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Chapitre

27

Espaces vectoriels euclidiens

Résumé -

Dans les situations physiques, les espaces considérés (vectoriels ou affine) sont en
regle générale munie d’'un produit scalaire. On peut donc faire 'étude de ces es-
paces que l'on appelle préhilbertien. Mais la motivation mathématique aurait été
déja suffisante : un produit scalaire bien choisi c’est une étude renforcée de la dua-
lité (B* = £(E,K)), ou encore l'étude des coordonnées sur une base. ..

Nous commengons par étudier la notion abstraite (théorique) des produits sca-
laires. Nous enchainons avec la notion importante d'orthogonalité (qui précise

d'une certaine fagon la question d’espace supplémentaire). Comme pour l'algebre
linéaire, nous nous concentrons ensuite sur le espaces de dimension finies, avant
d’étudier une famille d’'applications linéaires particuliéres : les projections ortho-
gonales (et symétries orthogonales). Dans le chapitre suivant, nous élargirons cette
étude aux isométries vectorielles et affines.
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562 Espaces vectoriels euclidiens

1. Problemes

? Probleme 118 - Expérience physique

Les espaces (vectoriels) dont on parle en mathématiques sont des idéa-
lisations des espaces géométriques des espaces a 1,2 ou 3 dimensions de
la physique.

Or dans ces espaces physiques (ou géométriques), il y a aussi naturelle-
ment un produit entre les vecteurs : le produit scalaire si souvent utilisé
en Physique.

Si on essaye alors d’idéaliser également les produit scalaire dans les es-
paces vectoriels, quelles sont les propriétés algébriques et abstraites que
doivent vérifier cette opération entre deux vecteurs? Quels sont |'origine
et le but de cette opération? Est-elle (bi)linéaire? Et que penser du fait
que #i- U est un nombre strictement positif ssi i # 0?

? Probléme 119 - Projection selon un vecteur

Continuons. En physique, on exploite souvent le produit scalaire pour
projeter un vecteur sur un autre.

Dans le cours sur les espaces vectoriels, les projecteurs sont parfois pro-
blématiques : ils existent dés qu’on dispose de deux espaces supplémen-
taires dans E, mais I'expression x — p(x) est rarement explicite.

Est-il possible d’exploiter les produits scalaires pour pouvoir exprimer
explicitement pj(X), la projection de X sur ii?

Et plus largement, sur un sous-espace vectoriel ?

? Probleme 120 - Espace orthogonaux
Nous savons qu’'un sous-espace vectoriel admet une INFINITE de sous-
espace supplémentaire dans E.
Si F est connue, ainsi que pr, alors cela ne définit-il pas aussil'espace G
tel que E = F @ G et pr est la projection sur F de direction G?
11 existe donc un UNIQUE espace supplémentaire a F qui est privilégié
dans I'’espace (euclidien) E. Qui est-il?

? Probléme 121 - Décomposition sur une base
Comme pour les projecteurs, étant donné une base % = (e, e2,...e,) de
E, I'application

n
®:E— K", x— (ay,...a,) telque x = Zaiei
i=1

n'est pas, en générale, pas explicite. Si il est possible d’expliciter les
projecteurs, slirement est-il également le cas pour cette application ou
pour les @ : x — ay.

En fait, on verra que cela est naturel quand la base est orthonormée (pour
un produit scalaire définie sur E) ? Qu’est-ce que cela signifie?
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? Probleme 122 - Bases orthonormées
Est-ce que tous les espaces euclidiens (vectoriels, finis, avec un produit
scalaire) admettent au moins une base orthonormée ? Peut-on prolonger
également les autres théoremes sur les bases : bases incompletes. ..

? Probléme 123 - Dualité et probléme réciproque
Soit E euclidien, % = (ey,...e,) une base. On notera alors que @y : E —

n
K,x— ai (tel que x = Y, Dy(x)ex) est une fome linéaire.
k=0

Réciproquement, est-ce qu'une forme linéaire s’associe nécessairement
aun vecteur?

Une famille de formes linéaires indépendantes a une base orthogonale?
Cela dépend stirement du produit scalaire. ..

Dans ce chapitre les espaces vectoriels sont des R-espaces vectoriels exclusi-
vement.

2. Définitions et regles de calcul

2.1. Produit scalaire

e N
Définition - Produit scalaire

Soit E un R-espace vectoriel. On dit que ¢ est un produit scalaire sur E si
¢ est une forme bilinéaire symétrique définie positive, c’est-a-dire si ¢ est
une application de E x E dans R vérifiant :

1. (bilinéaire)
V(x,x', ) e B3,V A) eRE, pAx+ Ax', ) = Ap(x, y) + A p(x, y)
V(x,3,y) e B2 YL A) €R?, p(x, Ay + A'Y) = Ap(x, ) + M p(x, ¥

2. (symétrique)
V(x,y) € E%, ¢(x,) = (y, %)

3. (positive)
Vx€eE, p(x,x)=0

4. (définie)

VxeE, ,x)=0 =0
L X & (x,x) = x=0g )

e Remarque - Linéarité+symétrie

¢ bilinéaire signifie que, a xq fixé, y — ¢(xo, y) est une forme linéaire sur E

et que, a yp fixé, x — ¢(x, yo) est aussi une forme linéaire.

Si ¢ est symétrique et "linéaire par rapport a la premiére variable”, alors ¢ est
nécessairement bilinéaire.

- ™
Définition - Notations

Les notations les plus usuelles sont :
L P, =x=(,»=(&ly=xy )
- ™
Définition - Espace préhilbertien réel

On appelle espace préhilbertien réel un R-espace vectoriel muni d'un pro-
\duit scalaire. )

Pour aller plus loin - Espace hermitien (1)

Il existe une théorie des produits scalaires
complexes. On parle d’espace hermitien, en
hommage a Charles Hermite, mathématicien
francais de la fin du XIX siécle.

Pour aller plus loin - Forme sesquilinéaire,
hermitienne

On dit que f € E* (forme linéaire), avec E,

C-ev est sesquilinéaire si

VAupeCxyeE,

[fAx+py) =Af(x)+1f(x).

On dit que f (forme linéaire sur (E*)z) est

hermitienne si

Y x,yeE, f(x,y) = f(y,x).

On appelle produit scalaire complexe, toute
forme linéaire a gauche, sesquilinéaire a droite
(ou I'inverse) hermitienne, définie et positive.
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/~Savoir faire - Montrer qu’on a un produit scalaire
On vérifie chacune des hypotheses...
A commencer par le fait qu'’il s’agisse d’'une forme linéaire!
On démontre la symétrie avant la linéarité a gauche. Comme cela, on
obtient la linéarité a droite.
On démontre la forme positive avant le fait que cela soit une forme
définie.

Proposition - La bilinéarité en action
Soient (X;)1<i<r €t (Y})1<j<s deux familles de vecteurs de E et (1;)1<i<r €t
(Kj)1<j<s deux familles de réels. Alors

QU AXil ) piYiy =3 ) ipj(Xil Y.
=1

i=1 i=1j=1

Démonstration

Théoréme - Inégalité de Cauchy-Schwarz
Soient x,y € E,

(x1y)? < (x| x)(y1y)

avec égalité si et seulement si (x, y) est une famille liée.

Démonstration classique (parmi les 10 a connaitre sur 'année).

Pour aller plus loin - Pour les produit sca-
laire complexe Démonstration

L'inégalité de Cauchy-Schwarz reste vraie, on

voit apparaitre des modules.

IIs sont nécessaires et expliquent la définition

donnée a de telles produits

2.2. Norme euclidienne
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(Déﬁnition - Norme )
On appelle norme sur un R-espace vectoriel E toute application N de E
dans R telle que

VxeE, N(x)=0=>x=0g
VAeR,Vx € E, N(Ax) = |A|N(x)

V(x,y) e Ez, N(x+y) < N(x) + N(y) (inégalité triangulaire)

Corollaire - Propriétés directes
Plus précisément :

— Nx)=0ox=0g

— N(—x)=N(x)

— N(x)=0

Démonstration

Proposition - Inégalité triangulaire revisitée
Soit N une norme sur E, alors

V(x,y) € B2, |N(x) - N()| < N(x + y) < N(x) + N(3).

Démonstration

( )
Définition - Vecteur unitaire

Soit N une norme sur E. Un vecteur x de E est dit unitaire (ou normé) si
\N (x)=1.

J

I ~
Définition - Distance associée (et proposition)
Si N est une norme sur E, 'application

d :E* SR,
(A,B) — N(B-A)

est appelée distance associée a la norme N et vérifie
— Y(AB)€E% d(AB) =0 A=B
— V(A,B) € E?, d(A,B) = d(B, A)
— V(A,B,C)eE3 d(AC) <d(AB)+d(B,C)
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Pour aller plus loin - Espace métrique

On appelle espace normé, un espace vectoriel
muni d’'une norme.

On appelle espace métrique, un espace vecto-
riel muni d’une distance.

D’aprés notre définition-proposition : toute es-
pace normé est un cas particulier d’espace mé-
trique.

D’une certaine fagon, la topologie est I'étude
des espaces métriques.

Les espaces préhilbertiens forment une classe
treés particuliéres des espaces métriques. ..

~
[&)\ Histoire - Hermann Minkowski

Hermann Minkowski, né a Alexotas en Rus-
sie (aujourd’hui en Lituanie) le 22 juin 1864
et mort a Gottingen le 12 janvier 1909, est un
mathématicien et un physicien théoricien al-
lemand.

Il est également connu pour sa contribution
non négligeable aupres d’Einstein pour la mise

Démonstration

Proposition - Norme euclidienne
Si E est muni d'un produit scalaire (.|.) alors I'application

E —R
x = lxll = vixlx)

est une norme sur E. On 'appelle norme euclidienne associée au produit
scalaire (.|.), la distance associée est appelée distance euclidienne.

Remarque - Inégalité de Minkowski

Linégalité triangulaire d’'une norme, qui dérive d'un produit scalaire (norme
euclidienne) s’appelle en regle générale 'inégalité de Minkowski. Elle a un
sens géométrique certain (et pas uniquement algébrique)

Démonstration

Exercice

Soit E un espace préhilbertien. Dans quel cas a-t-on ||x + yll = [ x|l + [yl ('égalité triangu-
laire) ?

\en place de la théorie de la relativité générale. )

Corollaire - Inégalités (Cauchy-Schwarz, Minkowski) avec des normes
Soit E, un espace préhilbertien.

V(x,y) € B, Kx| )l < lxl Iyl
avec égalité si et seulement si (x, y) est une famille liée.
V(x,y) € B2, x+ yl < llxll+ 11yl

avec égalité si et seulement si (x, y) est positivement liée.
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/~Savoir faire - Montrer qu'on a une norme
On vérifie chacune des hypotheses...
Ou bien; on démontre que la norme dérive d’'un produit scalaire bien
connue (ou démontré)

Proposition - Produits scalaires usuels et normes associées
On définit des produits scalaires sur R”, et sur € ([a, b],R), en posant :
— surR”, avec x = (x1,...,Xp) et y = (y1,---, ¥n),

n n
@y =Y xiyi, =/ Y 2
i=1 i=1

b b
<f|g>=f Fogwde Ifl= ffmZdt

— sur 6([a, b],R),

Démonstration

@, Exemple - Application de ces inégalités
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2.3. Différentes identités

Théoréeme - Identités
Soit E un e.v. muni d'un produit scalaire (.|.) et | .|| la norme associée. Pour
(x,y) € E?ona

e+ y1% = % + 1 y12 +2¢x ] y)

lx =yl = lx1® + I yII* - 2¢x| y)

_ 1 2 2

(x|y)= Z(||x+J/|| = llx=yl)

e+ yI% + llx =yl = 2% + 1 y1%)
Les trois premiéres égalités sont appelées «identités de polarisation » (elles

permettent de récupérer le produit scalaire a partir de la norme) et la
quatrieme « égalité du parallélogramme »

Démonstration

e Remarque - Identité de polarisation

Non seulement, elles permettent de récupérer le produit scalaire a partir de
la norme, mais surtout, elles permettent de savoir si une norme donné dérive
d’un produit scalaire.

Ou encore, de maniére identique, elles permettent de savoir si un espace
normé est en fait un espace euclidien. Dans ce cas, il aurait une structure
beaucoup plus riche (comme on le voit par la suite avec les notions d’ortho-
gonalité ou d’angles...)

/“Savoir faire - Montrer qu’on a une norme est euclidienne
La polarisation donne une expression d'une forme bilinéaire qui néces-
sairement est a l'origine de la norme, si celle-ci est bien euclidienne.
Il s’agit donc de vérifier chacun des points pour cette forme : (x,y) :=

1 1
5(N(x+y) —Nx)-N() (ou 1 (N(x+y)—N(x—y)).Cestsurlalinéarité
qu’on peut avoir des difficultés. ..
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Pour 'exercice suivant, on fera attention a ne pas confondre vecteur x, y et
coordonnées X, y...

Exercice

Pour (x,y) € R? on pose Q(x,¥) = 2x% +5y% —2xy. Montrer que Q est le carré d'une
norme euclidienne sur R2.

Exercice
Pour (x,y) € R? on pose | (x, Wlloo = max(|x],|yl). Montrer que ||.lloo €st une norme sur
[Rz, non euclidienne.

3. Orthogonalité

E désigne un espace préhilbertien réel.

3.1. Vecteurs orthogonaux

Définition - Vecteurs orthogonaux
Soient x et y deux vecteurs de E. x et y sont dits orthogonaux si (x| y) = 0.
Onnote alors x L y.

Théoréme - Pythagore

xLyellx+yl?=lxI®+lyl?

Démonstration

Exercice
Montrer que dans 6 ([0, ], R) muni de son produit scalaire usuel, sin L cos.

3.2. Sous-espaces orthogonaux

Définition - Espace orthogonaux
Soient F et G deux s.e.vde E. F et G sont dits orthogonaux si

Vxe EVyeG,xLly.

On note alors F L G.

Proposition - Résultats directs
Soient F et G deux s.e.vde E.
— SiF 1 Galors FNG={0g}.
— Si F =vect(fy,..., fu) et G =vect(gy,..., gp) alors

FLG < MG )ell,nlxI1,pl, fi Lgj).
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Démonstration

e N
Définition - « Le » espace orthogonal

Soit F un s.e.v de E. On appelle orthogonal de F, et on note F*, 'ensemble
des vecteurs de E orthogonaux a ceuxde F :

Fl={xeE|VyeExLly}.

Ft est un s.e.v. de E. Plus précisément, il s'agit du plus grand espace
vectoriel pour la relation d’ordre de I'inclusion :

L GlF=>GcF*+

Démonstration

Proposition - Propriétés de I'orthogonal
Soient F, G deux s.e.v de E. Alors

Fc (FhHt
FcG=GtcFt.

Démonstration

Remarque - A-t-on égalité F = (F1) 2
Dans le cas des espaces de dimensions finis, nous verrons avec un raison-
nement sur la dimension qu’on a nécessairement I'égalité (dim F = dimE —
dimF* = dim (F1)4).
Dans le cas infini, il peut n’y avoir qu'une inclusion : Par exemple, en prenant
E =C°(I) et F, I'espace des fonctions polynomiales.

Alors, par argument de densité : FL={0tetdonc (FH)t=E#F
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3.3. Familles orthogonales, orthonormales

*Heuristique - Intérét des bases orthonormales

Lorsqu’on connait une base 2 = (ej, e2,...e,) d’'un espace vectoriel E, on écrit réguliere-
ment :

n
«six € E, alors x s’écrit x = Z Xjej...n
i=1

Ce qui serait bien ce serait de pouvoir faire « un truc » qui nous permette d’avoir acces a x;
a partir de x et de la base .
Ce truc, ou opération devrait pouvoir affirmer :
coordonnée du vecteur e; dans labase (eg) : 1sik=iet0sik#i.
C’est exactement ce que propose un produit scalaire, pour une base orthonormale

Définition - Famille orthogonale - orthonormale

Soit & = (u;) ey une famille de vecteurs de E.

On dit que & est orthogonale si V(i,j) € I?, i # j = u; L uj, et que & est
orthonormale (orthonormée) si elle est orthogonale et Vi € I, || u; || = 1.

Exercice
Montrer que pour la produit scalaire : (P|Q) = Z’Z:O P(k)(a)Q(k)(a) définie sur R, [X], la

base ((X — a)k)k est une base orthogonale.
Retrouver la formule de Taylor

Proposition - Famille libre
Toute famille orthogonale de vecteurs non nuls est libre.
Toute famille orthonormale est libre.

Démonstration

Proposition - Pythagore (généralisé)
Soit (uy, ..., up) une famille orthogonale de vecteurs de E. On a

P 2 P
| wi]) = X
i=1 i=1

Démonstration

Pour aller plus loin - Forme linéaire duale
Plus précisément ce qu’on cherche: ®; : E — R,
X— Xj.

On a en fait ®; : x — (x|e;) si la famille
(e1,e2,...ep) est une base orthonormée de E

Pour aller plus loin - Polynéme de Lagrange

On peut faire un exercice équivalent en choi-
sissant bien le produit scalaire et pour lequel
la base est formée de la famille des polynémes
d’interpolation de Lagrange
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Théoreéme - Algorithme d’orthonormalisation de Schmidt

Soit E un R-e.v. muni d’un produit scalaire et & = (e, ..., ep) une famille
libre de vecteurs de E.

On définit la famille & = (fi,..., f) par

1
1=——e]
h llevll
1 , , i—1
Vie[[z,p]l,fizmei otlel-zel-—zi(eilfpfj
i =

Alors & est une famille orthonormale de E telle que
Vke[1, pl, vect(fi,..., fr) = vect(ey,...,ex).

On dit que & est déduite de & par le procédé d’orthonormalisation de
Schmidt.

(T .. .
|&\ Histoire - Schmidt Démonstration

Erhard Schmidt (13 janvier 1876 - 6 dé-
cembre 1959) est un mathématicien allemand
né a Dorpat, dans I'Empire russe (aujourd’hui
Tartu, en Estonie). Le procédé d’othonormali-
sation est souvent associé également a Jorgen
| Petersen Gram.

J

Remarque - Cette famille orthonormalisée est-elle unique ?
La famille obtenue ne dépend que de la famille initiale. Est-elle unique?
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D’une certaine fagon, non. On aurait pu choisir — f;, on aurait alors obtenue
une nouvelle famille orthonormale a partir de la méme famille (ey, ... e;).

A cette différence de signe pres, il n'y a pas d’autres solutions a partir de la
famille (ey,...ey). Notons que lorsqu’on calcule €/, les signes se compensent.

/“Savoir faire - Orthonormaliser une base
Pour obtenir une base orthonormalisée, on considere une base de E.
On commence par I'orthogonaliser, puis la normaliser a chaque étape.

Au final, €] est la soustraction de e;, du projeté orthogonal de e; sur
vect(e;) j<i.

Exercice

Vérifier que I'on munit R2[X] d’'un produit scalaire en posant (P|Q) = fol P(1)Q(r)dt.
Déterminer une b.o.n. de R2[X] pour ce produit scalaire.

4. Casdeladimension finie: espaces euclidiens

4.1. Définition

Définition - Espace euclidien
Un espace euclidien est un R-e.v. de dimension finie, muni d’'un produit
scalaire (c’est-a-dire un espace préhilbertien réel de dimension finie).

ff Exemple - Retour sur les deux produits canoniques

Proposition - Ecriture matricielle

Soit E est un espace euclidien (produit scalaire noté (.|.)), muni d'une base
B=(ey,...,en).
On note A la matrice

el (e1]en)

A= ceilep)

1<i,j<n

(enler) lenll?

appelée matrice du produit scalaire dans la base 23.

Soient X et Y les matrices colonnes de x € E respectivement de y € E dans
AB.

Alors, en identifiant une matrice d’ordre 1 a son unique coefficient, on a

(x|y)="XAY

Pour aller plus loin - Polynémes de Ber-
noulli

On remarquera que le produit scalaire de

I'exercice améne aux polynémes de Bernoulli

comme base orthogonale (mais non normali-

sée).

Pour aller plus loin - Espace hermitien

Un espace préhilbertien complexe de dimen-
sion finie a été baptisé par David Hilbert, es-
pace hermitien

Pour aller plus loin - Algébre bilinéaire

Il s’agit maintenant d’algebre bilinéaire.

Un méme objet -une matrice- peut donc avoir
deux sens différents.

En algébre linéaire : f(x) O Ax X

En algébre bilinéaire : ®(x,y) O XTAx Y

Exercice
Que direde Bsi A=1,7?

Démonstration
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Pour aller plus loin - Valeur propre

A € R est valeur propre de A s'il existe X €
Mu1R), X # Op,1 tel que AX =X

Proposition - Propriétés de la matrice d'un produit scalaire

Soit A la matrice d'un produit scalaire dans une base quelconque. Alors
e A est une matrice symétrique: A = A;

¢ A est une matrice positive : VX € ., 1 (R), IXAX =0;

» A est une matrice définie: VX € 4,1 (R), IXAX=0=>X= Op1;

o Aestinversible: A€ GL,(R).

Démonstration

Remarque - Toutes les propriétés essentielles du produit scalaire
se répercutent directement comme propriétés essentielles de la matrice A.
— Labilinéaire donne I'existence de la matrice
— La forme se transforme en produit qui donne un nombre en bout de
course
— Le fait d’étre positif
— Le fait d’étre défini
Exercice
Montrer que les valeurs propres d’'une matrice symétrique définie positive sont des réels
strictement positifs.

4.2. Bases orthonormales

Définition - Base orthonormale
2 est une base orthonormale de E euclidien si 28 est une base de E et une
famille orthonormale.

4 Exemple - Base canonique

Théoréme - Existence de bases orthonormales
— Tout espace vectoriel euclidien possede une base orthonormale.
— Toute famille orthonormale de E peut étre complétée en une base
orthonormale de E.

Démonstration

Exercice

Réciproquement, étant donné une base 28 de E, R-ev.
Existe-t-il un produit scalaire de E telle que la base 98 soit orthonormales ?
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/~Savoir faire - Montrer qu'une famille est une base orthonormée

De méme que pour savoir si une famille est une base, on exploite la
matrice de cette famille; pour montrer qu'une famille est une base or-
thonormale, on peut commencer par écrire sa matrice de corrélation :
A=((ej,ej))ij

Cette matrice est symétrique. Elle est inversible ssi (e;) est une base.
Cette matrice est diagonale ssi (e;) est une famille orthogonale.

A =1, ssi (e;) est orthonormée.

Proposition - Calculs en b.o.n

Soit % = (ey, ..., ;) une base orthonormale de E euclidien (pour le produit
scalaire {.|.)).
n

n
Soient x = Z xiej ety = Z yie; deux vecteurs de E, X et Y les matrices
i=1 i=1
colonnes associées. Alors :

n
(xlyy=) xiyi="'XY
iz

n

2

lxll =4/ 3 x;
i=1

Vie[l,n], x; =(x|e;)

Proposition - Opération matricielle de changement de base orthonor-
male

Soient 98 une base orthonormale de E euclidien de dimension n, 9’ une
famille de n vecteurs de E, et P la matrice de %8’ dans 8. Alors 98’ est une
base orthonormale de E si et seulement si ‘PP = I,,.

Dans ce cas on adonc P~! = ’P (on dit que P est une matrice orthogonale).

Remarque - Matrice de passage
On rappelle que la matrice P de 9’ dans % est, comme son nom l'indique, la
matrice des coordonnées des vecteurs de la base 98’ écrite dans la base 23.

Elle vérifie pour X et X' matrice de x écrites dans les bases % et %’ respecti-
vement :

X=PX'

Démonstration
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/~Savoir faire - Changement de base pour une forme bilinéaire
Soit E un espace euclidien et deux bases % et 4'.
Si x a pour coordonnées X dans 98 et X’ dans %'.
Si y a pour coordonnées Y dans % et Y’ dans %’.

On note A et A’ la matrices du produit scalaire dans chacune des deux
bases.

Enfin, on note P la matrice de %8’ dans 2.
Onaalors X =PX', Y =PY'.

(x|yy =" XAY =" X'A'Y' =" X"'PAPY’

Ceci étant vrai pour tout x, y, on a donc nécessairement A’ =! PAP Ce
résultat reste vraie que les bases sont orthonormales ou non

Exercice
E=R3, & base canonique. On pose B’ = (fi, f2, f3) ol

’ e 63,’2 e1textes), J3 e 2@2"’@3.
Montre que :93’ est une base orthono ale de E (pOU le p oduit scalaire Canonique).

Soit f € Z(E) défini par f(x,y,2) = (x+y,x+z,y+ z). Donner la matrice de f dans cette
base.

Exercice
0 -1 0
Montrer que la matrice P = (cos@ 0 —sine) est inversible et calculer son inverse.
sinf 0 cos6

5. Projections orthogonales

5.1. Supplémentaire orthogonal

Théoréme - Lorthogonal est un supplémentaire (C.S. : F dimension
finie)

Soit E un espace préhilbertien réel (pas nécessairement de dimension
finie) et F un s.e.v de dimension finie de E. Alors

E=FoF'

Démonstration
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*Heuristique - LE supplémentaire
Un des problemes de la notion de supplémentaire est la non-unicité de ceux-ci (E et F
étant donné, il existe généralement une infinité G; tels que E = F & G;).
Parmi ceux-ci (les G;) un a une propriété qui le rend unique et intéressant (dans le cas d'un
espace préhilbertien).

(Déﬁnition - Supplémentaire orthogonal )

Soit E un espace préhilbertien réel (pas nécessairement de dimension
finie) et F un s.e.v de dimension finie de E.
\Fl est appelé LE supplémentaire orthogonal de F.

Proposition - Deux propriétés
Soit E un espace euclidien et F un s.e.v de E. Alors

dimF' =dimE-dimF
(FHt=F

Démonstration

5.2. Projections orthogonales

Définition - Projection orthogonale

Soit F un s.e.v de dimension finie de E préhilbertien réel.

On appelle projecteur orthogonal (projection orthogonale) sur F le projec-
teur sur F de direction F*.

Remarque - Exprimer explicitement la projection

La proposition qui suit est trés importante, elle permet de dépasser une
limite de la notion de projecteur pour les espaces vectoriels quelconques. 1l
était, alors, généralement impossible d’exprimer ce projecteur explicitement,
théoriquement. Dans le cas du projecteur orthogonal, cette impossibilité
n’existe plus.

Proposition - Expression du projecteur
Soit pr le projecteur orthogonal sur F.
Si % = (ey,...,ep) b.onde F alors

yeF

p
Vx€eE, pr(x) =) (xlee ety=PF(x)©{ x—yeF!

i=1

Remarque - Déjavu?
i—1

e Dans le procédé d’orthonormalisation de Schmidt e} = e; — Z (eil fidfi
j=1

désigne le vecteur obtenu en soustrayant a e; son projeté orthogonal sur le
sous-espace engendré par les précédents vecteurs de la famille.

« Dans la démonstration de la supplémentarité de F et F-, nous avons
exploité cette fonction pr (noté y = pr(x) al’époque)
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#k Représentation - Visualisation

Onad(u,2) = ||bl|

Démonstration

Corollaire - Cas particuliers
Soit E, un espace préhilbertien réel

. . e e (x| e)
1. Si F =vect(e) est une droite, alors pg(x) = x|— ) — = e
lell/ llell el

2. Si F estun hyperplan de E de dimension finie, alors FL =vect(e) est

. e e
une droite et pp(x) = x — <x|—> —
llell / lell

Démonstration

Exercice

Déterminer la matrice dans la base canonique de R3 de la projection orthogonale sur le
plan F d’équation x+ y—2z=0.

5.3. Distance a un sous-ensemble d’'une espace préhilbertien

~ N
Définition - distance a un sous-ensemble

Soient x € E et A une partie de E, préhilbertien réel.
Lensemble {d(x, z); z € A} est une partie non vide de R, minorée par 0, qui
admet donc une borne inférieure, appelée distance de xa A:

d(x,A) =inf|x—z|.
z€eA

Théoréme - Meilleure approximation
Soient E un espace préhilbertien réel, F un s.e.v de dimension finie de E et
pr la projection orthogonale sur F. Soit x € E, alors

y=pF(x)©{ yeF @{ yeF
VzeF |lx-yl<lx-z| lx-yl=d(x,F)

Remarque - Interprétation

La distance de x a un sous-espace vectoriel F est la distance de x a pr(x),
pr(x) étant 'unique vecteur de F réalisant cette distance : pr(x) est le vec-
teur de F «le plus proche» de x en ce sens.

On dit que pr(x) estla meilleure approximation de x dans F.

Démonstration
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/~Savoir faire - Minimiser une forme quadratique

De maniere générale, dans ce contexte, on ne cherche pas le minimum
d’'une norme, mais bien d'une norme au carré (forme quadratique) qui
dérive du produit scalaire canonique.

Lenjeu: reconnaitre le produit scalaire et les espaces E et surtout F. Puis,
on exploite une projection orthogonale sur F, elle est explicite si 'on
connait une base orthonormale de F.

On remarque qu’'une base orthogonale de F sulffit.

Exercice

Soit f(x,y) = (x+y—22+(x—y—-2)%+ 2x+ ).

Montrer que f admet un minimum sur R? que I'on déterminera (avec les valeurs de x et y
correspondantes).

Lexercice qui suit donne une idée de la stratégie de la minimisation par la
méthode des moindres carrés. Il s’agit de prendre le probleme de maniere
duale

Exercice

On se donne quatre points A(1,0), B(0,1), C(3,4), D(-1,-1).

Déterminer la droite & d’équation y = ax + b telle que si A’,B’,C’, D’ sont les projetés de
A,B,C,D sur 9 paraliélement a l'axe Oy, alors S, , = AA”? + BB'2 + CC"? + DD'? soit
minimale.

Comment généraliser cette méthode ?, indépendamment de coordonnés concreétes pour A,
B. .. et d'une projection aussi simple. ..

5.4. Symétries orthogonales

(Déﬁnition - Symétrie orthogonale
Soient E un espace préhilbertien réel, F un s.e.v de dimension finie de E.
On appelle symétrie orthogonale par rapport a F la symétrie par rapport a
F de direction F*.

\On a sp =2pr— Idg ou pr est la projection orthogonale sur F.

Proposition - CNS de symétrie orthogonale
s € Z(E) est une symétrie orthogonale si et seulement si

sos=Idg
Ker (s—Idg) L Ker (s + Idg)

Démonstration

Pour aller plus loin - Optimisation de f :
R —R

Ce probleme peut aussi se rencontrer en cours

d’optimisation d’une fonction de plusieurs va-

riables.

On remarque ici que

fx,y) =6x>+3y?> +4xy—8x+8

[3y+2x +— ( )
Elle est minimale pour x = 7 ety= =4 et vaut

alors 3£ 32

#& Représentation - Réflexion dans I'espace
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Définition - Réflexion

On appelle réflexion toute symétrie orthogonale par rapport a un hyper-
plande E.

6. Hyperplans vectoriels et affines d’'un espace eu-
clidien

6.1. Lemme de RIESZ

Proposition - Caractérisation des formes linéaires
Soient E un espace euclidien et ¢ € E* = Z(E,R).
Alors il existe un unique a € E tel que

Vx€E, ¢p(x)={(alx).

Démonstration

v*Heuristique - Principe de construction
Iciona:

0. Un espace ambiant, euclidien donc muni d'un produit scalaire de référence.
1. Une forme linéaire f € E*

2. Alorsil existe a€ E tel que f: x— (a|x)

Corollaire - Equation de H et vecteur normal
Soient 98 une b.o.n de E euclidien et H un hyperplan de E.
n

Alors il existe (ay,..., a,) € R" tel que Z a;x; = 0 soit'équation de H dans
i=1

2B et dans ce cas a € E de coordonnées (ay,...,a,) dans 98 est un vecteur

normal & H, H = vect(a)*.

4 Exemple - Gradient
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6.2. Espace affine euclidien (élargissement vers I'affine)

Vecteur normal

Proposition - Vecteur normal a un hyperplan affine
Soit Z = (Q,ey,...,e,) un repere affine orthonormal de I'espace E de di-
mension n (c’est-a-dire que 98 = (ey, ..., e,) estune b.o.n de E).
Soit # un hyperlpan affine de E.
On appelle vecteur normal a #, tout vecteur normal a la direction H de
S, c'est-a-dire a € E tel que H = vect(a)=t.
Si a a pour coordonnées (ay,..., a,) dans 9, alors /# posséde une équa-
n
tion dans Z du type )_ a;x; = h.
i=1
Réciproquement

n
Y aix; = havec (aj,...,a,) # (0,...,0)
i=1

est 'équation d'un hyperlpan affine de vecteur normal a de coordonnées
(ai,...,ay) dans 2.

Démonstration

@f Exemple - Dans R? et R®

Corollaire - Ligne de niveau : hyperplan

Dans E euclidien, les lignes de niveau de I'application M — AM -7 (c’est-

a-dire les ensembles E, = {M € E| m -7 = k}) sont des hyperplans affines
de vecteur normal 72.

Démonstration 4% Représentation - Les lignes de niveaux - hy-
perplan

Distance

Proposition - Distance a un hyperplan affine s
Soit .7 un hyperplan affine de E euclidien, défini par un point Aetun | g —(reE|AM-7 = k)
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. . g .
vecteur normal unitaire 7. Alors, pour M point de E, on a

d(M, 7€) = |AM - 7).

Démonstration

Corollaire - Distance a une droite du plan

Soit 2 d’équation ax + by + ¢ = 0 dans un r.o.n du plan euclidien R? et
M (xp7, ym) un point. Alors

laxpr+byp+cl

dM,2) = N

Corollaire - Distance a un plan de I'espace
Soit 22 d’équation ax + by + cz+ d = 0 dans un repére orthonormé de
I'espace euclidien R et M (xy;, ¥M, zp) un point. Alors

|laxp+byn+czy+d|
dM,P)= ——
Va?+b*+c?
Démonstration
Exercice

Reprendre I'exercice du calcul de distance de a = (2,2,0) & F =vect((1,1,2),(1,-1,1)).
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6.3. Transposition

Un question posée il y a quelques temps : on sait passer de M = .#(u) 3 ' M.

Mais & quel endomorphisme associer alors ' M?

(Définition - Adjoint de u € £(E)
Soit E un espace euclidien.
Soit u € Z(E).
1l existe une unique application, noté ‘u € £ (F) (parfois u*) tel que

VYx,yeE, (u|y) = {x|"u@)

\On appelle cet application u*, 'adjoint de wu.

Démonstration

Lo Analyse - Interprétation matricielle

Remarque - S’il n’y a pas de base orthonormée
On en construit une! cf. partie suivante

6.4. Crochet de dualité

On commence par élargir la notion de produit scalaire.

Définition - Forme bilinéaire non dégénérée
Soit E, F deux espaces vectoriels.

On dit que la forme bilinéaire B : E x F — R est non dégénérée si

(VxeEBx,y)=0 =y =0
(VyeEBx,y)=0 =x =0

Exercice
Montrer que tout produit scalaire définie sur E une forme bilinéaire non dégénérée

Définition - Crochet de dualité
Soit E un R espace vectoriel. On suppose que E est de dimension finie

On appelle crochet de dualité de E la forme bilinéaire non dégénérée :

B:E*xE—R, (p,x)— @)

Exercice
Montrer qu'il s’agit bien d’'une forme bilinéaire non dégénérée.

<*Heuristique - Principe de construction/d’application
Ona:

0. Un espace vectoriel (ambiant - de dimension finie)
1. Unisomorphisme de E* sur E, note ®.

2. On définit alors B, crochet de dualité : B(f, x) = f(x)

Pour aller plus loin - Cas E non de dimen-
sion finie

On peut généraliser au cas E de dimension non

finie.

On généralise aussi parfois aux espaces topo-

logiques
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., Enfait: B(f, x) =(@(f) | x)

On définit alors comme précédemment

Définition - Orthogonal dual
Soit Aun sev de E. On note A° = fpe E* |V x€ A B(p,x) = @p(x) =0}
Soit Cunsevde E*.Onnote C' = {xe€ E |V @eC,B(p,x)=¢(x)=0}

-4 Application - Mécanique quantique

Exercice
On suppose que E est de dimension finie n. Si (e,---,ep) base de A, complétée en
(e1, :+,en) base de E.
Donner une caractéristique avec les applications e;‘ de A°. En déduire dim (A9).

7. Bilan

Synthése

~ Avec un produit scalaire, il est simple d’obtenir (=voir numérique-
ment) les dépendances entre vecteurs, d’apres I'inégalité de Cauchy-
Schwarz.
Cela donne aussi un moyen explicite de projeter (orthogonalement)
sur des sous-espaces vectoriels.

~> Il est donc bon de savoir reconnaitre les produits scalaires abstraits (et
les normes associés), puis les bases orthonormées associées (ou bien
les créer directement par I'algorithme de Gram-Schmidt).

~+ La projection orthogonale et donc le calcul de distance deviennent
explicite (i.e. calculatoire). Cette méthode nous inspire pour créer une
dualité entre espace vectoriel E de dimension finie et son espace dual
E*, par (¢(€ E*), x) := ¢(x). Au passage on donne également un sens a
I'endomorphisme dont la matrice est la transposée de celle de u.

Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Montrer qu’on a un produit scalaire

— Savoir-faire - Montrer qu’on a une norme

— Savoir-faire - Montrer qu’on une norme est euclidienne

— Savoir-faire - Orthonormaliser une base

— Savoir-faire - Montrer qu'une famille est une base orthonormée
— Savoir-faire - Changement de base pour une forme bilinéaire
— Savoir-faire - Minimiser une forme quadratique
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Notations
Notations Définitions Propriétés Remarques
¢l Produit scalaire sur E Forme bilinéaire définie positive Autre notation classique: (-,-) ...
Il Norme sur E A valeurs dans R;, pseudo-linéaire, véri-  Autre notation : N(-).
fiant I'inégalité triangulaire
x — /(x|x) est une norme associée, dite
euclidienne
Propriété de C-S: (x|y) < x| x |y
xLly x et y sont orthogonaux Equivalente a (x|y) =0 Relation symétrique
F1G F et G sont orthogonaux EquivalenteaVxe Fy e G, {(x|y)=0 Relation symétrique
FJ‘ Lorthogonal de F Fl= {yeE|V xe F(x|y)=}0 Si E est de dimension finie, E =

A= (e |ej>)i,j Matrice euclidienne de la famille (e;)

d(x, A) = Distance de x a’ensemble A
infzea llx -zl
‘u Adjoint de u (existe nécessairement si E de

dimension finie)

A ={pe E* |Vxe Dualde A (pour Ac E)
A, p(x) =0}
C0:{x€E|V<p€ Dual de C (pour C < E¥)
C,p(x) =0}

(e;); base orthonormée de E ssi A, positive,
définie. A est alors inversible

n
(xlyy =XTxAxY (avecx= Y. Xje;)
i=1
Si |- || est euclidienne, d(x, A) = [x—pa(x)|

(projection orthogonale sur A)
Y x,y € E, (ux)y) = (xI"u(y))

Mpon (1) = ("%%on(“)) !

FleF
A est nécessairement symétrique

Comme la matrice de variance-
covariance. ..
A savoir démontrer!

Parfois noté u*

AD est isomorphe a un supplé-
mentaire de A dans E
CY est isomorphe 2 un supplé-
mentaire de C dans E*

Retour sur les problemes

11 suffit d’orthonormaliser une base quelconque par le procédé de

118. Cours
p

119. Cours: pr(u) = Z(u, e;ye; si(ey,es,...,e,) base orthonormale de F.
i=1

120. C’est tout simplement G = F*.

121. ai ={u,ex) si(ey,...e,) base orthogonale de E et e normé.

122.

Gram-Schmidt.
123.

Question plus subtile. On exploite les espaces othogonaux définies a

partir d'une forme linéaire. C’est ce qu’on appelle la dualité.
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