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Chapitre 28
Structure algébrique de
l’ensemble des polynômes

Ce chapitre est le premier d’un série de quatre chapitres autour des polynômes.
Chacun de ces chapitres apporte un point de vue (très) différent sur le même objet.
L’enjeu est de pouvoir passer d’une façon de voir à une autre ; de ne pas s’enfermer
dans un unique point de vue.
Dans ce chapitre, on motive l’intérêt de l’étude des polynômes : le calcul polyno-
miale (quitte à considérer plusieurs indéterminées) correspond peu ou prou au
calcul dans tout anneau. C’est le lieu naturel du développement (distribution)
dans une structure à deux lois. On verra aussi qu’il s’agit d’un espace vectoriel dans
une famille génératrice est (1, X , X 2, . . . ) (nous en reparlerons au chapitre sur les
espaces vectoriels).
On se concentre donc ici aux opérations formelles à partir de polynôme : somme et
produit, puis composition et enfin dérivation. . .
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590 Structure algébrique de l’ensemble des polynômes

K désigne le corps R ou C. (On pourrait généraliser les définitions à un autre
corps.)

1. Problèmes

Etant donné un anneau A, il est possible de calculer (a→b)↑(c→d). Et le
résultat de ce calcul : ac+bd→ad→bc est en fait indépendant de l’anneau
considéré.
D’une certaine façon, le résultat ne dépend que du calcul lui-même.
Existe-t-il un ensemble des opérations algébriques et des résultats qui en
découle? Par exemple, que peut-on dire de (1+a+a2 +a3)(1→a). Est-ce
que le résultat dépend si a ↓ Z, ou a ↓ R, C ou encore a ↓ Z

pZ ou bien a
une matrice, une fonction (endomorphisme), un graphe, un arbre ?

Problème 124 - Polynômes et calculs algébriques

Si l’on considère deux polynômes A =
n∑

k=0
ak X k et B =

r∑

k=0
bk X k , quelles

sont les opérations naturelles que l’on peut faire avec ces polynômes
(+,↑,/,↔ . . . ) ? Est-ce que l’ensemble des polynômes est stable pour ces
lois?
Et la dérivation?

Problème 125 - Lois sur les polynômes

En prolongeant le problème précédent, si A =
n∑

k=0
ak X k et B =

r∑

k=0
bk X k ,

quelle est l’expression du coefficient devant X h pour les polynômes
A+B , A↑B et A ↔B ?
Est-ce une expression simple que l’on a intérêt à retenir (par exemple
pour calculer des DL)? Quelle notation mérite alors d’être instaurée?

Problème 126 - Expression algébrique

Pour éviter tout problème, les polynômes sont définis avec des degrés
(valeur maximale à partir de laquelle tout est nulle).
Les lois algébriques que nous verrons peuvent-ils se noter avec de degré
infini ? Peut-on créer une algèbre de polynôme de degrés non nécessai-
rement finis (séries formelles) ?

Problème 127 - Degré infini. Séries formelles

La formule de Taylor permet, étant donnée une fonction f d’obtenir un
DL au voisinage de a, sous forme polynomiale :

f (x) =
n∑

k=0

f (k)(a)
k !

(x →a)k +o
(
(x →a)n)

Pour a = 0, cela donne en particulier une expression du coefficient de-
vant xk . Mais il s’agit de dérivée la fonction f . Cette opération de dériva-
tion s’obtient par un passage à la limite, totalement dépendant de l’ana-

Problème 128 - Dérivation algébrique?
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2. L’algèbreK[X ] 591

lyse. Dans ce chapitre, nous aimerions exploiter ce genre de relation pour
obtenir explicitement [P ]k . Il faut alors définir algébriquement une opé-
ration sur les polynômes qui coïncide avec la dérivation en analyse.
Comment définir ω : P ↗↘ P ≃ et quelles sont ses propriétés?

2. L’algèbreK[X ]

Cauchy définit l’ensemble des nombres com-
plexes comme l’ensemble quotientR[X ]/(X 2+
1).
Cela signifie qu’un nombre complexe est un
polynôme avec identification X 2 =→1.
Ainsi les nombres (a + i b)↑ (c + i d) s’identifie
aux calculs

(a +bX )↑ (c +d X ) = ac +X (ad +bc)+bd X 2

Mais comme X 2 = →1 on trouve (ac → bd) +
(ad +bc)X , le polynôme identifié à (ac →bd)+
(ad +bc)i = (a + i b)↑ (c + i d).
En terme de calculs effectués, les calculs de C
sont bien des calculs de R[X ]. . .

Pour aller plus loin - Ensemble C

2.1. Construction

On considère l’ensemble E des suites d’éléments deK nulles à partir d’un certain rang. Ce
sont les suites presque nulles/presque finies, vues dans le chapitre sur les espaces vectoriels

— (E ,+), où + désigne l’addition usuelle des suites, est un sous-groupe du groupe
commutatif (KN,+) car (0)n↓N ↓ E et la différence de deux suites nulles à partir
d’un certain rang est une suite nulle à partir d’un certain rang.

— (E ,+, .) est alors un s.e.v. deKN, de vecteur nul la suite nulle.
— On définit également le produit de Cauchy de deux éléments (an )n↓N, (bn )n↓N de

E par :

(an )n↓N↑ (bn )n↓N = (cn )n↓N où ⇐n ↓N, cn =
n∑

k=0
ak bn→k =

∑

(p,q)↓N2

p+q=n

ap bq

↑ est interne dans E car ⇒N1 |k ⇑ N1 ⇓ ak = 0, ⇒N2 |k ⇑ N2 ⇓ bk = 0,
d’où pour n ⇑ N1 +N2 →1,k ↓ [[0,n]], on a k ⇑ N1 ou n →k ⇑ N2 donc cn = 0.

— On vérifie alors que (E ,+,↑) est un anneau commutatif :
↑ est commutative ;
↑ est associative : en posant, pour (an )n↓N, (bn )n↓N éléments de E , (dn ) = (an )↑
(bn ) et ( fn ) = (dn )↑ (cn ) on a

fn =
∑

(p,q)↓N2

p+q=n

dp cq =
∑

(p,q)↓N2

p+q=n

(
∑

(ω,m)↓N2

ω+m=p

aωbm )cq

=
∑

(ω,m,q)↓N3

ω+m+q=n

aωbm cq

Par commutativité et symétrie du résultat on obtient :

(an )↑
(
(bn )↑ (cn )

)
=

(
(bn )↑ (cn )

)
↑ (an ) = ( fn ) =

(
(an )↑ (bn )

)
↑ (cn )

L’élément neutre est la suite ε= (1,0,0, . . . ) définie par ε0 = 1 et ⇐n ⇑ 1, εn = 0 :

en effet pour (an )n↓N ↓ E , en posant (cn ) = ε↑ (an ) on cn =
n∑

k=0
εk an→k = ε0an =

an .
↑ est distributive par rapport à +

— De plus pour ϑ ↓K :

ϑ.
(
(an )↑ (bn )

)
=

(
ϑ.(an )

)
↑ (bn ) = (an )↑

(
ϑ.(bn )

)

On dit que (E ,+,↑, .) est uneK-algèbre commutative.

Heuristique - Problème opératoire. Mise en place de la structure

2.2. K[X ] commeK espace-vectoriel

On utilise le symbole de Kronecker ϖi , j = ϖ
j
i =

{
1 si i = j
0 si i ⇔= j

On a alors ε= (ϖ0
n)n↓N.

Définition - Notation de Kronecker

Dans la sous-algèbre des matrices engendré
par A sur le corps K : (< A >,+,↑)) (notée
K[A]), les polynômes (de matrices) s’incarnent
en prenant pour valeur X 0 = In , le neutre des
matrices pour la seconde loi : ↑ et X = A.
Dans la sous-algèbre des endomorphismes de
E engendré par u sur le corps K : (< u >
,+,↑)) (notée K[u]), les polynômes (d’endo-
morphismes) s’incarnent en prenant pour va-
leur X 0 = idE , le neutre des matrices pour la
seconde loi : ↑ et X = u.

Pour aller plus loin - Incarnation dans
d’autres algèbresOn pose X = (ϖ1

n)n↓N, On vérifierait que X p = (ϖp
n )n↓N.

Définition - Polynôme
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592 Structure algébrique de l’ensemble des polynômes

On écrira désormais P = (a0, a1, . . . , an ,0, . . . ) sous la forme

P = a0 +a1X +a2X 2 +·· ·+an X n =
n∑

k=0
ak X k

où X 0 = ε est identifié à 1.
On identifiera le scalaire ϑ ↓K avec ϑε= (ϑ,0,0, . . . ) (c’est-à-dire que l’on
a une bijection évidente entreK et les suites nulles à partir du rang 1).

On trouve aussi l’écriture
n∑

k=0
ak X k =

+↖∑

k=0
ak X k où ak = 0 pour k > n (puis-

qu’il s’agit d’une suite nulle à partir d’un certain rang).
On pourra écrire [P ]k pour désigner ak , le nombre devant X k dans P

On dit que les polynômes P et Q sont égaux si ⇐ n ↓N, [P ]n = [Q]n

Définition - Egalité de polynôme

On note Kn [X ] l’ensemble des polynômes de
degré inférieur ou égal à n.
Kn [X ] est un s.e.v. deK[X ], de dimension finie
égale à n +1.
(1, X , X 2, . . . , X n ) en est une base, appelée base
canonique deKn [X ].

Pour aller plus loin - S.e.v des polynômes de
degré ↙ n

On a les règles de calcul suivantes, qui donne àK[X ], une structure d’espace
vectoriel

On noteK[X ] l’ensemble des polynômes à coefficients dansK.
(K[X ],+, .) est unK-e.v. de vecteur nul le polynôme 0

Pour P =
n∑

k=0
ak X k , Q =

m∑

k=0
bk X k on a

P +Q =
max(n,m)∑

k=0
(ak +bk )X k (ak = 0 si k > n, bk = 0 si k > m)

ϑP =
n∑

k=0
ϑak X k

Théorème -K[X ], commeK-espace vectoriel

STOP Remarque - Linéarité de P ↗↘ [P ]k
On en déduit que pour tous ϑ,µ ↓K et P,Q ↓K[X ], et pour tout k ↓N,[

ϑP +µQ
]

k =ϑ[P ]k +µ[Q]k .

2.3. K[X ] comme anneau

On a notéK[X ] l’ensemble des polynômes à coefficients dansK.
(K[X ],+,↑) est un anneau commutatif d’élément neutre pour ↑ le poly-
nôme 1 = X 0.

Pour P =
n∑

k=0
ak X k , Q =

m∑

k=0
bk X k on a

P +Q =
max(n,m)∑

k=0
(ak +bk )X k (ak = 0 si k > n, bk = 0 si k > m)

P ↑Q = PQ =
n+m∑

k=0
ck X k avec ck =

∑

(i , j )↓N2

i+ j=k

ai b j

Théorème - AnneauK[X ]
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2. L’algèbreK[X ] 593

(K[X ],+,↑, ·) est uneK-algèbre.
Corollaire - AlgèbreK[X ]

Ne cherchez pas à réduire K[X ] de manière à avoir une algèbre de di-
mension finie.Kn[X ] n’est pas stable pour la multiplication (sauf si n ↙ 0
- polynômes constants).

Attention -Kn[X ] n’est pas une algèbre

Un K espace vectoriel (A,+·) qui vérifie égale-
ment : (A,+,↑) est un anneau, s’appelle uneK-
algèbre.
Par exemple (L (E),+,↔, ·) est uneK-algèbre de
dimension finie (en tant qu’espace vectoriel de
dimension finie) si E est un Kev de dimension
finie.

Pour aller plus loin - Algèbre?
Si P et Q sont deux polynômes (de degré fini, évidemment), alors P +Q
et P ↑Q sont des polynômes et

⇐ k ↓N, [P+Q]k = [P ]k+[Q]k , [PQ]k =
k∑

i=0
[P ]i [Q]k→i =

∑

i+ j=k
[P ]i [Q] j

Cela est indépendant de la valeur de degP , degQ. . .

Savoir faire - Expression formelle

2.4. Interprétation dans différentes algèbres

Beaucoup d’objets mathématiques font partis d’un anneau (avec addition et multiplica-
tion des éléments).
Il est alors parfois possible de faire une identification entre cette anneau et les relations
associés et l’anneau des polynômes avec les mêmes relations.
On se rend compte que la connaissance sur l’anneau polynômes nous éclaire alors autre-
ment. L’exemple suivant éclaire cette remarque. D’une certaine façon l’anneau des poly-
nômes est l’anneau des relations

Heuristique - Ce qui compte ce sont les relations algébriques

Exemple - Calculer A100 si A =
(

1 2
1 0

)

On calcule les premières valeurs et on remarque que A2 =(
3 2
1 2

)
= A+2I2.

Les puissances de A s’écrivent alors que des polynômes en A :
Ak ↓Z[A].
Mais on a mieux : X 100 = (X 2 →X →2)Q(X )+R(X ) avec degR < 1
(division euclidienne).
Puis en se plaçant sur l’anneau R : (→1)100 = ((→1)2 → (→1)→2)↑
Q(→1)+R(→1) = R(→1) et 2100 = 0+R(2).

Donc R = 1
3 (2100(X +1)→ (→1)100(X →2)) On a alors pour l’an-

neau Z[A] : A100 = Q(A) ↑ (A2 → A → 2I2)Q(A) + R(A) = R(A) =
1
3

(
(2100 → (→1)100)A+ (2100 +2(→1)100I2)

)
.

Un autre exemple :
STOP Remarque - Formule du binôme
K[X ] étant un anneau commutatif, la formule du binôme est valable pour
calculer

(P +Q)m =
m∑

i=0

(
m
i

)
P i Qm→i

STOP Remarque -K[X ] anneau euclidien
Comme Z,K[X ] est muni d’une division euclidienne.
Beaucoup de propriétés de l’arithmétique de Z se transmettent à l’arithmé-
tique deK[X ].
C’est l’enjeu du chapitre n +2
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594 Structure algébrique de l’ensemble des polynômes

2.5. Composition

Si P =
n∑

k=0
ak X k et Q ↓ K[X ] (non nul), on définit le polynôme composé

P ↔Q ou P (Q) par :

P ↔Q = P (Q) =
n∑

k=0
akQk

Définition - Composition polynomiale

Exemple - Composition
Pour P = 1+X +X 2 on a

P ↔ (→X ) = P (→X ) = 1→X +X 2

P ↔X 2 = P (X 2) = 1+X 2 +X 4

STOP Remarque - Notation
On retrouve aussi la notation P (X ) pour P .
Exercice
Exprimer le coefficient [P ↔Q]k en fonction des [P ]i et [Q] j .
On commencera par k ↙ 3. . .

P ↓K[X ] est dit pair (resp. impair) si P (→X ) = P (X ) (resp. P (→X ) =→P (X )).
Définition - Polynômes pair, impair

Exercice
Soit P ↓R[X ] un polynôme pair. Montrer qu’il existe Q ↓R[X ] tel que P =Q(X 2).

2.6. Remarques sur le corpsK

Pour définir parfaitementK[X ], il faut pouvoir additionner et multiplier les coefficients an
entre eux.
Pour que ceci se passe bien, il faut fondamentalement queK soit (au moins) un anneau.
C’est la définition de l’anneau.
Il arrivera que l’on ait besoin, en outre, que chaque élément an soit inversible, par exemple
pour faire des divisions euclidiennes de polynômes, ou écrire

3X ↑P = X 3 ⇓ P = 1

3
X 2

Donc nous avons souvent besoin d’un corpsK.

Heuristique -K : corps ou anneau?

Si restreindre à une seule indéterminée est
important : c’est la base. Mais, souvent, il
peut y avoir deux inconnues ou deux réfé-
rences (comme i dans l’exemple plus haut).
On peut par exemple considérer les polynômes
en

∝
2,
∝

3 à coefficients dans Z, on le noterait
Z[

∝
2,
∝

3].
Il faut donc nécessaire définir une structure
adaptée :K[X ,Y ].
La méthode classique est de penser K[X ,Y ] =
(K[X ])[Y ]. C’est-à-dire qu’il s’agit de poly-
nôme en Y à coefficients dans les polynômes
X . On montre que c’est équivalent à faire la
construction dans l’autre sens.
Tout ne se généralise pas de manière évidente :
P = X →Y est un polynôme non nul qui admet
une infinité de solution : (a, a). . .

Pour aller plus loin - AnneauK[X ,Y ]

STOP Remarque - Quel corpsK?
La plupart du temps, on prendra pour corps R ou C.
Il arrivera, de temps en temps de prendre Q (si l’on part de l’anneau Z des
entiers), ou moins trivialement : Z

pZ (corps des inversibles modulo p).
STOP Remarque - Quel anneauK?
Enfin, pour certains problèmes (exemple-type : étude des polynômes à coef-
ficients entiers), on se placera sur Z[X ].
Pour d’autres problèmes (exemple-type : lemme de factorisation des ma-
trices), on se placera sur Mn(K)[X ] ′Mn(K[X ])).
STOP Remarque - (K[X ])[Y ]
Pour définir l’ensemble des polynômes de deux variables, on exploite aussi
l’anneauK[X ], comme base des coefficients de la variable Y .

K[X ,Y ] = (K[X ])([Y ]

On en reparlera plus loin. . .
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3. Degré 595

3. Degré

3.1. Définition

Soit P ↓K[X ], P =
n∑

k=0
ak X k avec an ⇔= 0.

On appelle degré de P , l’entier n que l’on note degP , c’est aussi

max{k ↓N |ak ⇔= 0}

Par convention, le degré du polynôme nul vaut →↖.
Les scalaires ak s’appellent les coefficients du polynôme, an s’appelle le
coefficient dominant de P .
On noteKn[X ] l’ensemble des polynômes de degré inférieur ou égal à n.

Définition - Degré d’un polynôme

Si [P ]degP = 1, P est dit normalisé ou unitaire.
Définition - Polynôme normalisé ou unitaire

Les polynômes de degré nul ou égal à →↖ sont appelés polynômes
constants (et identifiés aux éléments deK).

Définition - Polynôme constant

Par double inégalité :
—

(
⇐ i ⇑ k +1, [P ]i = 0

)
=⇓ degP ↙ k

—
(
⇒ k ↓N, [P ]k ⇔= 0

)
=⇓ degP ⇑ k

Savoir faire - Montrer que degP = k

ϑX k est un monôme.
Définition - Monôme

3.2. Arithmétique des degrés

Pour tout polynômes P,Q ↓K[X ]

⇐ϑ ↓K∞,degϑP = degP

deg(P +Q) ↙ max(degP,degQ) avec égalité si degP ⇔= degQ

degPQ = degP +degQ

deg(P ↔Q) = degP ↑degQ ((P,Q) ⇔= (0,0))

Proposition - Arithmétique des degrés

Démonstration

• Les coefficients de ϑP , sont exactement (ϑak )k , donc si ϑ ⇔= 0,

max{k ↓N |ak ⇔= 0} = max{k ↓N |ϑak ⇔= 0}
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596 Structure algébrique de l’ensemble des polynômes

• Pour tout k ↓N, [P+Q]k = [P ]k+[Q]k Si k ⇑ max(degP,degQ)+
1, alors k ⇑ degP +1 et k ⇑ degQ +1, donc [P +Q]k = 0+0 = 0.
Ainsi deg(P + Q) ↙ max(degP,degQ) Par ailleurs, si degP <
degQ, alors [P +Q]degQ = 0 + [Q]degQ ⇔= 0, donc deg(P +Q) ⇑
degQ.
• Enfin, on note d = deg(P ) et g = deg(Q).

Donc [PQ]d+g =
d+g∑

h=0
[P ]h[Q]c+d→h = 0 + [P ]d [Q]g + 0 ⇔= 0, donc

deg(PQ) ⇑ degP ↑degQ.
Et enfin pour tout h > 0,

[PQ]d+g+h =
d+g+h∑

i=0
[P ]i [Q]d+g+h→i =

d∑

i=0
[P ]i [Q]d+g+h→i︸ ︷︷ 

=0 car d+g+h→i>g

+
d+g+h∑

i=d+1
[P ]i︸︷︷

=0 car i>d

bd+g+h→i = 0

Ainsi deg(PQ) = degP +deg(Q).
• Pour tout k ↓N, X k ↔Q =Qk =Q ↑Qk→1.
Donc si on note qk = degQk , on a qk = degQ + degQk→1 =
degQ +qk→1.

qk = k degQ (suite arithmétique avec q1 = degQ).

Donc ensuite par linéarité : P ↔Q =
degP∑

k=0
[P ]k (Qk ),

donc degP ↔Q ↙ max{degQk ,k ↓ [[0,degP ]]} = degQ ↑degP .
Et comme les degrés de Qk sont tous distincts, deg(P ↔Q) =

degQ ↑degP .

Par définition, deux polynômes sont égaux si et seulement si ils ont
même degré et mêmes coefficients.
On procède donc souvent en deux temps :

1. On étudie les degrés

2. On regarde (ensuite) les coefficients

Ou bien, on démontre que ⇐ k ↓N, [P ]k = [Q]k .

Savoir faire - Égalité polynomiale

Si le cours sur les espaces vectoriels de dimension finie a été vue :

Soit (Pk )k↓I , une famille de polynômes.
On dit que la famille (Pk )k↓I est (de degrés échelonnés) échelonnée ssi
⇐ i , j ↓ I , i ⇔= j ⇓ degPi ⇔= degP j .

Définition - Degré échelonné

Soit (Pk )k↓I , une famille de polynômes de degrés échelonnés.
Alors (Pk )k↓I est une famille libre.

Proposition - Degré échelonné (ou étagée)

Démonstration
Soit (ϑk )k↓I ↓KI (une famille presque nulle) telle que

∑

k↓I
ϑk Pk =

0.
Supposons que J := {k ↓ I |ϑk ⇔= 0} est non vide. Il est fini puisque
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la famille est presque nulle
Alors D = {degP j , j ↓ J } est non vide, majorée car fini. Il admet
un plus grand élément j0.
Alors 0 =

∑

k↓I
ϑk Pk =

∑

j↓J
ϑ j P j =ϑ j0 P j0 +

∑

j↓J\{ j0}
ϑ j P j .

On a alors →↖= deg(P j0 ) car ⇐ j ↓ J \ { j0}, degP j < degP j0 .
Ceci est absurde. Donc J = 0 et la famille est libre.

L’ensemble Kn[X ] = {P ↓ K[X ] | degP ↙ n} est un espace vectoriel de
dimension finie égale à n +1.
Une base (dite canonique) est (1, X , X 2, . . . X n).

Corollaire - Espace vectorielKn[X ] de dimension finie

Démonstration
Cette famille est clairement génératrice deKn[X ].
Elle est également libre, car elle est échelonnée. Enfin elle est
composée de n +1 vecteurs.

3.3. Intégrité deK[X ] et éléments inversibles

Comme le dévoile la démonstration : les résultats suivants sont indépendants
du corpsK considéré :

K[X ] est un anneau intègre, c’est-à-dire que

⇐(P,Q) ↓K[X ]2, PQ = 0 ⇓ P = 0 ou Q = 0.

Proposition - Anneau intègre (sans diviseur de 0)

Démonstration

Supposons que PQ = 0.

deg(PQ) = degP +degQ =→↖=⇓ degP =→↖ ou degQ =→↖

Soient (P,Q,R) ↓K[X ]3, P ⇔= 0. Alors

PQ = PR ⇓Q = R.

Corollaire - Régularité

Ce résultat de régularité est vrai même si P n’est pas inversible.

Démonstration
Il suffit de remarquer que PQ = PR ⇓ P (Q→R) = 0, donc Q→R =
0 et Q = R.

Les éléments inversibles deK[X ] sont les polynômes constants non nuls.
Proposition - Eléments inversibles dansK[X ]
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Démonstration

Soit P ↓K[X ], inversible et Q, son inverse (polynôme).
On a

deg(P ↑Q) = deg(P )+deg(Q) = deg(1) = 0
Donc, comme deg(Q) ⇑ 0, on a donc deg(P ) ↙ 0.
Ainsi, P = 0 (degré égal à →↖) ou P est contant.
Réciproquement, si P =ϑ( ⇔= 0), alors avec Q = 1

ϑ , on a P ↑Q = 1.
Et si P = 0, pour tout Q, P ↑Q = 0, donc P n’est pas inversible.

Finalement l’ensemble des polynômes inversibles estK1[X ]\{0}

3.4. Valuation

Pour P ⇔= 0, on appelle valuation de P l’entier min{k ↓N |ak ⇔= 0}.
On pourrait la noter vX (P ).

Définition - Valuation d’un polynôme

Exemple - Degré et valuation de P = 3(X +1)2 →3(X →1)?
degP = 2 et vX (P ) = 1.

STOP Remarque - Elargissement de définition
On retrouve la définition de la valuation p-adique.
Mais ici, on il s’agit de la valuation X -adique

vX (P ) = max{k ↓N | X k |P }

Ou encore
vX (P ) = k ∈⇓ X k |P et X k+1 ⇔ |P

Par double inégalité :
—

(
⇐ i ↙ k →1, [P ]i = 0

)
=⇓ vX (P ) ⇑ k

—
(
⇒ k ↓N, [P ]k ⇔= 0

)
=⇓ vX (P ) ↙ k

Savoir faire - Montrer que vX (P ) = k

Exercice
Quelle est la valuation de P ↑Q ?

4. Dérivation d’un polynôme

4.1. Définition

Soit P = a0 + a1X + ·· · + an X n =
n∑

k=0
ak X k ↓ K[X ] un polynôme non

constant. On définit le polynôme dérivé de P par

P ≃ = a1 +2a2X +·· ·+nan X n→1 =
n→1∑

k=0
(k +1)ak X k =

n∑

k=1
kak X k→1

Si P est constant, on pose P ≃ = 0.

Définition - Polynôme dérivé
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Soit P ↓K[X ]. Si degP ⇑ 1 alors degP ≃ = (degP )→1.
Et également pour tout k ↓N : [P ≃]k = (k +1)[P ]k+1.
En particulier : [P ≃]degP→1 = degP ↑ [P ]degP

Proposition - Degré et dérivation

Cette définition, bien que calquée sur la for-
mule de la dérivation de fonctions polyno-
miales en analyse, est très différente. En parti-
culier, il n’est jamais question ici de passage à
la limite. Et surtout, il s’agit bien d’une défini-
tion « globale » : sur la forme et non « locale » :
en des points. . .

Pour aller plus loin - Définition algébriqueDémonstration
Il suffit de lire l’écriture de P ≃

4.2. Dérivation d’opérations polynomiales

Pour (ϑ,µ) ↓K2 et (P,Q) ↓K[X ]2 on a :

(ϑP +µQ)≃ =ϑP ≃+µQ ≃

(
∑

i↓I
ϑi Pi

)≃
=

∑

i↓I
ϑi P ≃

i

(PQ)≃ = P ≃Q +PQ ≃

(P1P2 . . .Pn)≃ =
n∑

i=1
P ≃

i

n

j=1, j ⇔=i
P j et (P n)≃ = nP ≃P n→1

(P ↔Q)≃ =Q ≃ ↑P ≃ ↔Q

Théorème - Linéarité de la dérivation

Démonstration

On notera P =
d∑

k=0
ak X k et Q =

g∑

h=0
bh X h .

— Soient ϑ,µ ↓ K, (quitte à compléter avec ag = 0 ou bd =
0. . .), on a

ϑP +µQ =
max(d ,g )∑

k=0
(ϑak +µbk )X k

(
ϑP +µQ

)≃ =
max(d ,g )∑

k=0
k(ϑak+µbk )X k→1 =

max(d ,g )∑

k=0
kϑak X k→1+

max(d ,g )∑

k=0
kµbk X k→1

=ϑP ≃+µQ ≃

— On applique donc la règle de dérivation d’une somme :

(PQ)≃ =
(

d+g∑

k=0

(
k∑

h=0
ahbk→h

)
X k

)≃
=

(
d+g∑

k=0
k

(
k∑

h=0
ahbk→h

)
X k→1

)≃

Alors que

P ≃Q+PQ ≃ =
(

d+g∑

k=0

(
k∑

h=0
(hah)bk→h

)
X k→1

)
+

(
d+g∑

k=0

(
k∑

h=0
ah(k →h)bk→h

)
X k→1

)

=
(

d+g∑

k=0

(
k∑

h=0
(hah)bk→h +ah(k →h)bk→h

)
X k→1

)
=

(
d+g∑

k=0
k

(
k∑

h=0
ahbk→h

)
X k→1

)≃

Donc
(PQ)≃ = P ≃Q +PQ ≃
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— Il s’agit de démontrer le résultat par récurrence sur n.
Cela est vraie pour n = 1 (simple) et n = 2 avec la question
précédente (et même n = 0 ?).
Soit n ↓N∞. Supposons que le résultat soit vraie au rang n.
On a alors d’après la règle d’un produit :

(P1P2 . . .PnPn+1)≃ = (P1P2 . . .Pn)≃Pn+1 + (P1P2 . . .Pn)P ≃
n+1

=
n∑

i=1
P ≃

i

n

j=1, j ⇔=i
P j Pn+1+(P1P2 . . .Pn)P ≃

n+1 =
n∑

i=1
P ≃

i

n+1

j=1, j ⇔=i
P j+P ≃

n+1

n+1

j=1, j ⇔=n+1
P j

=
n+1∑

i=1
P ≃

i

n+1

j=1, j ⇔=i

La propriété est héréditaire, la récurrence est démontrée.
— Avec P1 = P2 = ·· · = Pn = P , on a alors

(
P n)≃ =

n∑

i=1
P ≃

n

j=1, j ⇔=i
P = nP n→1P ≃

— On a donc, en exploitant le résultat précédent et LA LINEA-
RITE :

(P ↔Q)≃ =
n∑

k=1
ak kQk→1Q ≃ =Q ≃P ≃(Q)

4.3. Dérivation d’ordre supérieur

Soit P ↓K[X ]. On définit par récurrence le polynôme dérivé d’ordre k :

P (0) = P et ⇐k ⇑ 0, P (k+1) =
(
P (k)

)≃
.

Par récurrence sur k :
(
P (h))(k) = P (h+k), pour tout h

Définition - Dérivées successives

Soit (P,Q) ↓K[X ]2. On a alors :

(PQ)(n) =
n∑

k=0

(
n
k

)
P (k)Q(n→k)

Théorème - Formule de Leibniz

En fait, on fait la même démonstration que pour le binôme de Newton
(récurrence, décalage de somme, triangle de Pascal). On peut aussi exploiter
la formule de Taylor et un produit de polynôme puis identifier. . .

Démonstration

On note Pn : « (PQ)(n) =
n∑

k=0

(
n
k

)
P (k)Q(n→k) »

— (PQ)(0) = PQ
— Soit n ↓N. Supposons que Pn est vraie.

(PQ)(n+1) =
(

n∑

k=0

(
n
k

)
P (k)Q(n→k)

)≃
=

n∑

k=0

(
n
k

)
P (k+1)Q(n→k)+P (k)Q(n→k+1)
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=
n∑

k=0

(
n
k

)
P (k+1)Q(n→k) +

n∑

k=0

(
n
k

)
P (k)Q(n→k+1)

=
n→1∑

k=0

(
n
k

)
P (k+1)Q(n→k)+P (n+1)+

n∑

k=1

(
n
k

)
P (k)Q(n→k+1)+Q(n+1)

= P (n+1)Q +
n∑

k=1

((
n

k →1

)
+

(
n
k

))
P (k)Q(n→k+1) +PQ(n+1)

=
(

n +1
n +1

)
P (n+1)Q(0)+

n∑

k=1

((
n +1

k

))
P (k)Q(n→k+1)+

(
n +1

0

)
P (0)Q(n+1)

On a donc Pn ⇓Pn+1

[P ]i =
P (i )(0)

i !
. Donc

(PQ)(k)(0)
k !

= [PQ]k =
k∑

i=0
[P ]i [Q]k→i

(PQ)(k)(0) = k !
k∑

i=0

P (i )(0)Q(k→i )(0)
i !(k → i )!

.

Ainsi

(PQ)(k)(0) =
(

k
i

)
P (i )(0)Q(k→i )(0)

Et ceci n’est pas uniquement vrai qu’en 0

Pour aller plus loin - Formule de Taylor
4.4. Applications

Cas essentiel centré en a

Le résultat suivant nous servira pour la formule de Taylor

Soient a ↓K et n ↓N. Alors

[(X →a)n](k) =





n(n →1) . . . (n →k +1)(X →a)n→k si k < n
n! si k = n
0 si k > n

Proposition - Dérivation du monôme

Démonstration

On démontre le résultat par récurrence : sur k ! (n étant fixé).

Soit n ↓N. Notons Qp : « [(X→a)n](k) =





n(n →1) . . . (n →k +1)(X →a)n→k si k < n
n! si k = n
0 si k > n

»

— [(X →a)n](0) = (X →a)n , ce qui correspond.
— Soit p ↓N. Supposons que le résultat est vraie au rang p.

On sait que [(X → a)n]k+1 =
(
[(X →a)n]k)≃

Si k > n, [(X →
a)n]k+1 = 0≃ = 0. Si k = n, [(X → a)n]k+1 = (n!)≃ = 0. Si
k < n, [(X → a)n]k+1 =

(
n(n →1) . . . (n →k +1)(X →a)n→k)≃ =

n(n→1) . . . (n→k+1)(n→k)(X →a)n→k+1. Donc Qn+1 est vraie

Formule générale

Soit P ↓K[X ], alors pour tout k ↓N et j ↓N :

[P (k)] j =
( j +k)!

j !
[P ] j+k

Proposition - Dérivation du polynôme P
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Démonstration

On a vu que pour tout j ↓N, [P ≃] j = ( j +1)↑ [P ] j+1.
Fixons i ↓N et posons pour k ↙ i : ak = (i →k)!↑ [P (k)]i→k .

On a alors d’après la première remarque : [P k ] j = ( j + 1) ↑
[P k→1] j+1 Donc

ak = [P (k)]i→k = (i→k)!↑(i→k+1)[P (k→1)]i→k+1 = [(i→(k→1))!][P (k→1)]i→(k→1) = ak→1

Donc (ak ) est constante et ak = a0 = i ![P 0]i = i ![P ]i .
Ainsi pour j = i →k (k fixe, changement de variable i ∋ j )

[P (k)] j =
1
j !

ak = ( j +k)!
j !

[P ] j+k

Exercice d’application

Souvent, on cherche à résoudre une équation différentielle dont l’incon-
nue est un polynôme P .

1. On précise la notation du degré de P (n)

2. On remplace P , P ≃ par leur expression sommatoire

3. On fait les multiplications prévues dans l’équation (par X , X 2. . .)

4. On « explose » toutes les sommes, puis on réalise dans chacune le
changement de variable de manière à trouver des


h ϱh X h .

5. On recolle le tout en une seule somme du type
a2∑

h=a1

(ϱh + ςh +

. . . )X h .
Souvent, il y a des conditions de bords. Dans la somme (ϱh +ςh +
. . . ), il ne doit pas y avoir un seul X

6. Par unicité de l’écriture polynomiale, on trouve que pour tout
h ↓ [[0,n]], ϱh +ςh +·· · = 0

(n équations à résoudre. Elles sont souvent récurrence : ah→2
en fonction de ah , par exemple. . .)

Savoir faire - Passer d’une relation entre dérivés de P à une relation
entre coefficients

Application - P ≃≃+P ≃ →ϑX 2P = 0 et X 2P ≃≃+P ≃ →ϑP = 0
Résoudre P ≃≃+P ≃ →ϑX 2P = 0 (1) et X 2P ≃≃+P ≃ →ϑP = 0 (2).
Si n ⇔=→↖ est le degré de P ( ⇔= 0), avec l’équation 1, on trouve que le degré de
Q = P ≃≃+P ≃ →ϑX 2P vaut exactement n +2.
Ce qui est impossible. Seul le cas P = 0 est donc envisageable. Et réciproque-
ment : il s’agit bien d’une solution.
Soit n le degré de P , solution de (2), on a alors comme coefficients d’ordre n
de Q : (n(n →1)→ϑ)[P ]n .
Comme P est solution, nécessairement, ce terme est nul donc n(n →1) = ϑ,
ce qui nous donne une condition nécessaire sur ϑ (l’existence d’(au moins )
une solution entière naturel de l’équation x2 →x →ϑ= 0).
Ensuite, n étant alors connu, on trouve une relation de récurrence : (n +
1)[P ]n+1 = (ϑ→n(n →1))[P ]n . . .
Exercice
On considère la suite de polynômes définie par récurrence par

P0 = 1, ⇐k ↓N,Pk+1 = (1+X 2)P ≃
k → (2k +1)X Pk .

1. Calculer P1,P2,P3.
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2. Déterminer le degré et le coefficient dominant du polynôme Pk .
3. Etudier la parité de Pk .

5. Bilan

Synthèse

↭ On crée un anneau théoriques des opérations algébriques à partir
d’éléments d’un corps K (à ce stade, on peut se placer sur un anneau
K, comme Z - l’inversion des éléments est important pour la factori-
sation ou division euclidienne).
C’est un anneau des calculs finis.

↭ On incarne alors les opérations classiques en leur donnant un sens
(que) formel.
Par exemple, la dérivation se formalise sans passer par une question de
limite. Tous les résultats tombent alors par simple calcul (sans limite).

↭ Quelques notions sont importantes : additions, multiplications, com-
positions et aussi degré ou valuation. . .

Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Expression formelle
— Savoir-faire - Montrer que degP = k
— Savoir-faire - Egalité polynomiale
— Savoir-faire - Montrer que vX (P ) = k
— Savoir-faire - Passer d’une relation entre dérivés de P à une relation

entre coefficients

Notations

Notations Définitions Propriétés Remarques
[P ]k Coefficient d’indice k du polynôme P [P +Q]k = [P ]k + [Q]k et P ↑Q]k =

k∑

i=0
[P ]i [P ]k→i

degP Degré de P ou degP = max{k ↓N | [P ]k ⇔= 0} deg(P+Q) ↙ max(degP,degQ), degP↑
Q = degP +degQ et deg(P ↔Q) =
degP ↑degQ

P (k) Dérivation k-ième de P [P (k)] j =
( j +k)!

j !
ak+ j On retrouve les formules clas-

siques de dérivation

Retour sur les problèmes

124. L’anneau des polynômes est comme l’anneau théoriques des calculs
algébriques. Quitte à considérer les polynômes à plusieurs variables

125. Tout passe bien, sauf la division. On en reparlera aux chapitres 20 et
21.

126. Dans le cours : [P +Q]k = [P ]k + [Q]k et P ↑Q]k =
k∑

i=0
[P ]i [P ]k→i .

Plus compliqué [P ↔Q]k .

[P ↔Q]0 = [P ]0 + [P ]1[Q]0 + [P ]2[Q]2
0 + . . .

[P ↔Q]1 = [P ]1[Q]1 +2[P ]2[Q]0[Q]1 +3[P ]3[Q]2
0[Q]1 + . . .

Trouver une formule n’est pas facile. . .

127. Cela existe très bien. On se débrouille sans notion de convergence
(une incarnation simple peut être les nombres p-adiques). On note
cet ensemble des séries formelles :K[[X ]]. Voir sur wikipedia. . .

128. Cours.
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