , a+x →F = a⇔+ y︸︷︷︸

→F ⇔

, donc x = a⇔+y↓a →

F ⇔ et F ⇓ F ⇔.
Par symétrie, on a l’inclusion réciproque : F ⇔ ⇓ F .

Donc F = F ⇔

Soit F un sous-espace affine de E de direction F . On dit que F est
— un point (ou un singleton réduit à un point) si F = {0E },
— une droite affine si F est une droite vectorielle,
— un plan affine si F est un plan vectoriel,
— un hyperlan affine si F est un hyperplan vectoriel.

Définition - Sea particuliers

Application - Représentation graphique dans R2 ou dans R3

Le plan étant muni d’une origine O, on peut identifier le vecteur nulω0 avec O
et un vecteur ωu = ↓↓↗

OM avec son extrémité M . Une droite vectorielle est alors
une droite passant par O et une droite affine (translaté d’une droite vecto-
rielle) une droite quelconque.

Exemple - Cas particuliers
• les s.e.a de R2 sont

• les s.e.a de R3 sont

• {y →F (R,R) | y ⇔⇔+ y ⇔ ↓2y = e3x} est un s.e.a de F (R,R) de direc-
tion
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3. Translatés d’un sous-espace vectoriel 553

Si F est un s.e.a de E de direction F ,
alors pour tout a →F on a F = a +F .

Proposition - Expression d’un s.e.a.

Démonstration

F a pour direction F . Il existe u → E tel que F = u +F .
Soit a → F , alors il existe ωa0 → F tel que a = u +ωa0

↑ x →F ,⇐ωx0 → F tel que x = u +ωx0

↑ x →F ,⇐ωx0 → F tel que x = (a ↓ωa0)+ωx0 = a + (ωx0 ↓ωa0)
Donc, comme (F,+) est un groupe et doncωx0 → F ⇒ (ωx0↓ωa0) → F ,
on peut affirmer que F = a +F , pour tout a →F

3.3. Exemples variées

Les résultats suivant sont déjà connus, mais il s’interprète de manière tout à
fait naturel dans le langage des espaces affines.

Equation simple

Soient u → L (E ,F ) et b → F . On note SE l’ensemble des solutions de
l’équation (E ) : u(x) = b.

— Si b ↙ Im u alors SE =∝.
— Si b → Im u alors SE ′= ∝ et si x0 est une solution particulière de (E )

alors
SE = {x0 + y ; y → Ker u}.

SE est un sous-espace affine de E de direction Ker u.

Théorème - Résolution d’une équation linéaire u(x) = b

Equations différentielles

Tout les problèmes linéaires avec second
membre se resolvent de la même façon :

— on cherche une solution particulière
(point de translation)

— on cherche l’espace vectoriel des so-
lutions du problème (linéaire) homo-
gène.

La somme forme l’espace affine des solutions
recherchées

Pour aller plus loin - Linéaire+second
membre

Pour l’exercice suivant on donnera une base à l’espace directeur (ce qui
donne aussi la valeur de la dimension de l’espace affine des solutions).
Exercice
• Exprimer l’ensemble des solutions de l’équation

y ⇔+cos x ∞ y = 1+ tan2 x + sin x

• Exprimer l’ensemble des solutions de l’équation

↓3y ⇔⇔+4y ⇔ ↓ y = sin x

Partout. . .

Exercice
Trouver les suites (un ) vérifiant :

↑ n →N, un+2 +un+1 ↓6un = 2

Exercice
Trouver l’ensemble des polynômes tels que P (1) = 1, P (2) = 2, P (3) = 3 et P (4) = 5.
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554 Structures affines

Problème d’interpolation de Lagrange.

Exercice
Trouver l’ensemble des nombres N tels que N ∈ 1[3], N ∈ 2[5], N ∈ 4[7] et N ∈ 1[11].
Problème des restes chinois.

4. Systèmes d’équations linéaires

Sur ce dernier exercice, il ne s’agit pas a pro-
prement parlé d’espace affine et espace vecto-
riel mais de module, car l’ensemble est défini
(pour la loi externe) sur l’anneau Z et non un
corpsK. On parle alors de module

Pour aller plus loin - Module affine

4.1. Contextes

En forme de rappels :

On considère le système de n équations à p inconnues :

(S)





a11x1 +a12x2 +·· ·+a1p xp = b1
a21x1 +a22x2 +·· ·+a2p xp = b2
...
an1x1 +an2x2 +·· ·+anp xp = bn

La matrice A =




a11 a12 · · · a1p
a21 a22 · · · a2p

...
...

...
an1 an2 · · · anp



→ Mn,p (K ) s’appelle la matrice du

système, B =




b1
b2
...

bn



→ Mn,1(K ) est la matrice colonne des coordonnées du

second membre b = (b1,b2, . . . ,bn) → K n .
On appelle système homogène associé à (S) le système

(SH )





a11x1 +a12x2 +·· ·+a1p xp = 0
a21x1 +a22x2 +·· ·+a2p xp = 0
...
an1x1 +an2x2 +·· ·+anp xp = 0

Définition - Vocabulaire

Le système est dit compatible si l’ensemble des solutions est non vide.
Définition - Compatibilité du système

STOP Remarque - Rang du système
On appelle rang du système (S) le rang de la matrice A.

4.2. Interprétations

Les résultats et propositions qui suivent découlent du cours précédent, ce
qui change est leur interprétation (en fait, « le point de vue s’élargit »). Cela
ne mérite donc, de manière générale, aucune démonstration.

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



4. Systèmes d’équations linéaires 555

Soit u →L (Kp ,Kn) définie par

u : Kp ↗Kn




x1
...

xp


 ↔↗




a11x1 +a12x2 +·· ·+a1p xp
a21x1 +a22x2 +·· ·+a2p xp

...
an1x1 +an2x2 +·· ·+anp xp




et b = (b1,b2, . . . ,bn). Alors

(x1, . . . , xp ) →Kp est solution de (S) ⇒ u(x) = b

Le système est compatible si et seulement si b →∋u.

Proposition - Interprétation linéaire

Le rang du système (S) est égal au rang de u : rg (S) = rg (A) = rg (u).
Proposition - Rang du système

Considérons les n formes linéaires ωi surKp définies par

ωi : Kp ↗K

(x1, . . . , xp ) ↔↗ ai 1x1 +ai 2x2 +·· ·+ai p xp

Alors

(x1, . . . , xp ) →Kp est solution de (S) ⇒↑i → {1, . . . ,n},ωi (x) = bi

L’ensemble des solutions du système homogène est alors Kerω1 ↖ . . . ↖
Kerωn .

Proposition - Interprétation duale

4.3. Structure de l’ensemble des solutions

On note S0 l’ensemble des solutions du système homogène associé et S
l’ensemble des solutions du système (S).

S0 est unK-espace vectoriel de dimension p ↓ rg (S).
Théorème - Dimension de l’espace vectorielS0

Si (S) est compatible, alors il existe une solution particulière x0.
Dans ce cas,

S= {x0 + y ; y →S0}

et S est un espace affine de dimension p ↓ rg (S).
Un tel système a rg (S) inconnues principales et p ↓ rg (S) inconnues se-
condaires.

Théorème - Résolution de système. Interprétation affine.

Exercice
Résoudre le système





2x1 ↓2x2 +x3 ↓5x4 +3x5 = 8
2x2 ↓4x3 ↓9x4 +7x5 = 6

↓6x1 +7x2 ↓6x3 +11x4 ↓7x5 = ↓23
2x1 ↓5x2 +14x3 +5x4 +3x5 = 13
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556 Structures affines

5. Equations, intersections et parallélisme

5.1. Cas général

Intersection

Soient F et G deux sous-espaces affines de directions respectives F et G .
Si F ↖G ′=∝ alors F ↖G est un sea de direction le s.e.v F ↖G .

Proposition - Intersection de sous-espaces affines

Démonstration

Soit a →F ↖G .
On a les équivalences :

x →F ↖G ↘≃


x ↓a → F car x, a →F
x ↓a →G car x, a →G

↘≃ x ↓a → F ↖G

Donc, par équivalence (donc double inclusion) : F ↖G est un
sous-espace affine de direction le s.e.v F ↖G

Si F ↖G = {0}, i.e. F △G :

Soient F et G deux sous-espaces affines de directions respectives F et G
vérifiant F △G = E . Alors F ↖G est un singleton.

Corollaire - Espaces supplémentaires

STOP Remarque - Hypothèse superflue?
Il faudrait également montrer que F ↖G ′=∝.
Mais le fait que la somme F +G donne E implique que F ↖G ′=∝, d’après un
des exercices du chapitre. . .

On dit que le sous-espace affine F est parallèle au sous-espace affine G si
F ⇓G .
On dit que que deux sous espaces affines F et G sont parallèles si F =G .

Définition - Sous-espaces affines parallèles

Etre parallèle n’est donc pas une relation d’équivalence (non symé-
trique).
Mais il s’agit d’une pseudo-relation d’ordre (légère difficulté : on parle
des espaces affines, et on a une égalité sur les espaces vectoriels, dans le
cas de l’antisymétrie).
Par ailleurs, la relation n’est clairement pas totale

Attention - Relation d’équivalence. Relation d’ordre

Exercice
Que pensez-vous de F +G ?

Equations

Soit R = (ϑ,e1, . . . ,en) un repère affine de l’espace E de dimension n. Alors
— Un hyperlpan affine H de E possède au moins une équation dans

R du type :

n

i=1
ai xi = h avec (a1, . . . , an) ′= (0, . . . ,0). (▽)

Proposition - Equation d’un hyperplan affine
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— Réciproquement la relation (▽) est l’équation d’un hyperlpan affine
dont la direction admet pour équation cartésienne

n

i=1
ai xi = 0.

— Deux équations de la forme (▽) représentent le même hyperplan
affine si et seulement si elles sont proportionnelles.

Démonstration
On exploite le théorème sur les formes linéaires, colinéaires si et
seulement si elles ont le même noyau

5.2. Dans un plan (espace de dimension 2)

On retrouve les résultats du plan usuel, qui sont généralisable à tout espace
(affine) de dimension 2 (comme par exemple, l’espace des suites récurrentes
linéaires d’ordre 2)

Soit (ϑ,ωe1,ωe2) un repère du plan. Alors
— Toute droite possède une équation cartésienne de la forme ax+by+

c = 0 où a,b,c →R, (a,b) ′= (0,0), ωu(↓b, a) en est un vecteur directeur.
— Réciproquement, toute équation cartésienne de ce type décrit une

droite.
— Deux telles équations représentent la même droite si et seulement

si elles sont proportionnelles.

Théorème - Equation de droites

Soit (ϑ,ωe1,ωe2) un repère du plan. Alors une droite possède des équations
paramétriques (ou une représentation paramétrique) de la forme


x = x0 + tu1
y = y0 + tu2

t →R

Il s’agit alors de la droite passant par M0(x0, y0) et de vecteur directeur
ωu(u1,u2).

Définition - Equation paramétrique

Démonstration
Dans ce cas, l’espace affine en question est de la forme x0 +ωF ,
avec ωF , un espace vectoriel de dimension 1.
Donc ωF = vect(ωu)

Deux droites affines du plan sont parallèles si elles ont même direction
et, si elle ne sont pas parallèles, leur intersection est réduite à un point.

Proposition - Droites parallèles

5.3. Dans un espace de dimension 3

Comme précédemment, dans le cas où l’espace vectoriel directeur est de
dimension 1 (droite dans l’espace) :
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558 Structures affines

Soit (ϑ,ωe1,ωe2,ωe3) un repère quelconque de l’espace. Alors une droite pos-
sède des équations paramétriques (ou une représentation paramétrique)
de la forme 




x = x0 + tu1
y = y0 + tu2
z = z0 + tu3

t →R

Il s’agit alors de la droite passant par M0(x0, y0, z0) et de vecteur directeur
ωu(u1,u2,u3).

Définition - Représentation paramétrique d’une droite

Comme précédemment, dans le cas où l’espace vectoriel directeur est de
dimension 2 (plan dans l’espace) :

Soit (ϑ,ωe1,ωe2,ωe3) un repère quelconque de l’espace. Alors un plan possède
des équations paramétriques (ou une représentation paramétrique) de la
forme 




x = x0 + tu1 + sv1
y = y0 + tu2 + sv2
z = z0 + tu3 + sv3

(t , s) →R2

Il s’agit alors du plan passant par M0(x0, y0, z0) et de vecteurs directeurs
ωu(u1,u2,u3) et ωv(v1, v2, v3) (Attention : ωu et ωv doivent être linéairement
indépendants, sinon il s’agit d’une droite).

Définition - Représentation paramétrique d’un plan

Soit (ϑ,ωe1,ωe2,ωe3) un repère de l’espace. Alors
— Tout plan possède une équation cartésienne de la forme ax +by +

cz +d = 0 où a,b,c →R, (a,b,c) ′= (0,0,0).
— Réciproquement, toute équation cartésienne de ce type décrit un

plan.

Théorème - Equation cartésienne d’un plan

Démonstration
L’idée est de noter ax+by+cz+d = 0 sous la forme ax+by+cz =
↓d . . ..
On note ω : ωE ↗K, (x, y, z) ↔↗ ax +by + cz.
Puis le plan est de la forme M0 +Kerω, avec M0 de coordonnées
(x0, y0, z0) vérifiant : ax0 +by0 + cz0 =↓d .
On a alors P = {M(x, y, z) | ωM M0 → Kerω} = {M(x, y, z) | ax+by+
cz +d = 0}

Soient deux plans d’équations respectives
ax +by + cz +d = 0 et a⇔x +b⇔y + c ⇔z +d ⇔ = 0. Alors

— Si (a,b,c) et (a⇔,b⇔,c ⇔) sont proportionnels, alors P et P ⇔ sont paral-
lèles (i.e. ont le même plan vectoriel comme direction, ou les mêmes
vecteurs directeurs).
De plus si (a,b,c,d) et (a⇔,b⇔,c ⇔,d ⇔) sont proportionnels alors P =
P ⇔, sinon P ↖P ⇔ =∝.

— Si (a,b,c) et (a⇔,b⇔,c ⇔) ne sont pas proportionnels, alors ϖ = P ↖P ⇔

est une droite.
ax +by + cz +d = 0
a⇔x +b⇔y + c ⇔z +d ⇔ = 0

s’appelle un système d’équations carté-

siennes de ϖ.

Proposition - Equations cartésiennes d’une droite
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Dans l’espace de dimension 3,
— deux droites sont parallèles si elles ont des vecteurs directeurs

colinéaires,
— deux plans sont parallèles s’ils ont le même plan vectoriel pour

direction,
— une droite peut être parallèle a un plan si son vecteur directeur

appartient à la direction du plan,
— mais il est incorrect de dire qu’un plan est parallèle à une droite,
— l’intersection d’une droite D non parallèle à un plan P , et du plan

P est un point.

Attention - Parallélisme et intersection

6. Bilan

Synthèse

↭ Les structures affines sont des milles-feuilles d’espaces vectoriels qui
ne contiennent pas nécessairement le vecteur nul. Cela permet d’offrir
une liberté aux mathématiciens.

↭ Cela s’applique dans de nombreux domaines : nous nous concentrons
ici uniquement sur les systèmes d’équations linéaires et sur la géomé-
trie de dimension 2 ou 3.

Savoir-faire et Truc & Astuce du chapitre

Notations

Notations Définitions Propriétés Remarques
F Espace affine, défini par un sous-espace F

et a un « point » quelconque de F
F = a +F

Retour sur les problèmes

114. Cours

115. La suite u définie par ↑ n →N, un = An +B .
un+3 ↓un+1 +un = A(n + 3↓n ↓ 1+n)+B(1↓ 1+ 1) = An + (B + 2A).
Donc avec A = 1 et B = 0, on a une solution particulière.
On note a,b,b les trois racines (complexes) de l’équation caractéris-
tique associée.
L’espace vectoriel des solutions de l’équation homogène est E =
vect((an), (bn), (b

n
))

L’ensemble des solutions du problème est donc l’espace affine : u +E .

116. Le rang du système nous donne la codimension de l’espace vectoriel
qui dirige l’espace affine en question : 2 ou 1 voir 0. (En fait ce qui
compte, c’est la dimension du noyau).
Il faut également trouver un point d’intersection comme origine de
l’espace affine solution.

117. F = aRF .
L’étude sur H , en découle.
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