
Chapitre 27
Espaces vectoriels euclidiens

Dans les situations physiques, les espaces considérés (vectoriels ou affine) sont en
règle générale munie d’un produit scalaire. On peut donc faire l’étude de ces es-
paces que l’on appelle préhilbertien. Mais la motivation mathématique aurait été
déjà suffisante : un produit scalaire bien choisi c’est une étude renforcée de la dua-
lité (E→ =L (E ,K)), ou encore l’étude des coordonnées sur une base. . .
Nous commençons par étudier la notion abstraite (théorique) des produits sca-
laires. Nous enchainons avec la notion importante d’orthogonalité (qui précise
d’une certaine façon la question d’espace supplémentaire). Comme pour l’algèbre
linéaire, nous nous concentrons ensuite sur le espaces de dimension finies, avant
d’étudier une famille d’applications linéaires particulières : les projections ortho-
gonales (et symétries orthogonales). Dans le chapitre suivant, nous élargirons cette
étude aux isométries vectorielles et affines.
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562 Espaces vectoriels euclidiens

1. Problèmes

Les espaces (vectoriels) dont on parle en mathématiques sont des idéa-
lisations des espaces géométriques des espaces à 1,2 ou 3 dimensions de
la physique.
Or dans ces espaces physiques (ou géométriques), il y a aussi naturelle-
ment un produit entre les vecteurs : le produit scalaire si souvent utilisé
en Physique.
Si on essaye alors d’idéaliser également les produit scalaire dans les es-
paces vectoriels, quelles sont les propriétés algébriques et abstraites que
doivent vérifier cette opération entre deux vecteurs? Quels sont l’origine
et le but de cette opération? Est-elle (bi)linéaire ? Et que penser du fait
que ωu ·ωu est un nombre strictement positif ssi ωu ↑= 0 ?

Problème 118 - Expérience physique

Continuons. En physique, on exploite souvent le produit scalaire pour
projeter un vecteur sur un autre.
Dans le cours sur les espaces vectoriels, les projecteurs sont parfois pro-
blématiques : ils existent dès qu’on dispose de deux espaces supplémen-
taires dans E , mais l’expression x ↓↔ p(x) est rarement explicite.
Est-il possible d’exploiter les produits scalaires pour pouvoir exprimer
explicitement pωu(ωx), la projection deωx sur ωu ?
Et plus largement, sur un sous-espace vectoriel?

Problème 119 - Projection selon un vecteur

Nous savons qu’un sous-espace vectoriel admet une INFINITE de sous-
espace supplémentaire dans E .
Si F est connue, ainsi que pF , alors cela ne définit-il pas aussi l’espace G
tel que E = F ↗G et pF est la projection sur F de direction G ?
Il existe donc un UNIQUE espace supplémentaire à F qui est privilégié
dans l’espace (euclidien) E . Qui est-il ?

Problème 120 - Espace orthogonaux

Comme pour les projecteurs, étant donné une base B = (e1,e2, . . .en) de
E , l’application

ε : E ↘↔Kn , x ↓↘↔ (a1, . . . an) tel que x =
n∑

i=1
ai ei

n’est pas, en générale, pas explicite. Si il est possible d’expliciter les
projecteurs, sûrement est-il également le cas pour cette application ou
pour lesεk : x ↓↔ ak .
En fait, on verra que cela est naturel quand la base est orthonormée (pour
un produit scalaire définie sur E) ? Qu’est-ce que cela signifie ?

Problème 121 - Décomposition sur une base
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2. Définitions et règles de calcul 563

Est-ce que tous les espaces euclidiens (vectoriels, finis, avec un produit
scalaire) admettent au moins une base orthonormée ? Peut-on prolonger
également les autres théorèmes sur les bases : bases incomplètes. . .

Problème 122 - Bases orthonormées

Soit E euclidien, B = (e1, . . .en) une base. On notera alors que εk : E ↔
K, x ↓↔ ak (tel que x =

n∑
k=0

εk (x)ek ) est une fome linéaire.

Réciproquement, est-ce qu’une forme linéaire s’associe nécessairement
à un vecteur?
Une famille de formes linéaires indépendantes à une base orthogonale ?
Cela dépend sûrement du produit scalaire. . .

Problème 123 - Dualité et problème réciproque

Dans ce chapitre les espaces vectoriels sont des R-espaces vectoriels exclusi-
vement.

Il existe une théorie des produits scalaires
complexes. On parle d’espace hermitien, en
hommage à Charles Hermite, mathématicien
français de la fin du XIX siècle.

Pour aller plus loin - Espace hermitien (1)
2. Définitions et règles de calcul

2.1. Produit scalaire

Soit E un R-espace vectoriel. On dit que ω est un produit scalaire sur E si
ω est une forme bilinéaire symétrique définie positive, c’est-à-dire si ω est
une application de E ≃E dans R vérifiant :

1. (bilinéaire)

⇐(x, x ⇒, y) ⇑ E 3,⇐(ε,ε⇒) ⇑R2, ω(εx +εx ⇒, y) =εω(x, y)+ε⇒ω(x ⇒, y)

⇐(x, y, y ⇒) ⇑ E 3,⇐(ε,ε⇒) ⇑R2, ω(x,εy +ε⇒y ⇒) =εω(x, y)+ε⇒ω(x, y ⇒)

2. (symétrique)
⇐(x, y) ⇑ E 2, ω(x, y) =ω(y, x)

3. (positive)
⇐x ⇑ E , ω(x, x) ⇓ 0

4. (définie)
⇐x ⇑ E , ω(x, x) = 0 ⇔ x = 0E

Définition - Produit scalaire

On dit que f ⇑ E→ (forme linéaire), avec E ,
C-ev est sesquilinéaire si
⇐ ε,µ ⇑C, x, y ⇑ E ,
f (εx +µy) =ε f (x)+µ f (x).
On dit que f (forme linéaire sur (E→)2) est
hermitienne si
⇐ x, y ⇑ E , f (x, y) = f (y, x).

On appelle produit scalaire complexe, toute
forme linéaire à gauche, sesquilinéaire à droite
(ou l’inverse) hermitienne, définie et positive.

Pour aller plus loin - Forme sesquilinéaire,
hermitienne

STOP Remarque - Linéarité+symétrie
ω bilinéaire signifie que, à x0 fixé, y ↓↔ω(x0, y) est une forme linéaire sur E
et que, à y0 fixé, x ↓↔ω(x, y0) est aussi une forme linéaire.
Si ω est symétrique et ”linéaire par rapport à la première variable”, alors ω est
nécessairement bilinéaire.

Les notations les plus usuelles sont :

ω(x, y) = (x, y) = ↖x , y↙= ↖x | y↙= x · y

Définition - Notations

On appelle espace préhilbertien réel un R-espace vectoriel muni d’un pro-
duit scalaire.

Définition - Espace préhilbertien réel
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564 Espaces vectoriels euclidiens

On vérifie chacune des hypothèses. . .
A commencer par le fait qu’il s’agisse d’une forme linéaire !
On démontre la symétrie avant la linéarité à gauche. Comme cela, on
obtient la linéarité à droite.
On démontre la forme positive avant le fait que cela soit une forme
définie.

Savoir faire - Montrer qu’on a un produit scalaire

Soient (Xi )1∝i∝r et (Y j )1∝ j∝s deux familles de vecteurs de E et (εi )1∝i∝r et
(µ j )1∝ j∝s deux familles de réels. Alors

↖
r∑

i=1
εi Xi |

s∑

j=1
µ j Y j ↙=

r∑

i=1

s∑

j=1
εiµ j ↖Xi |Y j ↙.

Proposition - La bilinéarité en action

Démonstration

Il suffit d’écrire la formule (d’abord linéarité à gauche, puis à
droite) :

↖
r∑

i=1
εi Xi |

s∑

j=1
µ j Y j ↙=

r∑

i=1
εi ↖Xi | ,↙

s∑

j=1
µ j Y j =

r∑

i=1

s∑

j=1
εiµ j ↖Xi |Y j ↙

Soient x, y ⇑ E ,
↖x | y↙2 ∝ ↖x |x↙↖y | y↙

avec égalité si et seulement si (x, y) est une famille liée.

Théorème - Inégalité de Cauchy-Schwarz

L’inégalité de Cauchy-Schwarz reste vraie, on
voit apparaître des modules.
Ils sont nécessaires et expliquent la définition
donnée à de telles produits

Pour aller plus loin - Pour les produit sca-
laire complexe

Démonstration classique (parmi les 10 à connaître sur l’année).

Démonstration

Soient t ⇑R et P (t ) = ↖x + t y |x + t y↙.
Comme le produit scalaire est une forme définie positive,
P (t ) ⇓ 0 avec P (t ) = 0 ssi x + t y = 0.
Or lorsqu’on développe P , par bilinéarité et symétrie, on
constate que P est une fonction polynomiale :

P (t ) = ↖x |x↙+2t↖x | y↙+ t 2↖y | y↙

— de degré 2 si ↖y | y↙ ↑= 0 i.e. y ↑= 0
— de degré 1 si y = 0, mais ce cas est sans intérêt. . . De même

on suppose que x ↑= 0.
Nécessairement son discriminant est négatif

ϑ= 4↖x | y↙↘4↖x |x↙2↖y | y↙2 ∝ 0 =⇔↖x | y↙2 ∝ ↖x |x↙↖y | y↙
Il y a une égalité, si et seulement si ϑ= 0, donc que P admet une
racine,

Donc si et seulement il existe t0 ⇑R tel que x + t0 y = 0,
et donc, si et seulement si, (x, y) est une famille liée.

2.2. Norme euclidienne
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2. Définitions et règles de calcul 565

On appelle norme sur un R-espace vectoriel E toute application N de E
dans R telle que

⇐x ⇑ E , N (x) = 0 ⇔ x = 0E

⇐ε ⇑R, ⇐x ⇑ E , N (εx) = |ε|N (x)

⇐(x, y) ⇑ E 2, N (x + y) ∝ N (x)+N (y) (inégalité triangulaire)

Définition - Norme

Plus précisément :
— N (x) = 0 ′ x = 0E
— N (↘x) = N (x)
— N (x) ⇓ 0

Corollaire - Propriétés directes

Démonstration
Si x = 0, alors N (x) = N (0 ·u) = |0|N (u) = 0.

On a bien également l’implication x = 0 ⇔ N (x) = 0.
N (↘x) = N (↘1 · x) = |↘1|N (x) = N (x).
N (x) = 1

2 N (x)+ 1
2 N (x) = 1

2 N (x)+ 1
2 N (↘x) ⇓ 1

2 N (x↘x) = 1
2 N (0) = 0

Soit N une norme sur E , alors

⇐(x, y) ⇑ E 2,
∣∣∣N (x)↘N (y)

∣∣∣∝ N (x + y) ∝ N (x)+N (y).

Proposition - Inégalité triangulaire revisitée

Démonstration

La partie de droite est connue par l’inégalité triangulaire.
Par ailleurs,

N (x+y)+N (y) = N (x+y)+N (↘y) ⇓ N (x+y↘y) = N (x) ⇔ N (x+y) ⇓ N (x)↘N (y)

De même N (x + y) = N (y +x) ⇓ N (y)↘N (x).
Donc N (x+ y) ⇓ max

(
N (x)↘N (y), N (y)↘N (x)

)
= |N (x)↘N (y)|

Soit N une norme sur E . Un vecteur x de E est dit unitaire (ou normé) si
N (x) = 1.

Définition - Vecteur unitaire

Si N est une norme sur E , l’application

d : E 2 ↔R+
(A,B) ↓↔ N (B ↘ A)

est appelée distance associée à la norme N et vérifie
— ⇐(A,B) ⇑ E 2, d(A,B) = 0 ′ A = B
— ⇐(A,B) ⇑ E 2, d(A,B) = d(B , A)
— ⇐(A,B ,C ) ⇑ E 3, d(A,C ) ∝ d(A,B)+d(B ,C )

Définition - Distance associée (et proposition)
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566 Espaces vectoriels euclidiens

Démonstration

d(A,B) = 0 ∞⇔ N (B ↘ A) = 0 ∞⇔ B ↘ A = 0 ∞⇔ B = A

d(A,B) = N (B ↘ A) = N (↘(B ↘ A)) = N (A↘B) = d(B , A)

Par inégalité triangulaire :

d(A,C ) = N (C ↘ A) ∝ N (C ↘B)+N (B ↘ A) = d(C ,B)+d(B ,C )

On appelle espace normé, un espace vectoriel
muni d’une norme.
On appelle espace métrique, un espace vecto-
riel muni d’une distance.
D’après notre définition-proposition : toute es-
pace normé est un cas particulier d’espace mé-
trique.
D’une certaine façon, la topologie est l’étude
des espaces métriques.
Les espaces préhilbertiens forment une classe
très particulières des espaces métriques. . .

Pour aller plus loin - Espace métrique
Si E est muni d’un produit scalaire ↖. | .↙ alors l’application

E ↔R

x ↓↔ ∈x∈=
∋
↖x |x↙

est une norme sur E . On l’appelle norme euclidienne associée au produit
scalaire ↖. | .↙, la distance associée est appelée distance euclidienne.

Proposition - Norme euclidienne

Hermann Minkowski, né à Alexotas en Rus-
sie (aujourd’hui en Lituanie) le 22 juin 1864
et mort à Göttingen le 12 janvier 1909, est un
mathématicien et un physicien théoricien al-
lemand.
Il est également connu pour sa contribution
non négligeable auprès d’Einstein pour la mise
en place de la théorie de la relativité générale.

1
JAN Histoire - Hermann Minkowski

STOP Remarque - Inégalité de Minkowski
L’inégalité triangulaire d’une norme, qui dérive d’un produit scalaire (norme
euclidienne) s’appelle en règle générale l’inégalité de Minkowski. Elle a un
sens géométrique certain (et pas uniquement algébrique)

Démonstration

Il faut vérifier point par point, pour N ainsi défini, les axiomes
des distances :

— comme le produit scalaire est défini :

∈x∈= 0 =⇔∈x∈2 = 0 =⇔↖x |x↙=⇔ x = 0

— par bilinéarité puis en prenant la racine :

∈ε · x∈2 = ↖ε · x |ε · x↙=ε2∈x∈2 =⇔∈ε · x∈= |ε|∈x∈

— on commence par développer (on exploite la symétrie) et
on utilise l’inégalité de Cauchy-Schwarz :

∈x+y∈2 = ↖x+y |x+y↙= ∈x!2+2↖x | y↙+∈y∈2 ∝ ∈x∈2+2∈x∈∈y∈+∈y∈2 = (∈x∈+∈y∈)2

En prenant la racine, on trouve le résultat attendu (inéga-
lité de Minkowski).

Exercice
Soit E un espace préhilbertien. Dans quel cas a-t-on ∈x + y∈= ∈x∈+∈y∈ (l’égalité triangu-
laire)?

Soit E , un espace préhilbertien.

⇐(x, y) ⇑ E 2, |↖x | y↙|∝ ∈x∈∈y∈

avec égalité si et seulement si (x, y) est une famille liée.

⇐(x, y) ⇑ E 2,∈x + y∈ ∝ ∈x∈+∈y∈

avec égalité si et seulement si (x, y) est positivement liée.

Corollaire - Inégalités (Cauchy-Schwarz, Minkowski) avec des normes
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On vérifie chacune des hypothèses. . .
Ou bien; on démontre que la norme dérive d’un produit scalaire bien
connue (ou démontré)

Savoir faire - Montrer qu’on a une norme

On définit des produits scalaires sur Rn , et sur C ([a,b],R), en posant :
— sur Rn , avec x = (x1, . . . , xn) et y = (y1, . . . , yn),

↖x | y↙=
n∑

i=1
xi yi , ∈x∈=

√
n∑

i=1
x2

i

— sur C ([a,b],R),

↖ f |g ↙=
∫b

a
f (t )g (t )d t ∈ f ∈=

√∫b

a
f (t )2 d t

Proposition - Produits scalaires usuels et normes associées

Démonstration

Le premier produit est bien un produit scalaire :
— Il s’agit bien d’une forme : à valeurs dans R.
— Il est bilinéaire et symétrique.

— Il est positif : ↖x |x↙=
n∑

i=1
x2

i ⇓ 0

— Il est défini : ↖x |x↙ = 0 ⇔
n∑

i=1
x2

i = 0 ⇔ ⇐ i ⇑ Nn , xi = 0

⇔ x = 0
Le second produit est bien un produit scalaire :

— Il s’agit bien d’une forme : à valeurs dans R.

— Il est linéaire à gauche (comme l’intégrale) :
∫b

a
(ε1 f1 +

ε2 f2)g = ε1

∫b

a
f g + ε2

∫b

a
f g et symétrique :

∫b

a
f g =

∫b

a
g f , donc bilinéaire.

— Il est positif : ↖ f | f ↙=
∫b

a
f 2 ⇓ 0

— Il est défini : ↖ f | f ↙= 0 ⇔
∫b

a
f 2 ⇓ 0 ⇔⇐ x ⇑ [a,b], f 2(x) = 0

car f 2 ⇓ 0 et f 2 est continue. Donc ⇔ f = 0[a,b]

Exemple - Application de ces inégalités

1. dans Rn ,
∣∣∣

n∑

i=1
xi yi

∣∣∣∝
√

n∑

i=1
x2

i

√
n∑

i=1
y2

i .
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2. dans C ([a,b],R),

∣∣∣
∫b

a
f (t )g (t )d t

∣∣∣∝

√∫b

a
f (t )2 d t

√∫b

a
g (t )2 d t .

2.3. Différentes identités

Soit E un e.v. muni d’un produit scalaire ↖. | .↙ et ∈.∈ la norme associée. Pour
(x, y) ⇑ E 2 on a

∈x + y∈2 = ∈x∈2 +∈y∈2 +2↖x | y↙
∈x ↘ y∈2 = ∈x∈2 +∈y∈2 ↘2↖x | y↙

↖x | y↙= 1

4
(∈x + y∈2 ↘∈x ↘ y∈2)

∈x + y∈2 +∈x ↘ y∈2 = 2(∈x∈2 +∈y∈2)

Les trois premières égalités sont appelées « identités de polarisation » (elles
permettent de récupérer le produit scalaire à partir de la norme) et la
quatrième « égalité du parallélogramme »

Théorème - Identités

Démonstration

Soient x, y ⇑ E , par bilinéarité et symétrie :

∈x+y∈2 = ↖x+y |x+y↙= ↖x |x↙+2↖x | y↙+↖y | y↙= ∈x∈2+∈y∈2+2↖x | y↙

∈x↘y∈2 = ↖x↘y |x↘y↙= ↖x |x↙↘2↖x | y↙+↖y | y↙= ∈x∈2+∈y∈2↘2↖x | y↙
On soustrait et on additionne :

∈x + y∈2 ↘∈x ↘ y∈2 = 4↖x | y↙

∈x + y∈2 +∈x ↘ y∈2 = 2(∈x∈2 +∈y∈2)

STOP Remarque - Identité de polarisation
Non seulement, elles permettent de récupérer le produit scalaire à partir de
la norme, mais surtout, elles permettent de savoir si une norme donné dérive
d’un produit scalaire.
Ou encore, de manière identique, elles permettent de savoir si un espace
normé est en fait un espace euclidien. Dans ce cas, il aurait une structure
beaucoup plus riche (comme on le voit par la suite avec les notions d’ortho-
gonalité ou d’angles. . .)

La polarisation donne une expression d’une forme bilinéaire qui néces-
sairement est à l’origine de la norme, si celle-ci est bien euclidienne.
Il s’agit donc de vérifier chacun des points pour cette forme : (x, y) :=
1
2

(N (x+ y)↘N (x)↘N (y) (ou
1
4

(N (x+ y)↘N (x↘ y) ). C’est sur la linéarité

qu’on peut avoir des difficultés. . .

Savoir faire - Montrer qu’on a une norme est euclidienne
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3. Orthogonalité 569

Pour l’exercice suivant, on fera attention à ne pas confondre vecteur x, y et
coordonnées x, y . . .
Exercice
Pour (x, y) ⇑ R2 on pose Q(x, y) = 2x2 + 5y2 ↘ 2x y . Montrer que Q est le carré d’une
norme euclidienne sur R2.

Exercice
Pour (x, y) ⇑ R2 on pose ∈(x, y)∈△ = max(|x|, |y |). Montrer que ∈.∈△ est une norme sur
R2, non euclidienne.

3. Orthogonalité

E désigne un espace préhilbertien réel.

3.1. Vecteurs orthogonaux

Soient x et y deux vecteurs de E . x et y sont dits orthogonaux si ↖x | y↙= 0.
On note alors x ▽ y .

Définition - Vecteurs orthogonaux

x ▽ y ′∈x + y∈2 = ∈x∈2 +∈y∈2.

Théorème - Pythagore

Démonstration
On exploite la première identité de polarisation

Exercice
Montrer que dans C ([0,ϑ],R) muni de son produit scalaire usuel, sin ▽ cos.

3.2. Sous-espaces orthogonaux

Soient F et G deux s.e.v de E . F et G sont dits orthogonaux si

⇐x ⇑ F,⇐y ⇑G , x ▽ y.

On note alors F ▽G .

Définition - Espace orthogonaux

Soient F et G deux s.e.v de E .
— Si F ▽G alors F ̸G = {0E }.
— Si F = vect( f1, . . . , fn) et G = vect(g1, . . . , gp ) alors

(F ▽G) ′ (⇐(i , j ) ⇑ [[1,n]]≃ [[1, p]], fi ▽ g j ).

Proposition - Résultats directs
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Démonstration
Si x ⇑ F ̸G , alors ↖x |x↙= 0 et donc x = 0. Donc F ̸G = {0}.
Supposons que F ▽G .

Alors comme fi ⇑ F et g j ⇑G , nécessairement fi ▽ g j .
Réciproquement, supposons que ⇐(i , j ) ⇑ [[1,n]]≃ [[1, p]], fi ▽ g j .

Alors pour x ⇑ F , x =∑n
i=1 xi fi car F = vect( f1, . . . , fn).

Et pour y ⇑ F , y =∑p
j=1 y j g j car G = vect(g1, . . . , gp ).

Donc, par bilinéarité : ↖x | y↙=
∑

i , j
xi y j ↖ fi |g j ↙= 0.

Donc F ▽G

Soit F un s.e.v de E . On appelle orthogonal de F , et on note F▽, l’ensemble
des vecteurs de E orthogonaux à ceux de F :

F▽ = {x ⇑ E |⇐y ⇑ F, x ▽ y}.

F▽ est un s.e.v. de E . Plus précisément, il s’agit du plus grand espace
vectoriel pour la relation d’ordre de l’inclusion :

G ▽ F ⇔G ⊂ F▽

Définition - « Le » espace orthogonal

Démonstration

0 ⇑ F▽, donc F▽ est non vide.
Si x1, x2 ⇑ F▽ et ε1,ε2 ⇑R, alors (par linéarité à gauche) :

⇐ y ⇑ F, ↖ε1x1 +ε2x2 | y↙=ε1↖x1 | y↙+ε2↖x2 | y↙= 0+0 = 0

Donc F▽ est bien un sev de E .
Puis supposons que G ▽ F . Soit x ⇑G
Alors pour tout y ⇑ F , x ▽ y = 0, donc x ⇑ F▽.

Soient F,G deux s.e.v de E . Alors

F ⊂ (F▽)▽;

F ⊂G ⇔G▽ ⊂ F▽.

Proposition - Propriétés de l’orthogonal

Démonstration

Soit x ⇑ F .

⇐ z ⇑ F▽, ↖x |z↙= 0

donc x ⇑ (F▽)
▽

.
Supposons que F ⊂G .

Soit x ⇑G▽.
Alors pour tout z ⇑ F , z ⇑G , donc ↖x |z↙= 0, donc x ▽ z.
Ainsi x ⇑ F▽.

On a alors montré que G▽ ⊂ F▽.
STOP Remarque - A-t-on égalité F = (F▽)▽ ?
Dans le cas des espaces de dimensions finis, nous verrons avec un raison-
nement sur la dimension qu’on a nécessairement l’égalité (dimF = dimE ↘
dimF▽ = dim(F▽)▽).
Dans le cas infini, il peut n’y avoir qu’une inclusion : Par exemple, en prenant
E =C0(I ) et F , l’espace des fonctions polynomiales.

Alors, par argument de densité : F▽ = {0} et donc (F▽)▽ = E ↑= F
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3.3. Familles orthogonales, orthonormales

Plus précisément ce qu’on cherche :εi : E ↔R,
x ↓↔ xi .
On a en fait εi : x ↓↔ ↖x |ei ↙ si la famille
(e1,e2, . . .en ) est une base orthonormée de E

Pour aller plus loin - Forme linéaire dualeLorsqu’on connait une base B = (e1,e2, . . .en ) d’un espace vectoriel E , on écrit régulière-
ment :

« si x ⇑ E , alors x s’écrit x =
n∑

i=1
xi ei . . . ».

Ce qui serait bien ce serait de pouvoir faire « un truc » qui nous permette d’avoir accès à xi
à partir de x et de la base B.
Ce truc, ou opération devrait pouvoir affirmer :

coordonnée du vecteur ei dans la base (ek ) : 1 si k = i et 0 si k ↑= i .
C’est exactement ce que propose un produit scalaire, pour une base orthonormale

Heuristique - Intérêt des bases orthonormales

Soit F = (ui )i⇑I une famille de vecteurs de E .
On dit que F est orthogonale si ⇐(i , j ) ⇑ I 2, i ↑= j ⇔ ui ▽ u j , et que F est
orthonormale (orthonormée) si elle est orthogonale et ⇐i ⇑ I , ∈ui∈= 1.

Définition - Famille orthogonale - orthonormale

On peut faire un exercice équivalent en choi-
sissant bien le produit scalaire et pour lequel
la base est formée de la famille des polynômes
d’interpolation de Lagrange

Pour aller plus loin - Polynôme de Lagrange

Exercice
Montrer que pour la produit scalaire : ↖P |Q↙ = ∑n

k=0 P (k)(a)Q(k)(a) définie sur Rn [X ], la

base ((X ↘a)k )k est une base orthogonale.
Retrouver la formule de Taylor

Toute famille orthogonale de vecteurs non nuls est libre.
Toute famille orthonormale est libre.

Proposition - Famille libre

Démonstration

Soit F = (ui )i⇑I une famille de vecteurs de E .
Soient (εi )i⇑I une famille de réels telle que

∑

i⇑I
εi ui = 0.

Alors par linéarité :

⇐ j ⇑ I 0 = ↖0 |u j ↙=
∑

i⇑I
εi ↖ui |u j ↙=ε j∈u j∈2

Donc si u j ↑= 0, ε j = 0. Ceci est vrai pour tout j donc la famille F
est libre.
Une famille orthonormale est orthogonale avec des vecteurs
non nuls car de norme égale à 1.

Soit (u1, . . . ,up ) une famille orthogonale de vecteurs de E . On a

∥∥∥
p∑

i=1
ui

∥∥∥
2
=

p∑

i=1
∈ui∈2.

Proposition - Pythagore (généralisé)

Démonstration

Par bilinéarité :
∥∥∥

p∑

i=1
ui

∥∥∥
2
= ↖

p∑

i=1
ui |

p∑

i=1
ui ↙=

p∑

i=1

p∑

j=1
↖ui |u j ↙

=
p∑

i=1

∑

j=i
↖ui |u j ↙=

p∑

i=1
↖ui |ui ↙=

p∑

i=1
∈ui∈2
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Soit E un R-e.v. muni d’un produit scalaire et E = (e1, . . . ,ep ) une famille
libre de vecteurs de E .
On définit la famille F = ( f1, . . . , fp ) par

f1 =
1

∈e1∈
e1

⇐i ⇑ [[2, p]], fi =
1

∈e ⇒i∈
e ⇒i où e ⇒i = ei ↘

i↘1∑

j=1
↖ei | f j ↙ f j

Alors F est une famille orthonormale de E telle que

⇐k ⇑ [[1, p]], vect( f1, . . . , fk ) = vect(e1, . . . ,ek ).

On dit que F est déduite de E par le procédé d’orthonormalisation de
Schmidt.

Théorème - Algorithme d’orthonormalisation de Schmidt

Erhard Schmidt (13 janvier 1876 - 6 dé-
cembre 1959) est un mathématicien allemand
né à Dorpat, dans l’Empire russe (aujourd’hui
Tartu, en Estonie). Le procédé d’othonormali-
sation est souvent associé également à Jorgen
Petersen Gram.

1
JAN Histoire - Schmidt Démonstration

Notons d’abord que l’algorithme termine bien, a priori on sait
déjà le nombre d’étape (boucle for) : p.
Pour démontrer la justesse de l’algorithme d’orthonormalisa-
tion de Schmidt, nous allons procéder par récurrence sur p.

— Si p = 1.
f1 est normalisé, f1 est colinéaire à e1, donc vect( f1) =
vect(e1).

— Soit p ⇑N et supposons que le procédé marche pour p ↘1.
Soient (e1, . . .ep ) une famille libre de vecteurs de E .
Alors (e1, . . .ep↘1) est une famille libre de vecteurs de E ,
on peut lui appliquer le procédé de Schmidt, on construit
ainsi (de manière déterministe donc unique) une famil-
lle ( fi )i∝p↘1 orthonormalisée et telle que ⇐ k ∝ p ↘ 1,

vect( f1, . . . , fk ) = vect(e1, . . . ,ek ). Soit fp = 1
∈e ⇒

p∈
e ⇒

p où

e ⇒
p = ep ↘∑p↘1

j=1 ↖ep | f j ↙ f j .
Alors pour i < p,

↖ fp | fi ↙=
1

∈e ⇒
p∈

(
↖ep |ei ↙↘

p↘1∑

j=1
↖ep | f j ↙ f j fi=ϖi , j

)
= 1

∈e ⇒
p∈

(
↖ep |ei ↙↘↖ep | fi ↙

)
= 0

Et ∈ fp∈=
1

∈ep∈
∈ep∈= 1.

Donc la famille ( f1, f2, . . . fp ) est orthonormée.
Enfin Par construction de fp , fp ⇑ vect(e1,e2, . . .ep ). De
même fi ⇑ vect(e1, . . .ei ) ⊂ vect(e1,e2 . . .ep ).

Donc vect( f1, f2, . . . , fp ) ⊂ vect(e1,e2, . . .ep ).
Mais ces deux familles sont libres (la première est ortho-

normales - la seconde, par définition),
donc ces deux espaces engendrés dont de même di-

mension p. Ils sont égaux

STOP Remarque - Cette famille orthonormalisée est-elle unique?
La famille obtenue ne dépend que de la famille initiale. Est-elle unique?
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D’une certaine façon, non. On aurait pu choisir ↘ fi , on aurait alors obtenue
une nouvelle famille orthonormale à partir de la même famille (e1, . . .en).
A cette différence de signe près, il n’y a pas d’autres solutions à partir de la
famille (e1, . . .en). Notons que lorsqu’on calcule e ⇒i , les signes se compensent.

Pour obtenir une base orthonormalisée, on considère une base de E .
On commence par l’orthogonaliser, puis la normaliser à chaque étape.
Au final, e ⇒i est la soustraction de ei , du projeté orthogonal de ei sur
vect(e j ) j<i .

Savoir faire - Orthonormaliser une base

Exercice
Vérifier que l’on munit R2[X ] d’un produit scalaire en posant ↖P |Q↙ =

∫1
0 P (t )Q(t )d t .

Déterminer une b.o.n. de R2[X ] pour ce produit scalaire.

On remarquera que le produit scalaire de
l’exercice amène aux polynômes de Bernoulli
comme base orthogonale (mais non normali-
sée).

Pour aller plus loin - Polynômes de Ber-
noulli4. Cas de la dimension finie : espaces euclidiens

Un espace préhilbertien complexe de dimen-
sion finie a été baptisé par David Hilbert, es-
pace hermitien

Pour aller plus loin - Espace hermitien

4.1. Définition

Un espace euclidien est un R-e.v. de dimension finie, muni d’un produit
scalaire (c’est-à-dire un espace préhilbertien réel de dimension finie).

Définition - Espace euclidien

Exemple - Retour sur les deux produits canoniques
Rn est un espace euclidien, mais pas C ([a,b],R).
Il y a de nombreux exemples sur Rn[X ]

Il s’agit maintenant d’algèbre bilinéaire.
Un même objet -une matrice- peut donc avoir
deux sens différents.
En algèbre linéaire : f (x)↭ A≃X
En algèbre bilinéaire :ε(x, y)↭ X T A≃Y

Pour aller plus loin - Algèbre bilinéaire

Soit E est un espace euclidien (produit scalaire noté ↖. | .↙), muni d’une base
B = (e1, . . . ,en).
On note A la matrice

A =
(
↖ei |e j ↙

)
1∝i , j∝n

=




∈e1∈2 . . . ↖e1 |en↙
...

...
↖en |e1↙ . . . ∈en∈2




appelée matrice du produit scalaire dans la base B.
Soient X et Y les matrices colonnes de x ⇑ E respectivement de y ⇑ E dans
B.
Alors, en identifiant une matrice d’ordre 1 à son unique coefficient, on a

↖x | y↙= t X AY

Proposition - Ecriture matricielle

Exercice
Que dire de B si A = In ?

Démonstration

t X AY =
n∑

h,k=1
1[X T ]h

h[A]k
k [Y ]1 =

n∑

h,k=1
h[X ]1

h[A]k
k [Y ]1 =

n∑

h,k=1
xh yk↖eh |ek↙= ↖x | y↙

par bilinéarité
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Soit A la matrice d’un produit scalaire dans une base quelconque. Alors
• A est une matrice symétrique : t A = A ;
• A est une matrice positive : ⇐X ⇑Mn,1(R), t X AX ⇓ 0 ;
• A est une matrice définie : ⇐X ⇑Mn,1(R), t X AX = 0 ⇔ X =On,1 ;
• A est inversible : A ⇑GLn(R).

Proposition - Propriétés de la matrice d’un produit scalaire

Démonstration

On note B = (e1,e2, . . .en) la base de E considérée.
Soient i , j ⇑ Nn , i [A] j = ↖ei |e j ↙ = ↖e j |ei ↙ = j [A]i ] = i [AT ] j , par
symétrie du produit scalaire. Pour tout X ⇑ Mn,1(R), en notant

x =
n∑

i=1
i [X ]1ei .

t X AX = ↖x |x↙ ⇓ 0
Puis, si t X AX = 0, alors ↖x |x↙ = 0 et donc x = 0 ainsi X = O. Le
dernier point est un classique à savoir faire (passer du bilinéaire
au linéaire).
Soit X ⇑ Ker A, alors t X AX =t XO = 0, donc X = 0. Ainsi Ker A =
{0}. Donc A inversible.

STOP Remarque - Toutes les propriétés essentielles du produit scalaire
se répercutent directement comme propriétés essentielles de la matrice A.

— La bilinéaire donne l’existence de la matrice
— La forme se transforme en produit qui donne un nombre en bout de

course
— Le fait d’être positif
— Le fait d’être défini

ε ⇑ R est valeur propre de A s’il existe X ⇑
Mn,1(R), X ↑=On,1 tel que AX =εX

Pour aller plus loin - Valeur propre

Exercice
Montrer que les valeurs propres d’une matrice symétrique définie positive sont des réels
strictement positifs.

4.2. Bases orthonormales

B est une base orthonormale de E euclidien si B est une base de E et une
famille orthonormale.

Définition - Base orthonormale

Exemple - Base canonique
La base canonique de Rn est une base orthonormale de Rn pour
le produit scalaire usuel.

— Tout espace vectoriel euclidien possède une base orthonormale.
— Toute famille orthonormale de E peut être complétée en une base

orthonormale de E .

Théorème - Existence de bases orthonormales

Démonstration
Il suffit d’appliquer le procédé d’othonormalisation de Gram-
Schmidt

Exercice
Réciproquement, étant donné une base B de E , R-ev.
Existe-t-il un produit scalaire de E telle que la base B soit orthonormales?

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



4. Cas de la dimension finie : espaces euclidiens 575

De même que pour savoir si une famille est une base, on exploite la
matrice de cette famille ; pour montrer qu’une famille est une base or-
thonormale, on peut commencer par écrire sa matrice de corrélation :
A = (↖ei ,e j ↙)i , j .
Cette matrice est symétrique. Elle est inversible ssi (ei ) est une base.
Cette matrice est diagonale ssi (ei ) est une famille orthogonale.
A = In ssi (ei ) est orthonormée.

Savoir faire - Montrer qu’une famille est une base orthonormée

Soit B = (e1, . . . ,en) une base orthonormale de E euclidien (pour le produit
scalaire ↖. | .↙).

Soient x =
n∑

i=1
xi ei et y =

n∑

i=1
yi ei deux vecteurs de E , X et Y les matrices

colonnes associées. Alors :

↖x | y↙=
n∑

i=1
xi yi = t X Y

∈x∈=
√

n∑

i=1
x2

i

⇐i ⇑ [[1,n]], xi = ↖x |ei ↙

Proposition - Calculs en b.o.n

Soient B une base orthonormale de E euclidien de dimension n, B⇒ une
famille de n vecteurs de E , et P la matrice de B⇒ dans B. Alors B⇒ est une
base orthonormale de E si et seulement si t PP = In .
Dans ce cas on a donc P↘1 = t P (on dit que P est une matrice orthogonale).

Proposition - Opération matricielle de changement de base orthonor-
male

STOP Remarque - Matrice de passage
On rappelle que la matrice P de B⇒ dans B est, comme son nom l’indique, la
matrice des coordonnées des vecteurs de la base B⇒ écrite dans la base B.
Elle vérifie pour X et X ⇒ matrice de x écrites dans les bases B et B⇒ respecti-
vement :

X = P X ⇒

Démonstration

Par définition des matrices de passages,

⇐ j ⇑Nn , e ⇒
j =

n∑

k=1
k [P ] j ek

Dans ce cas, par bilinéarité (et avec la notation de Kronecker)

↖e ⇒
i |e

⇒
j ↙=

n∑

h=1

n∑

k=1
h[P ]i

j [P ]k↖eh |ek↙=
n∑

k=1
i [P T ]k

k [P ] j = Coefi , j (t PP )

Ainsi, on obtient l’équivalence de la proposition.
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Soit E un espace euclidien et deux bases B et B⇒.
Si x a pour coordonnées X dans B et X ⇒ dans B⇒.
Si y a pour coordonnées Y dans B et Y ⇒ dans B⇒.
On note A et A⇒ la matrices du produit scalaire dans chacune des deux
bases.
Enfin, on note P la matrice de B⇒ dans B.
On a alors X = P X ⇒, Y = PY ⇒.

↖x | y↙=t X AY =t X ⇒A⇒Y ⇒ =t X ⇒t P APY ⇒

Ceci étant vrai pour tout x, y , on a donc nécessairement A⇒ =t PAP Ce
résultat reste vraie que les bases sont orthonormales ou non

Savoir faire - Changement de base pour une forme bilinéaire

Exercice
E =R3, B base canonique. On pose B⇒ = ( f1, f2, f3) où

f1 = 1
∋

2
(e1 ↘e3), f2 = 1

∋
3

(e1 +e2 +e3), f3 = 1
∋

6
(e1 ↘2e2 +e3).

Montrer que B⇒ est une base orthonormale de E (pour le produit scalaire canonique).
Soit f ⇑L (E) défini par f (x, y, z) = (x + y, x + z, y + z). Donner la matrice de f dans cette
base.

Exercice

Montrer que la matrice P =




0 ↘1 0
cosϱ 0 ↘sinϱ
sinϱ 0 cosϱ


 est inversible et calculer son inverse.

5. Projections orthogonales

5.1. Supplémentaire orthogonal

Soit E un espace préhilbertien réel (pas nécessairement de dimension
finie) et F un s.e.v de dimension finie de E . Alors

E = F ↗F▽.

Théorème - L’orthogonal est un supplémentaire (C.S. : F dimension
finie)

Démonstration

Nous savons que F et F▽ sont orthogonaux donc F ↗F▽.
Soit x ⇑ E . On note (e1, . . .ep ) une base orthonormée de F .

Puis y =
p∑

i=1
↖x |ei ↙ei . Alors nécessairement y ⇑ F .

Par ailleurs, pour tout i ⇑Np ,

↖x ↘ y |ei ↙= ↖x |ei ↙↘↖y |ei ↙= ↖x |ei ↙↘
p∑

j=1
↖x |e j ↙↖e j |ei ↙= 0

Donc x ↘ y ⇑ F▽, et donc E = F +F▽.
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Un des problèmes de la notion de supplémentaire est la non-unicité de ceux-ci (E et F
étant donné, il existe généralement une infinité Gi tels que E = F ↗Gi ).
Parmi ceux-ci (les Gi ) un a une propriété qui le rend unique et intéressant (dans le cas d’un
espace préhilbertien).

Heuristique - LE supplémentaire

Soit E un espace préhilbertien réel (pas nécessairement de dimension
finie) et F un s.e.v de dimension finie de E .
F▽ est appelé LE supplémentaire orthogonal de F .

Définition - Supplémentaire orthogonal

Soit E un espace euclidien et F un s.e.v de E . Alors

dimF▽ = dimE ↘dimF

(F▽)▽ = F

Proposition - Deux propriétés

Démonstration
Nous savons que si E = F ↗G , et E de dimension finie,

alors dimE = dimF +dimG .
Il reste à appliquer cette relation à G = F▽.

Nous savons aussi que F ⊂ (F▽)▽.
dim(F▽)

▽ = dimE ↘dimF▽ = dimE .
Et donc, pour des raisons de dimension : F = (F▽)

▽

5.2. Projections orthogonales

Soit F un s.e.v de dimension finie de E préhilbertien réel.
On appelle projecteur orthogonal (projection orthogonale) sur F le projec-
teur sur F de direction F▽.

Définition - Projection orthogonale

STOP Remarque - Exprimer explicitement la projection
La proposition qui suit est très importante, elle permet de dépasser une
limite de la notion de projecteur pour les espaces vectoriels quelconques. Il
était, alors, généralement impossible d’exprimer ce projecteur explicitement,
théoriquement. Dans le cas du projecteur orthogonal, cette impossibilité
n’existe plus.

Soit pF le projecteur orthogonal sur F .
Si B = (e1, . . . ,ep ) b.o.n de F alors

⇐x ⇑ E , pF (x) =
p∑

i=1
↖x |ei ↙ei et y = pF (x) ′


y ⇑ F
x ↘ y ⇑ F▽

Proposition - Expression du projecteur

STOP Remarque - Déjà vu?

• Dans le procédé d’orthonormalisation de Schmidt e ⇒i = ei ↘
i↘1∑

j=1
↖ei | f j ↙ f j

désigne le vecteur obtenu en soustrayant à ei son projeté orthogonal sur le
sous-espace engendré par les précédents vecteurs de la famille.
• Dans la démonstration de la supplémentarité de F et F▽, nous avons
exploité cette fonction pF (noté y = pF (x) à l’époque)
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Démonstration
Pour démontrer que E = F ↗F▽, on a décrit x ↓↔ y(= pF (x)).
Il s’agit bien de pF (x) = ∑p

i=1↖x |ei ↙ei , dès que (e1,e2, . . .ep ) est
une base orthonormée de F .
La caractéristique donnée est la mise à jour de la caractéris-
tique : Si p est la projection de E sur F de direction G ,

alors p(x) = y ′ y ⇑ F et x ↘ y ⇑G

Soit E , un espace préhilbertien réel

1. Si F = vect(e) est une droite, alors pF (x) =


x| e
∈e∈


e
∈e∈ = ↖x |e↙

∈e∈2 e.

2. Si F est un hyperplan de E de dimension finie, alors F▽ = vect(e) est

une droite et pF (x) = x ↘


x| e
∈e∈


e

∈e∈ .

Corollaire - Cas particuliers

Démonstration
Le premier résultat est une application direct du résultat précé-
dent avec B = ( e

∈e∈ ), base orthonormée de F .

Pour le second résultat on considère pF▽ : x ↓↔


x| e
∈e∈


e

∈e∈ et

donc pF = id↘pF▽ , on obtient le résultat annoncé.

Exercice
Déterminer la matrice dans la base canonique de R3 de la projection orthogonale sur le
plan F d’équation x + y ↘2z = 0.

On a d(u,P ) = ∈b∈

Représentation - Visualisation 5.3. Distance à un sous-ensemble d’une espace préhilbertien

Soient x ⇑ E et A une partie de E , préhilbertien réel.
L’ensemble {d(x, z); z ⇑ A} est une partie non vide de R, minorée par 0, qui
admet donc une borne inférieure, appelée distance de x à A :

d(x, A) = inf
z⇑A

∈x ↘ z∈.

Définition - distance à un sous-ensemble

Soient E un espace préhilbertien réel, F un s.e.v de dimension finie de E et
pF la projection orthogonale sur F . Soit x ⇑ E , alors

y = pF (x) ′


y ⇑ F
⇐z ⇑ F, ∈x ↘ y∈ ∝ ∈x ↘ z∈ ′


y ⇑ F
∈x ↘ y∈= d(x,F )

Théorème - Meilleure approximation

STOP Remarque - Interprétation
La distance de x à un sous-espace vectoriel F est la distance de x à pF (x),
pF (x) étant l’unique vecteur de F réalisant cette distance : pF (x) est le vec-
teur de F « le plus proche » de x en ce sens.
On dit que pF (x) est la meilleure approximation de x dans F .

Démonstration

Si y = pF (x),
alors y ⇑ F et pour tout z ⇑ F , d’après Pythagore :

∈x ↘ z∈2 = ∈(x ↘ y)+ (y ↘ z)∈2 = ∈x ↘ y∈2 +∈y ↘ z∈2
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car x ↘ y ⇑ F▽ et y ↘ z ⇑ F .
Donc ∈x ↘ z∈2 ⇓ ∈x ↘ y∈2 et donc ∈x ↘ z∈ ⇓ ∈x ↘ y∈.

Ce qui implique, par suite, ∈x ↘ y∈= infz⇑F ∈x ↘ z∈.
Enfin supposons que y ⇑ F et ∈x ↘ y∈= infz⇑F ∈x ↘ z∈.

En considérant y ⇒ = pF (x) alors on trouve ∈x ↘ y∈ ∝ ∈x ↘ y ⇒∈.
Or avec Pythagore à nouveau : ∈x ↘ y∈2 = ∈x ↘ y ⇒∈2 +∈y ⇒ ↘ y∈2

et donc nécessairement ∈x↘y∈= ∈x↘y ⇒∈ et surtout ∈y↘y ⇒∈2 =
0.

Ainsi y = y ⇒ = pF (x)

De manière générale, dans ce contexte, on ne cherche pas le minimum
d’une norme, mais bien d’une norme au carré (forme quadratique) qui
dérive du produit scalaire canonique.
L’enjeu : reconnaître le produit scalaire et les espaces E et surtout F . Puis,
on exploite une projection orthogonale sur F , elle est explicite si l’on
connait une base orthonormale de F .
On remarque qu’une base orthogonale de F suffit.

Savoir faire - Minimiser une forme quadratique

Ce problème peut aussi se rencontrer en cours
d’optimisation d’une fonction de plusieurs va-
riables.
On remarque ici que

f (x, y) = 6x2 +3y2 +4x y ↘8x +8

= 1

3

(
3y +2x

)2 + 14

3

(
x ↘ 6

7

)2
+ 32

7

Elle est minimale pour x = 6
7 et y = ↘4

7 et vaut
alors 32

7 .

Pour aller plus loin - Optimisation de f :
R2 ↔R

Exercice
Soit f (x, y) = (x + y ↘2)2 + (x ↘ y ↘2)2 + (2x + y)2.
Montrer que f admet un minimum sur R2 que l’on déterminera (avec les valeurs de x et y
correspondantes).

L’exercice qui suit donne une idée de la stratégie de la minimisation par la
méthode des moindres carrés. Il s’agit de prendre le problème de manière
duale
Exercice
On se donne quatre points A(1,0), B(0,1), C (3,4), D(↘1,↘1).
Déterminer la droite D d’équation y = ax +b telle que si A⇒,B ⇒,C ⇒,D ⇒ sont les projetés de
A,B ,C ,D sur D parallèlement à l’axe O y , alors Sa,b = A A⇒2 +BB ⇒2 +CC ⇒2 +DD ⇒2 soit
minimale.
Comment généraliser cette méthode?, indépendamment de coordonnés concrètes pour A,

B . . . et d’une projection aussi simple. . .

Représentation - Réflexion dans l’espace5.4. Symétries orthogonales

Soient E un espace préhilbertien réel, F un s.e.v de dimension finie de E .
On appelle symétrie orthogonale par rapport à F la symétrie par rapport à
F de direction F▽.
On a sF = 2pF ↘ I dE où pF est la projection orthogonale sur F .

Définition - Symétrie orthogonale

s ⇑L (E) est une symétrie orthogonale si et seulement si

s ∀ s = I dE

Ker(s ↘ I dE ) ▽ Ker(s + I dE )

Proposition - CNS de symétrie orthogonale

Démonstration
Les espaces qui définissent toute symétrie vectorielle sont
Ker(s ↘ i dE ) et Ker(s + i dE ).
La symétrie est orthogonale ssi ces espaces sont orthogonaux.
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On appelle réflexion toute symétrie orthogonale par rapport à un hyper-
plan de E .

Définition - Réflexion

6. Hyperplans vectoriels et affines d’un espace eu-
clidien

6.1. Lemme de RIESZ

Soient E un espace euclidien et ω ⇑ E→ =L (E ,R).
Alors il existe un unique a ⇑ E tel que

⇐x ⇑ E , ω(x) = ↖a |x↙.

Proposition - Caractérisation des formes linéaires

Démonstration

Si ω ⇑ E→, alors Kerω est un hyperplan.
Donc (Kerω)▽ est de dimension 1. Notons a, un vecteur direc-
teur de (Kerω)▽ On a donc E = Kerω↗vecta avec a ↑= 0.

⇐ x ⇑ E ,∃ (y,εx) ⇑ Kerω≃K | x = y +εx a

Dans ce cas :

ω(x) =ω(y)+εxω(a) =εxω(a) et ↖a |x↙= ↖a | y↙+εx∈a∈2 =εx∈a∈2

Ainsi, ω(x) = ω(a)
∈a∈2 ↖a |x↙ En prenant A = ω(a)

∈a∈2 a, on obtient

ω(x) = ↖A |x↙, pour tout x ⇑ E .

Ici on a :

0. Un espace ambiant, euclidien donc muni d’un produit scalaire de référence.

1. Une forme linéaire f ⇑ E→

2. Alors il existe a ⇑ E tel que f : x ↓↔ ↖a |x↙

Heuristique - Principe de construction

Soient B une b.o.n de E euclidien et H un hyperplan de E .

Alors il existe (a1, . . . , an) ⇑Rn tel que
n∑

i=1
ai xi = 0 soit l’équation de H dans

B et dans ce cas a ⇑ E de coordonnées (a1, . . . , an) dans B est un vecteur
normal à H , H = vect(a)▽.

Corollaire - Equation de H et vecteur normal

Exemple - Gradient
Si f :Rp ↔R, différentiable, on a

d f :Rp ↔ (Rp )→, x ↓↔
(
a ↓↔= f (x +a)↘ f (x)+o(∈a∈)

)

Alors, il existe un vecteur
↘↘↘↘↔
g r ad( f )(x) tel que d f (x)(a) =

↖↘↘↘↘↔g r ad( f )(x) |a↙.
C’est le vecteur dont les coordonnées sont

ς f
ςxi

(x).
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6.2. Espace affine euclidien (élargissement vers l’affine)

Vecteur normal

Soit R = (ϖ,e1, . . . ,en) un repère affine orthonormal de l’espace E de di-
mension n (c’est-à-dire que B = (e1, . . . ,en) est une b.o.n de E).
Soit H un hyperlpan affine de E .
On appelle vecteur normal à H , tout vecteur normal à la direction H de
H , c’est-à-dire a ⇑ E tel que H = vect(a)▽.
Si a a pour coordonnées (a1, . . . , an) dans B, alors H possède une équa-

tion dans R du type
n∑

i=1
ai xi = h.

Réciproquement

n∑

i=1
ai xi = h avec (a1, . . . , an) ↑= (0, . . . ,0)

est l’équation d’un hyperlpan affine de vecteur normal a de coordonnées
(a1, . . . , an) dans B.

Proposition - Vecteur normal à un hyperplan affine

Démonstration
Il suffit d’écrire ce que cela signifie

Exemple - Dans R2 et R3

On retrouve ainsi les exemples classiques dans R2 et R3 :
— Dans le plan euclidienR2, ax+by+c = 0, avec (a,b) ↑= (0,0),

est l’équation dans un repère orthonormal d’une droite de
vecteur normal de coordonnées (a,b).

— Dans l’espace euclidien R3, ax + by + cz + d = 0, avec
(a,b,c) ↑= (0,0,0), est l’équation dans un repère orthonor-
mal d’un plan de vecteur normal de coordonnées (a,b,c).

Dans E euclidien, les lignes de niveau de l’application M ↓↔ ↘↘↔
AM ·↘↔n (c’est-

à-dire les ensembles Ek = {M ⇑ E |↘↘↔AM ·↘↔n = k}) sont des hyperplans affines
de vecteur normal ↘↔n .

Corollaire - Ligne de niveau : hyperplan

Ek = {M ⇑ E |↘↘↔AM ·↘↔n = k}

Représentation - Les lignes de niveaux - hy-
perplan

Démonstration

Soit M0 ⇑ Ek . Alors

M ⇑ Ek ∞⇔↘↘↔
AM ·↘↔n =↘↘↘↔

AM0·↘↔n ∞⇔ (
↘↘↔
AM↘↘↘↘↔AM0)·↘↔n = 0 ∞⇔↘↘↘↔

M0M ·↘↔n = 0

Ainsi Ek est l’hyperplan affine normal à ↘↔n et passant par M0.
Est-ce que M0 existe bien? oui
Prenons M0 = A+ k

∈n∈
↘↔n , alors

↘↘↘↔
AM0 ·↘↔n = k

∈n∈
↘↔n ·↘↔n = k.

Distance

Soit H un hyperplan affine de E euclidien, défini par un point A et un
Proposition - Distance à un hyperplan affine
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vecteur normal unitaire ↘↔n . Alors, pour M point de E , on a

d(M ,H ) = |↘↘↔AM ·↘↔n |.

Démonstration

On revient à un hyperplan vectoriel en translatant la relation par↘↘↔
O A.
Autrement écrit, l’hyperplan vectoriel directeur de H et H =
vect(↘↔n )▽. On a alors

d(M ,H ) = d(
↘↘↔
AM , H) = ∈↘↘↔AM ↘pH (

↘↘↔
AM)∈

Comme↘↔n est normal et unitaire à H , pH (
↘↘↔
AM) =↘↘↔

AM↘ 1
∈↘↔n ∈2 (

↘↘↔
AM ·

↘↔n )↘↔n .
On trouve donc

d(M ,H ) = |↘↘↔AM ·↘↔n |
∈↘↔n ∈2

∈↘↔n ∈

Et si ↘↔n est unitaire :

d(M ,H ) = |↘↘↔AM ·↘↔n |

Soit D d’équation ax + by + c = 0 dans un r.o.n du plan euclidien R2 et
M(xM , yM ) un point. Alors

d(M ,D) = |axM+byM+c|
∋

a2+b2
.

Corollaire - Distance à une droite du plan

Soit P d’équation ax + by + cz + d = 0 dans un repère orthonormé de
l’espace euclidien R3 et M(xM , yM , zM ) un point. Alors

d(M ,P ) = |axM+byM+czM+d |
∋

a2+b2+c2
.

Corollaire - Distance à un plan de l’espace

Démonstration

Dans le premier cas, un vecteur normal à D est 1∋
a2+b2

(a,b)
et considérons A(x0, y0) un point de D (donc ax0+by0+c = 0).

Alors

d(M ,D) = |↘↘↔AM ·↘↔n | = 1
∋

a2+b2
|(xM↘x0, yM↘y0)·(a,b)| = |axM +byM + c|

∋
a2 +b2

Dans le second cas, un vecteur normal à P est 1∋
a2+b2+c2

(a,b,c)
et considérons A(x0, y0, z0) un point de P (donc ax0 +by0 +

cz0 +d = 0). Alors

d(M ,D) = |↘↘↔AM ·↘↔n | = 1
∋

a2+b2+c2
|(xM↘x0, yM↘y0, zM↘z0)·(a,b,c)| = |axM +byM + czM +d |

∋
a2 +b2 + c2

Exercice
Reprendre l’exercice du calcul de distance de a = (2,2,0) à F = vect

(
(1,1,2), (1,↘1,1)

)
.
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6.3. Transposition

Un question posée il y a quelques temps : on sait passer de M =MB(u) à t M .
Mais à quel endomorphisme associer alors t M ?

Soit E un espace euclidien.
Soit u ⇑L (E).
Il existe une unique application, noté t u ⇑L (E) (parfois u→) tel que

⇐ x, y ⇑ E , ↖u(x) | y↙= ↖x | t u(y)↙

On appelle cet application u→, l’adjoint de u.

Définition - Adjoint de u ⇑L (E)

Démonstration
t u : y ↓↔ a tel que ⇐ x ⇑ E , ϕ(x) = ↖u(x) | y↙= ↖a |x↙.

Analyse - Interprétation matricielle
Si B est une base orthonormée de E .
X , Y et U les matrices de x, y et u dans B, respectivement.
Alors

↖u(x) | y↙= (U X )T ≃Y = X T (U T Y ) = ↖x | t u(y)↙

Donc U T est la matrice de t u dans la base B orthonormée.
STOP Remarque - S’il n’y a pas de base orthonormée

On en construit une ! cf. partie suivante

6.4. Crochet de dualité

On commence par élargir la notion de produit scalaire.

Soit E ,F deux espaces vectoriels.
On dit que la forme bilinéaire B : E ≃F ↔R est non dégénérée si

(⇐ x ⇑ E ,B(x, y) = 0) ⇔ y = 0
(⇐ y ⇑ E ,B(x, y) = 0) ⇔ x = 0

Définition - Forme bilinéaire non dégénérée

Exercice
Montrer que tout produit scalaire définie sur E une forme bilinéaire non dégénérée

On peut généraliser au cas E de dimension non
finie.
On généralise aussi parfois aux espaces topo-
logiques

Pour aller plus loin - Cas E non de dimen-
sion finieSoit E un R espace vectoriel. On suppose que E est de dimension finie

On appelle crochet de dualité de E la forme bilinéaire non dégénérée :

B : E→ ≃E ↔R, (ϕ, x) ↓↔ϕ(x)

Définition - Crochet de dualité

Exercice
Montrer qu’il s’agit bien d’une forme bilinéaire non dégénérée.

On a :

0. Un espace vectoriel (ambiant - de dimension finie)

1. Un isomorphisme de E→ sur E , noteε.

2. On définit alors B , crochet de dualité : B( f , x) = f (x)

Heuristique - Principe de construction/d’application
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En fait : B( f , x) = ↖ε( f ) |x↙

On définit alors comme précédemment

Soit A un sev de E . On note A0 = {ϕ ⇑ E→ | ⇐ x ⇑ A,B(ϕ, x) =ϕ(x) = 0}.
Soit C un sev de E→. On note C 0 = {x ⇑ E | ⇐ ϕ ⇑C ,B(ϕ, x) =ϕ(x) = 0}

Définition - Orthogonal dual

Application - Mécanique quantique
En mécanique quantique, on définit les bra-ket de cette facçon.
Un bra noté < ϕ| est une forme linéaire, on considère ensuite ensuite une
observable A et un ket, noté |x > est un vecteur de l’espace de Hilbert am-
biant : <ϕ|A|x >.

Exercice
On suppose que E est de dimension finie n. Si (e1, · · · ,ep ) base de A, complétée en
(e1, · · · ,en ) base de E .
Donner une caractéristique avec les applications e→i de A0. En déduire dim(A0).

7. Bilan

Synthèse

↫ Avec un produit scalaire, il est simple d’obtenir (=voir numérique-
ment) les dépendances entre vecteurs, d’après l’inégalité de Cauchy-
Schwarz.
Cela donne aussi un moyen explicite de projeter (orthogonalement)
sur des sous-espaces vectoriels.

↫ Il est donc bon de savoir reconnaitre les produits scalaires abstraits (et
les normes associés), puis les bases orthonormées associées (ou bien
les créer directement par l’algorithme de Gram-Schmidt).

↫ La projection orthogonale et donc le calcul de distance deviennent
explicite (i.e. calculatoire). Cette méthode nous inspire pour créer une
dualité entre espace vectoriel E de dimension finie et son espace dual
E→, par (ϕ(⇑ E→), x) :=ϕ(x). Au passage on donne également un sens à
l’endomorphisme dont la matrice est la transposée de celle de u.

Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Montrer qu’on a un produit scalaire
— Savoir-faire - Montrer qu’on a une norme
— Savoir-faire - Montrer qu’on une norme est euclidienne
— Savoir-faire - Orthonormaliser une base
— Savoir-faire - Montrer qu’une famille est une base orthonormée
— Savoir-faire - Changement de base pour une forme bilinéaire
— Savoir-faire - Minimiser une forme quadratique
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Notations

Notations Définitions Propriétés Remarques
↖·|·↙ Produit scalaire sur E Forme bilinéaire définie positive Autre notation classique : (·, ·) . . .
∈ ·∈ Norme sur E A valeurs dans R+, pseudo-linéaire, véri-

fiant l’inégalité triangulaire
Autre notation : N (·).

x ↓↔
∋
↖x|x↙ est une norme associée, dite

euclidienne
Propriété de C-S : ↖x|y↙ ∝ ∈x∈≃∈y

x ▽ y x et y sont orthogonaux Equivalente à ↖x|y↙= 0 Relation symétrique
F ▽G F et G sont orthogonaux Equivalente à ⇐ x ⇑ F, y ⇑G , ↖x|y↙= 0 Relation symétrique
F▽ L’orthogonal de F F▽ = {y ⇑ E | ⇐ x ⇑ F ↖x|y↙=}0 Si E est de dimension finie, E =

F▽↗F
A = (↖ei |e j ↙)i , j Matrice euclidienne de la famille (ei ) (ei )i base orthonormée de E ssi A, positive,

définie. A est alors inversible
A est nécessairement symétrique

↖x|y↙= X T ≃ A≃Y (avec x =
n∑

i=1
Xi ei ) Comme la matrice de variance-

covariance. . .
d(x, A) =
infz⇑A ∈x ↘ z∈

Distance de x à l’ensemble A Si ∈ ·∈ est euclidienne, d(x, A) = ∈x↘p A (x)∈
(projection orthogonale sur A)

A savoir démontrer !

t u Adjoint de u (existe nécessairement si E de
dimension finie)

⇐ x, y ⇑ E , ↖u(x)|y↙= ↖x|t u(y)↙ Parfois noté u→

MBon (t u) =
(
MBon (u)

)T

A0 = {ϕ ⇑ E→ | ⇐ x ⇑
A,ϕ(x) = 0}

Dual de A (pour A ⊂ E) A0 est isomorphe à un supplé-
mentaire de A dans E

C 0 = {x ⇑ E | ⇐ ϕ ⇑
C ,ϕ(x) = 0}

Dual de C (pour C ⊂ E→) C 0 est isomorphe à un supplé-
mentaire de C dans E→

Retour sur les problèmes

118. Cours

119. Cours : pF (u) =
p∑

i=1
↖u,ei ↙ei si (e1,e2, . . . ,en) base orthonormale de F .

120. C’est tout simplement G = F▽.

121. ak = ↖u,ek↙ si (e1, . . .en) base orthogonale de E et ek normé.

122. Il suffit d’orthonormaliser une base quelconque par le procédé de
Gram-Schmidt.

123. Question plus subtile. On exploite les espaces othogonaux définies à
partir d’une forme linéaire. C’est ce qu’on appelle la dualité.
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